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1. Introduction

In this paper we discuss the numerical solution of the interaction of the strong

plane explosion wave with the boundary between two gases.

Beoause this kind of unsteady problem has a characteristic length and there are
shooks, contaot discontinuities and rarefaction waves, it is a good test problem for
judging methods. .

The singularity-separating method presented in [1] can accurately solve this
kind of problem. Its scheme is unconditionally stable and possesses a socond order
acouracy. We have obfained safisfactory numerical results using the singularity-
geparating method for this complicated problem.

Woe shall show the singularity-separating method and ils difference scheme in
detail. Also we shall give the fractional errors of mags, momentum and energy for our
numerical results. The error estimations show that our solutions are accurate.

Finally, we shall compare this method with the L—W scheme for a special

problem.,

2. Formulation of the Problem

We consider the following problem of plane unsieady motion of a periect gas.
The system of equations of gas dynamiocs is
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Suppose that at the time ¢= —#;(#;>>0), the state of flow field is ¥ =1, (ratio of
gpecific ‘heats), p=p; (density), v=u, =0 (velocity), p=p,=0 (pressure), e =¢ =0
(internal energy) at #<0 and y=v,, p=p,, u=4=0, p=p,=0, e¢=¢=0 at 2>>0.
There is a strong explosion on the plane 2= R,(see Fig. 1). “Strong” explosion means
that the internal energy and the pressure of the static gas in front of the explosion
wave can be neglected as compared with the energy released per unit area . The
explosion wave A0 moves towards the boundary of two gases. It meets the boundary
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at t=0. As a result of interaction, an inoident shock, a contact discontinuity and ‘a

reflected wave (rarefaction wave or shock wave) are produced.

There is & self-similar solution in region 4 because the internal emergy and the
pressure of the static gas in front of the explosion wave are zero, Its analytio expres-
giong are given in [2] and [3]. The curve AOE in Fig. 2 represents the incident shock.

Lot 7, denote the distance between OF and =Ry, According to those expressions, wo
have |

o= (B e,

¢
dTﬂ=V=2 ‘l"g__
d 3 t+iy

(V is the velooity of explosion wave) and
(BN
Ro=( Pr) 837,
Put R,=0.1m, H=2734905.6J/m? #;=2.17181983x107%8, po=1.29 kp/m® and the

ratio of specific heats y=1.4.
The shock relations are |

1 (s — V) = po(tio— V), ’ (2a)
p1(us—V )2+ p1=po(o—V )*+ 1o, (2b)
eﬁ}g(ul—V)“—l*—f;i—-—-%+%(%-V)“+%. (2¢)

Here the quantities, with the subscript 0 denote the quantities in front of the wave,
the quantities with the subscript 1 denote the quantities behind the wave, the internal

energy & = 12 and Up=€o="Po 4——;0.' From (2) we obtain

7Y—1 p1 |
pr(wa—V )= —poV, | (3a)
p1(ua— V) +p1=poV %, ~ (8b)
! 1
LA gl PY =g T (3¢)

Furthermore, it follows from (3a—c) that
pr=prtia (V' — ), (4)
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If y=1.4, i can be easily derived that behind the incident wave AOFE the gas density

p="06p,, the velocity of the gas v= 1?2 and the pressure p =¥ ?/1.2. Denote
(Ro—z)/rs by R(x, t). It relates to a parameter ¥ by the relation™

- R=(1.87)~%3(12.6V —6)¥*(8—3.6V)-5/%
then u, p, p in region 4 can be expressed by

(u=—p(1.8R7), (8a)
{ p=p(12.67 ~6)5/°(6— 97 )—20/8(8- 3 g7 )2/9 (8b)
p=p(1.87)V3(6-9V)-/3(8—8.67)%/2, (8c)

Our aim is to delermine the quantities in the whole region from the incident wave to
the reflected wave.

3. Numeric’al‘ Methods

-_ First we rewrite the system of equatiﬂns_ (1) in the characteristic form -

pc, O, 1L %
0, v, —0p 25 | P
—pc, 0, 1 \p
w+e, O, 0 pc, 0, 1! %
+| 0, w, 0 ( 0, vp, —p ?'1— g [=0,
0, 0, #¥—e¢/\—pc, O, 1/ P
i. e G. Bg IA@.—%—Z‘——.%D, . | (9)
where . | |
oc, 0, 1 " %, 0, 0\ [ute, 0, O
G=| o0, vy, —p | T=(p| d={0, %, 0})=| 0, w o0 |
—pe, O, 1 P 0, 0, Ag 0, 0, wuw—c

and sound veloocity ¢= ' vp/p .

Suppose that there are §+1 discontinuity lines z;(¥)(¢4=0, ---, §) in the region
where we try to find the soluiion. A domain between (¢) and ;,,(?) is called 2
subregion. Thus the computational region consists of § subregions. Obviously an
arbitrary subregion whose boundaries are «;(¢) and ;,.4(¢) can be transformed into a
strip 4<¢<\¢+1 on the ¢~ plane by using the transformation =% &= (@—a)/
(@i,1(2) — (%)) + 4. Because there are the following relations for U(z, ) =U(£, ©):
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the system of equations in the new cocrdinates is

et

e

ou | a9U _
G e 4G T 0, (10)
or ;
U .. 00 o

Gn 2 1 ?hnGn aé. -"'GJ ¥ 1’ 2, 3, (11)

where, -

A, 0, 0

G(gl t) ==Gi(m, t): A= 0; Aa, 0 ’
0, 0, ks

A= 35 ?"n"l_ a‘g w;_l_i(t)l——- m;(t) (in'"' (ff"” ‘3") (Vi-l-i(:t) = Vi@))):

V(i) = dm&gﬂ is the speed of the i—th discontinuity front, and G, is the n—th row of

G. For simplicity we omit the subseript o of A, @, in the difference equations.

In what follows we use the following notation, =

o=Adt/4E, U u=t(Eem, tu), Lo m=8+mdE, m=0, 1, -, M, M 4 1. being the
number of the mesh points in each subregion and the subsenpt ¢ and the superseripb
k are sometimes omitted. Other guantities have similar denotations. There is an
explicit-implicit-mixed scheme in [1]. It is guitable for various increments of the
variables z and ¢. Here we compute problems using this scheme.

If |o|<1 we take the following eoxplicit scheme: At the interim level the

approximation formula ig

GLUSTE = (1F 0% /2) LU £ (0%/2) Gall ks,
where we take the upper sign if o>>0 or the lower sign i ¢<C0; and at the regular
level the formula is -

L(a-B)(@H+6 D) + B, (@GR U = (1— BL)Sh+ BaSh,

Here,
(G“fwi‘..i‘{)u /2- ((a-‘”‘*-‘ orkg)/2+1)
,. (G"*f+eﬂ::{> hop U""’E)/z
—-(G"*f—i—G ?)Uff._lfz ((cr"’“f 0 st
(Gk+E+Gk+§) (UL+2 U::?) /,2

m/Ml, O‘Qm{Mlj
0 A>0

. } M <m<Ma,
1 | A< 0 TS
(m“‘M:ﬁ)/(M“Mﬂ);- Mo<m<M,
0, A>0on ¢£=0,

M, =

1 {min{E (.5.2_.) M—l}, 2<<0 on £=0,
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where £; is the maximum value among the values which make A<C0 hold in the
region 0<<£<<¢; and H(w) is the integral part of @, and

{max{M-—E( L ), 1}, A=0on £=1,
Mg=

48
M A<Oon £=1,

2

where £, i¢ the minimum value among the values which make A>0 hold in the

region {x<<é<l.
If |o|>1, we take the following implicit scheme: At the interim level the

formula is
L k
(1+ (E"m+1+ﬂ'm)/2) (G‘ +1+Gﬁ;)Ufﬂ+1 (1"" (ﬂ'm+1+ﬂm)f2) (G +1+G )U +-§

= (G +1+G )(Um+1+U:EH);
and at the regular level the formula is
1
(1+ (oM F+an ™) /2) (Gi:%w"‘*f)m”

m+1
+(1— (amﬁw“ﬂ)/z) (G i+ GE UL
- mmw"*f) (U5 1+ T%)

(R @+ @ (U, - TR,

This soheme has second order accuraoy. £ % 108
Its stability has been disoussed in .—lz ;
[l] ) 24 (1) 54($) za(1) xa(3)
Case I. Supposs that an incident
shock wave (#4(¢) ), a contaot discon- . .
0 1

tinuity( @2(#)) and a reflected rarefac- 110
tion wave (between z3(¢) and 2,(2)) are '

produced (see Fig. 3) when the strong
explosion wave meefs the boundary.

Since the quantities in region 0 are : : | . ; .
known and the ones in region 4 can be g . SR o -
obtained using (8a—c), what we must Fig. 3

compute is the quantities in regions 1, 2, 3 and the locations and velocities of four
discontinuity boundaries. In the following if % is a constant at a certain time in the
s—th subregion we denote u, as the speed of gas in this subregion and for p, p the
same notation is used. Clearly we can compute the initial values in the regions in the
following way. As well-known, from (5), (6), (7) and since the guantifies are
constant in region 1 at {=0, we know that

2 p 2 s y+1
- Uy = I7 Vi=
1 9, i v 1y .(pi ] i Po 2 poﬂ'l
From the contact discontinuity rela,tmns and the fact that the quantities are constant

in region 2 at =0 we have

L o~ -4 A
U1 =1y, 1= Pa,
and according to the relations of rarefaction wave, there are the relations:

=1
cﬂ, m— Gﬂiy I ’}; 2 (ualm_ uB!H)J _ (12)
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'psrm=in3r¥(1 } 'Y.rg ‘.1 - Usg, 23_ #3.3{ ) b (13)
g 2/CYr—1)

23, m= Pa, H(l ' ’)"rz 1 %, ’;3 -H okl ) ; (14)

In addition, since the quantilies at the boundary lines of the rarefaction wave are
continuous, there are the relations: |
fﬁs =Us, 0, Pz=ps,0, fﬁﬂ =Ps,0;
Uz, i ==Uq,0, P, U™ L4,0, Pa,u=Pso0.
From these relations we can derive

: ‘H:L-—‘Mﬂ Us, 0, §1=§n =M3,0,

¥ -\ 2/ (V1)
and Pl '}';—1 Pu% = Py, n(l t T";l Q{l;&*' ) T..
from which #; and %, can be determined. Using (14) with m =0 we can further obfain
0a.0, and pa=ps ,. Therefors the initial values in regions 1 and 2 can be easily
determined. The initial values in region 3 can be computed by the following formulae,
Since ¢ =~/ yp/p, the sound speeds c¢;,0 2and ¢z, » 0an be known. One of the relations
of coordinate transformatlon in region 8 can be rewritten as

_ o= (§—B)au() + (4—)as(D).
Differentiating this I'ela.tlon with respect to ¢ yields

>

dwy(t das (i
L (-ay LD (4ot
Since ﬁ? gshould be always equal fo w+ ¢, faking § = +3 m=0, 1 , M, we
obtain | | a
Uz, m~1Cs, m=ﬂ<%3 i+ Ca,n0) "r'(l—ln—)(ﬂa o-+¢Cz,0).. (15)

Now we can eagily obtain the fnrmulae reqmred In fa.ﬂt rom (12) and (155 we Ga.n
derive - " |

™) 1 e
Uz, m _(m(‘ua.y-l"ﬂa M) +(1_E)(‘Ha o+€3,0) ~~Cs,0 -1 '}’r2 — U3, H)T 1 (16)'

M
and pg,m and pz,m can be determined immediately from (13) and (14) Ag for the

velocities of four boundaries, clearly, they should be

+l
Vi= e U1, 0, Vﬂ"“uﬂ 0y Va—‘ufs ot Cs,0, T’Tai—'ua u1+Cs, u.
2

If Ale=e >0, ?u]; s+12>0 Iin the region s< §<s+1 we call the cﬂrresponﬂmg.
equation (11) the model problem Aj;. If Al,—s<0, A];-e;1<<0, we call it the model
problem A, If Al e=e<<0, A|s=sp1220, we call it the model problem B (If Afe=e=>0,
Ale=sp1<<0, we can split this region into two subregions, any one of which will
belong 10 A; or Ay, by adding a corresponding characteristic line to this region). As
pointed out above, we use the explicit-implicit scheme in [1] in our calculation.
Since |A| currasl)ondmg t0 a model B is usnally not large and |o| isusually less than
1, the explicit scheme is used at almost every point for the model B. Ih the following,
weo agsume that 4¢ will be properly chosen so that the explicit scheme will be used ab
every point for the model problem B.
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The three equations of (11) in region 1 belong respeciively to the problems Aj,
A4, Ay The ones in region 2 belong to the problems A, B, As. The ones in region 3
belong to the problems B, Aj, Ag The systems of difference equations can be therefore
written as follows:

BT, s+ O OG0 3, m P,
G OUy, ot + 5 VGE VU 1, = Fi3*0,

17
QPGP L, ma+ GV, m=F12,
m=0,1, -, M—1;

G g mia+ QEHOQE Vs = FRY, m=0,1, -, M—1,  (18a)
G, = F m=0, 1, -, M, (18b)
QPGP 3, ma1+ G U, = 57 s =0, 1, =, M—1] (18¢)
G5, m=F, - m=0, 1, -, M, (198)
QWPGDU s, mi1+EPU s, m=FE, m=0, 1, -, M—1,  (19b)
QWEEU s, my1+ GV, m=F. m=0, 1, -, M—1;  (190)

Jore, 29 =0 when the explicit scheme is used, QP = (1— {op+0mez| /2)/ (14 |on+
Oumet|/2) when the implicit scheme is used, o is the one corresponding to the n—th
characterigtic value in the s—th region. Since ug,x, Ps, x, Psux can easily be determined
by (8a—¢), the system of equations (19) can be solved directly. Therefore we need to
uge the double-sweep method only for (17) and (18). We take (18) ag an example to
show the concrete process of the double—sweep methﬂd Whlﬂh can be divided into the
following three steps. |

1) The process of elimination.

1t i =GP, 1Y = QREE, pP=FP,
' Y =OPGY, v =G5, eh F9:
then equations (18a) and (18c) with m=0 can be rewritien as follows:
”51} g.1- P'::(L JU {1}
{ vl Ug, 1+ 9" Us,0 = v‘l}_

These two equations and (18a—c) with m=1 can be written in the following
form with m =1

§m+ UUE, m+1__|_ foﬂ+1JGéT+1}U2' oy 5 _F‘éiii-i-l}j | (203)
G Uz, m=F5P, (20Db)
QEPGEU 3, mir+ GV g, m=F3T, (20c)
wiU g, 4 U 2,0= ™, (20d)
U g, m+ 10U 2,0 =2, (20e)

The so—called elimination process is that for (20a—o) the following calculation is
carried out. By using the pivoting-elimination method, from (20b—d) we obtain

i o el O
Uy =G Fom _ @ H{m}U somes— G U, o, (21)
where
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Mam} 0 M_%m) ‘m{mJ
—r o - e
Gm=t G5 |, H™=| 0 |, g™=| 0 |, F™»=[ F™ |
Gym QL . 0 g
Meanwhile we eliminate U, ,, from (20a) and (200) which yields
m+1}U m+1+pim+1)U (m+1}

+1 1 — +1
Pﬁm }Uﬂ‘,m-p:!. P:(Lm+ }Uﬂ,n““f"(m }.

Noting that the two equations have the form (20d—e), and (20a—c) can always be
obtained from(18a—¢), we can repeat the above computation until m=M —1, At last

we obtain

{H )U _I__ (X _— {H}
{ g, 1+ 1y Ug,0= 1 (22)
{HJU ,H"‘}”I"]H}Uﬂ, "-P{H)

Obviously the expressions for uf™*?, --«, ™D are of the following forms:
(m+1) _ G(ET+1} - Q£T+1}G§T+13Gm)‘1H{H}J

C Mo
D = Q5T+1}G§m+1J§{mJ" il
4 “(m+1} - F(m-l-l} Q&m+1)G{m+1}G{m}ﬂF{m} (23)
I-*Bm'"” s P(m)G!(m)'lH(mJ

p(m-l-l) - p{m} {m)G{m} ‘ﬁ(m)

Lp D i tm) o m G- F‘”ﬂ

The process of elimination for (17) is the same as above. We only need to regard

Gy £u, 0 £y :
a8 (g4, as 2y, and a3 51, By using the above expressions
ij 0 3 Qlﬂ F 13 |

we oan also oblain
Usm=GmF . G ey, . G G, (24)

and
ﬁbm HULM +Hf11 ULD = #'21 »

H»{:-z U:L M #qz Ui u"",ué (25)

M
Vi Uy, y+ v -5 41 0=V,

2) Computation of the quantities on the boundaries.
Since the quantities in region 8 can he cbtained before the quantities in the other
two regions are evalunated, Uy ux=Us,
and Ua y oan be eagily determined.
After U,, y is known, U4, #, Uz,0, Us,o
can be obtained by using (18b) with
m—=M, (22),(25), the relations on the
contact discontinuity: «s, y=%us, 0, P1, &
=14, o and the relation on the incident
shock ™.,o= 0 .191,[.?5:%,0.
8) Computation of the guantities
' of internal poinis in these subregions.
Mo R T I{H s lUsing (21) a.,n.d (::34) We tihtl eagily
: obtain the quantities in region 1 and
Fig. 4 region 2,
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Case II. Suppose that an incident z1(%), a contact discontinuity #,(¢f) and a re-
flected shock x3(¢) are produced (see Fig. 4) when the strong explosion wave
meets the boundary.

Here the cage ig similar to the previous case. We want o obtain the quantitiesin
region 1 and region 2, the velocities and locations of three discontinuity surfaces.
First we transform regions 1 and 2 into the strips 1<<£<C{2 and 2<<£<C8 on the ¢
plane by using the transformation in the above section. Then we compute the initial
values in the two regions at {=0. Obviously, on the incident shock, the contact
discontinuity and the reflected shock, there are the following relations respeotively:

i+1
;__ 1~ Pos

2
vi+1

A 41 A
P1= Tiz Pﬂui

A —
1=

Vi,

Y
U1 ==~

A Y
{u1== g,
A A
P1= Pa,
and

Pa= Ps,0 29,4 (v, +1)2
" 29,4+ (yr— 127

§ﬂ= (1+z)1ﬂ3ru}

A 2
g6 ¥ (L1 (7r+1>5/(2'}’r))1’f2 R

Here 2z is the strength of shock, and 3,0, ps,0, 3,0, Ca.0 2T6 the quanftities in front of

the reflected shock, which can be computfed by using (8a—c ). From the above

relations, the following nonlinear equation for z can be Obtained:

] z & ﬂ=
Son{to T Gy ) ~Pme+), VB

Solving (268) we obtain z. Then #s, fa, 2, %1, P1, D1 can be obtained from the above
relations., The wvelocities of three boundaries are V= 7’;1 1,0, Va=use and

Vs=ug,o+ (14 Cyr+1)2/(27,) )Y es,0.
In the same way as case I we can derive systems of difference equations. Using

the double—sweep method to solve the system consisting of difference equations and
the relations on the discontinuities, we can then obtain the quantities in regions 1
and 2.

In the above two cases the location of the boundaries can he determined using the

following schemes with second order accuracy:
1
z 2 =af+Viedt/2,

Pl =g+ V, +%Az$,
where ¥V, is the speed of the boundary z;.

Since al,; —a?=0 and A contains 1/(z1—a), A i8 equal to infinity at ¢{=0. In
order to solve this problem we make the following revision: Because 4/ =+ V- 4¢/2
can be obtained in advance, we may substitute 27'* for 2} without causing any other
problem. Thus the problem of the vanishing denominator can be averted.
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In the computation we have estimated the fractional errors of mass, momenium
and energy:

The error of mass=q:: Eo s da _ r' (p)t=nd'ﬂ5 - J 2 (o) yey O + f' " ( ) 5 s dt) /

JII(P)tﬂ, dz, The error of momentum = (J (P%) =, dﬂ’“‘_[ (Pu)t =t dﬂ’“ (puﬂ—!—p),_,,dt

-l—J:' (ot* 4+ D) gz, dt) / J (pw) =, dv, The error oi energy= ra p<5+ )tﬂh da—
[ro(er ), o= [r (o (o) wtme), i+ [ (o (e o ) urm)_at)/

j :P(E ¥ i:;-)t-:f: o,

We can easily obtain the values of above .three errors using the numerical
integration. |

4. Numerical Results

We have computed the following three problems with different increments of
the variable 2 and ¢ by using the singularity-separating method.

A. Suppose that before the explosion, the state of gas at #<{0 is vi=1.2, p=
0.6877, wy=m=e=0; at >0, y,=1.4, p,=1.29, m=p,.=§,=0_ As a result of

19 - | $u
B 1 1 g
7 0 x
4 6
‘.
4—1000
{ 4
2 4 —2000
q
x
- = : * - 1—3000
-0.02 —0.01 0 -
Fig. 5a
1s
14
- 3
12
11
®
1 i 1 i }.
- 0.02 | —0.01 0

Fig. 50
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interaction between the sirong explosion wave and the boundary, an -incident shock,
a oontact discontinuity and a reflected rarefaction wave are produced. The case is the
same as case I in section 3. Here, the initial values in each subregion are p;=7.0147,
Pa=p3,0=0.52, pa,u="T.T4, 2y = Uy = Uz,0 = —3000, Ug y — — 2558, Dy = Pa = Pg.0 =
6.31328 x 10°, p3, 5 =10129280, ¢3,,—=1853.6. The initial speeds of four boundaries are
Vi=—38300, V= 43000 Vi=—1734, V4= —-1204. Uging the method given in case I
we can obtain the quantities in three subregions ab any time. -

Table 1 shows the numerical solutions ab =7 x10~° with different inorements
of the variables # and f. From that table we can see that the solutions have three
significan?t digits though a few mesh points and the large increment of the variable ¢
are used. All the fractional errors of mass, momentum and energy are under 0.3%.
This result shows that our computation is acourate. In Fig. 3 the locations of the
discontinuities are described. Figs. ba, b, ¢ give for {=7x10~° the distributions of
density, velocity and pregsure. From these figures we can see that the discontinuity
fronis in the solutions obtained by using the singularity-separating method are sharp.

The quantities in all subregions are smooth. There is no overshoot or undershoot.
‘There is no smearing or oscillation.

Table 1. Contrast between the resnlts in case A at #=710-8
| e . . B ; .. -
o 2 - Ui, x | Yo, nr O, M

Lo T3 T4 U1,0 Ug.ar | P10 | A, | Pa0
Ua,n | Us,0 3,0

40 [2,5x 10-8|—0.02218;—0.01995{—0.01012|— 0 .00568| — 2775| — 2716{— 2512|— 1929 7.015 | 5.692 | 4.614 |2,981

20| 5x10-8|—0.02218{—0.01994|—0.01012|—0,00563| —2774|—2715{— 2512|—1928| 7.015)5.691 |4.61112.979

101 10x 1078 |—0.02217|—0.01993|—0.01012|—0.00562|— 2773| — 2714|—2511— 19281 7.015 | 5.689 [ £.604 (2,975

; 01 Do fractional error
M| pau D1,0 D3, u
| Pa0 P3,0 | mass | momentum eneTgy
40 3,456 5400000 4913000 3717000 5424000 —0.00054 | —0.00070 | —0.,00061
20{ 3.4b4 H3%8 000 4911000 3715000 5423000 —0.0011 —0,0013 —0,0012
10| 3.451 2394000 4907000 3712000 5420000 —0.0019 —0.0024 ~(.0021

B. Suppose that before the explosion the state of gas is y;=b, p;=20.26, w,=p =
¢;=0 at z<<0 and v,=1.4, p,=1.29, 2,=¢,=p.=0 at 2>>0. Asa result of inleraction
between the strong explosion wave and the boundary, an incident shock, a contact
discontinuity and a reflected shock are produced. The case is the same as case II in
seclion 8. Here, the initial values in each subregion are p,=380.386, p3=20.64, p3,0=
T.74, p1=p2—4BB8IT60, pso=10129280, ty=us=V = —866.05, us,o— —2558, V1=
—2698.15, V3=149.2, z=38.56. Using the method given in case II we can obtain the
gquantities in two ssbregions at any time.

+ Table 2 shows the numerical solutions with different increments of the variables
x and § at £=6 XxX10"% From this table we can see that the solutions also have three
significant digits, but the fractional errors are smaller than those in case A. The
locations of the discontinuities are described in Fig. 4. F1gs 6a, b, ¢ give for {¢=6x
10-% the distributions of density, veloocity and pressure.
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Table 2. Contrast between the results in case B at £=8:x 109
_—___-_l—-—-—_-——_——___-___-___._—-
l (7
1, M
M A i T Ty 3 0 i Ug, | Us,0 P10 ] Mu £2.0
,0
40 (1.25% 108 —(0.01439] —0.004072 ! 0.004620] —74.1.7]| —534.0(%6.18| —1758.2130.386! 26.146 | 12.066
20 {2.5x10-8] —0,01439( —0.00407210.004629 | —744.7]| —524.0%6.10| —~1758.2130.386| 26.146| 12.066
10 ] 5x10°8 | —0.01439 | —0.004072 |0.004628 | —744.7| —534.0{85.97 | —1758.3|30.286 ] 26.146] 12066
Pt u fraetional error
M £ M £3.0 1,0 Do ur P30
Pa,0 mMass momeninm Energy
40 | 5.9295 2.4061 | 33705000 22499000 § 18525000 | 4750800 | —0.0000015| 0.000014 | —0.0000036
20§ 5.9295 2.4061 33704000 22498000 | 18524000 | 4750800 —_0.0000055 0.000050 | —0.000012
10 | 5.9293 2.4061 | 33701000 | 22495000 | 18523000 | 4750000 | —0.000019 0.00022 — 0 .000038
m
r
AP
{1—1200
e & . i 1—1600
—0.015 —(.0015 0 0.005
42000
Fig. 6a Fig. 6b
A px10-6
15
L 1.4
3
2
4.1
. -
B 1 Im
—0.015 — 0.005 { 0.005

g, 6¢
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C. In order to compare our scheme with the ZL-W scheme wo have also solved the
following single medium flow problem with interaction between a shock and a contact
discontinuity. Suppose that before the explosion, the state of the gas is y,=1.4, pg;=
0.0016, w;=p;=6,=0, at <0 and v,—=1.4, p,=1.24, y,—p,—e,=0, at 2>>0. As a
result of interaction between the shock and the contaot discontinuity, an incident
‘shock, a contact discontinuity and a reflected rarefaction wave are produded The case |
15 thes samse as case I in gection 3. Here, the initial values in each subregion are Uy =
un—ﬁs 0—_6000, _@31 pg—'_ﬂa 9—70110, pl=D 0097 pﬂ—Pg,u—o 222 Ua, u =—'2558
O3, ="1.74, pg,»=10129280. Using the method in case I we can obtaln the gquantities
in three subregions at any time. .

The distribution of density for +=2.5x10"" is desoribed in Fig. 7a. Figs. 7h,
7¢ show the distributions of density obtained by this method and the I~W scheme in
the subregion containing the shock and the contact discontinuity and in the subregion
containing the end part of the rarefaction wave. Here we fake the following
increments for the I—W scheme: 100 mesh poinis in #-axis, i. e., 4Jo=~0.00002b, 4=
0.217 x 107% or 2000 mesh points in z—axis, i. e., dz=0.00000125, 4t~=0.115x107".
In our scheme we take 30 mesh points in z-axis, i. e., de=~0.000017~0.0001 (z in
each subregion is not the same), 4t=0.6x10"". These figures show that for the L-W
scheme, if 100 mesh points are taken, tho contact discontinnity is seriously smeared,
and even if 2000 mesh points are taken, the contact discontinuity is still obviously
smeared; and on the shock and the rarefaction wave there are quite large overshoots.
However, taking tens of mesh points, one can obtain very accurate resulls if our
method is used.

Here, the I—W schems is

U:j_gm-(m Uhss) — o (Fhusr— F5),
i 17 K41 ko
gk L (Y F
U =Un =g s f = Fu D)
P pu
u-[ M} F- sl AN
Yy |l Y — 2)
raraeg 40 w‘(*y——l Py P

The above numerical results show that the singularity-separating method is
successful in computing discontinuous solutions not only in the case of single medium
flow but also in the qagse of multimedinm flow.
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