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Abstract

A %-step, (k+2)th order two-stage implicit hj"b'rid method whick hag all the édvaﬁtages of
~ Enright’s method but not its principal disadvantages is proposed. A “simple” approach to estimate the
Iocal truncation error is developed. Preliminary numerical reaulta indicate that the hybrid method

compares favorably Wlth Enright’s method

1. Introduction

In this paper we shall propose a class of two-stage implicit hybrid multistep
methods. The main reason is that they are able to replace the existing second deriva-
five multistep methods which are suitable for the approximate numerical integration
of stiff systems of first order ordinary differential equations and to overcome the main
shortcoming of the latter. To show this, first of all we discuss a semnd derivative
multigtep method of the following type:

i k k
E}ﬂi%+f=ﬁ§ ﬁfy’n+;+h“j=20 YiYnts) k=1, 2, - (1. 1)
for the numerical integration of the stiff systems |
y'=f(y), t€[0, T] (1. 2)

with the initial conditions
y(o) =yﬂ: (1‘ 3)

where the a;, B8; and y; are constants normalized by making a; =1, g,,; is the approx-

imate numerical solution obtained at ¢,,;,
Note that y is a vector, although sometfimes we consider only the scalar case.

Suppose for the moment that y(z) has a convergeni Taylor series expansion at the
point ¢ =1¢,. Consider the expansion
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where h-——-tj+1—-'tj, 7=0, 1, 2, .-, is the gtep length and
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Definition 1. If Qp=Cy=+-=C,=0 but Cy.1%0, then (1.1} is said to have order
p. Thereafter the expression (1.4) is said to be the order conditron of the method (1.1),

If (1.1) is of order p, and we solve (1.1) for ys.; With exact 4, Yn+1, =**5 Ynte-1,
i, 0. With 9pes=9(fnss) for 4=0(1) (5—1), where y() is the solution of (1.2), then
wo have

o Yaer™ y(tnﬂﬁ) +O(hﬂ+1> . ' | (1 v 5)
A count of the available coefficients shows that order (8%+1) is attainable for
the method (1.1) if it is implicit. However, the coeflicients a;, §=0(1)%, must satigfy
the usual zero—stable condition, and this may prevent the above orders from being
attained for some %. At present the maximum order for the zero—stable k—slep method
(1.1)(k=1, 2, ---)is still unknown. |
Some particular cases of (1.1) have been discussed. For example the fourth order
method ' |

T s 1 : |
s =+ At then) o A=) (1.6)

has been considered by Obrechkoff ®' and in connection with gtiff systems by Ehle™,
Thompson ™ and others. This method is A-stable but not stable at infinity. Liniger
and Willoughby % have considered the two—parameter method

yn+1=yn+-g¥[(1—ﬂ)y’n+ (1+a)4ns1] ‘l'-}j?:—[(b_"ﬁ)@f:i" (b+a)¥yn+al. (1.7)

If @ and b satisfy 0<<a<<1/8 and b=1/3 respectively, then this method is A-stable
and is of order three ab least. In particular, if a=b=1/8 then the obtained third
order method is A-stable and stable at infinity. _

Enright'® attempted to derive for (1.1) stiffly stable methods satisfying the
following three prinocipal requirements: -

(1) stability at infinity;

(2) a reasonable stability property in the neighborhood of the origin;

(3) an order as high as possible.

He obtained a k-step, (5-+2)th order method of the following type:

Yosv=YnricaHh 2 Bi¥hs T Y, A<T. (1.8)

Note that for k=1 the method corresponds to (1.7) with a=b~=1/3,

The coefficients and plots of the stability regions for (1.8) for A<7 are given In
[6]. Thereafter (i.8) is called Enright’s method.

The iteration scheme adopted to solve the implicit set of equations (1.8) is a
modified Newton—Raphson technique:

W s 1D — y5) = — 50+ hBf (020 + 1 ) 0
k-1
+ Ypsx-1+ A jgu Bifntis N (1.9)

: : 3
where W y— (i@,*fwﬁk(; g'; ) h2v: (%;—) ) In fact, for non-linear stiff systems ihe

2;'2 of ) in W,

iteration schen e (1.9) neglects the terms involving (
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According to the results and conelusions in [7], Enright’s method is reliable and
efficiont for general stiff systems. Comparing the results of Enright’s method with that
of Gear’s[7]we notice that Enright’s method is less competitive for“highly”’non-linear

stift systems, This is because the iteration scheme used neglects the | term( g;{ o f ),

and as the one-step-two-half-step error estimator is used, ene has to solve the non-—

linear equations three times per step. Here the term (—%};— » f ) arising in the iferafion
scheme can be attributed to the second derivative g in Enright’s method. As a

result, Enright’s method requires that Jacobian ( %)be exaot. If the Jacobian were not

exact, the order of Enright’s method would have to be reduced.,

From the discussion on Enright’s method we can see that people are not very
much inferested in high-derivative methods although they are possessed of good
stability properties and higher order acouraoy.

In Sect. 2 we derive a two-stage implicit hybrid multistep method such that it
hag the advantiages of the second derivative method but not its principal disad vantages.
In Sect. 3 we obtain a k-step, (6+2)th order two-stage implicit hybrid method which
has the stability properties of Enright’s method for the linear gystem ¢ == Ay but not
its principal disadvaniages. Sect. 4 some numerical results are presented and it is
shown that the hybrid method compares favorably with Enright’s method.

2. The Two-stage Implicit Hybrid Method

In this section, we are concerned with the two-stage implicit hybrid method
having the general form'

ko -
| Eﬁﬂfyﬂ'H Ehg} ﬁffll-‘-! +hﬁﬂfﬂ+h L ?E.?J J=O(1) }E.t (2 'lﬂ‘)
i k.
Ynes +,f=2l} ﬁfyﬁ; =h gﬂ ﬁ!f n+d (2 -1b)

or
B o koo k A
g CyYntg = kg ﬁ.ffn-l-j"i"kﬁpf (tn-{-v; " E} 33%4-; +h§] ﬁjflﬁ:l ),: (2 '1) i
where a;, &,, B;, B; and 8, are constants normalized by making

Ek=1j fll+fEf(tl+fj yﬂ'i‘.f) H'nd fﬂ+PEf(tﬂ+lu yﬂ-l"l’).

Thereafter (2.1a) is said to be a principal formula, and (2 .1b) an auxiliary formula.

In faot, the implicit hybrid method (2.1) is special olass of composite multistep
methods using “non-step” point. Following the order condition (1.4) we can obtain
the order conditions of (2.1a) and (2.1b) respectively

[
{ UEE} i1 -
. T = (2.2a)
< 1 B ¢ T § B; pii-2 S oo

A T eTA) L 3

and
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60514‘% &,v_,
{ i (2.2b)

=__1_<i B a1 een -
6‘_ i p+§]jaf (@—1)'5{;3‘? Bh 4 1: 2: .

Deﬂnition 2. If é‘n 'ﬂélm"'r-ciqﬂo but €q+1?1=0‘, then (2.13) 18 3ﬂ'id 10 have
order q. '
Definition 8. If Go=0i=++=C;=0 but Or11%0, then (2.1b) is said to have

order r. | | |

If the principal formula (2.1a) is of order ¢ and the anxiliary formula (2.1b) is
of order r, from (1.5) it is easy o prove that the implicit hybrid formula (2,1) is of
order

p=min{g, r-+1}, (2.8)

Obviously there are (2k-+3) parameters in (2.1b), We can make (2.12), (2.1b)
of order g=2k+2 and r=2k+1 respectively. The investigations in [91 and [10] show
that the principal formula(2.1a)of order ¢ = (2k+2)is zero—stable if and only if k<8.
It follows that the zero-stable implicit hybrid methoed (2.1) can achieve the order
p=Fk+2,

Now we discuss the relations between the two—stage implicit hybrid method (2.1)
and the second derivative multistep method (1.1).

Congider the application of (2.1) to the linear systom y' = Ay, where A is a

constant matrix. We obtain

g alynss=h :gﬂ (Bi— Bubiy) Ayn+s +A7 g 3::3:”43%”. (2.4)
Obviously, (2.4) is a second derivative multistep method for the linear system
y' = Ay,
Let
o =ay,
Bi=(Bi— B.ay), (2.5)
Vi Eﬁ:ﬁ!

in (1.1), we have the following resulis:

Theorem 1. Let the two—stage implicit hybrid method (2.1) be zero—stable and have
order p. Then (1) (1.1) derived from (2.5) is rero—stable and has ot least order p; (ii)
(1.1) has the stability properties of (2.1) for the test equation ¥’ =iy, Re(A) <0,

Proof. Obviously, we only have o prove that (1.1) has at least order p.

According to definition 1 the method (1.1) bas ab least order p only if O;=0, ¢=
0(1)p. From (2.5) we obtain .

X -~
Oo=) ay=2] a;=0,
=0 =0

Gl#gﬂ (fﬂr_'ﬁj) =§(_‘f&j“ (Bf“ﬁv&f)) |

{33 (Garm By - B} +8.(1+ 318 ) =OutB.Lo=0,
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F %1

ey a; . pi—1
“{E(fiﬁ""ﬁ ’ (@Ei):) (i—1)1 ﬁ"'}'
1 - S ) 4 i A
+ﬁ”{(¢~1)z(”i 1+§.-”i 1’“") (3—2) ! =7 Bf}
'='§i+;8#éi—1=0; b=2, 3, +, P, | -

Theorem 2. Let the zero—stable (1.1) and (2.1b) have respectively orders g and 7.
Then (1) the hybrid method (2.1) derived from (2.B) is zero—stable and has order P=
min (g, r+1); (ii)(2.1) has the stability properties of (1.1) for the test equation 4y =Ay,
Re(A) <0 |

The proof is analogous to that of Theorem 1,

From the above disoussions it is easy to see that the main advantage of (2.1) is
that it hag all good properties of (1.1) while the term containing the second derivative

v By =1 B; {(i—9) Y
G‘“%(J o G-t 7 (e}~2):)

y” doos not arise, therefore it does not require Jacobian (%) 1o be exact, and the term
(2; o f ) disappear nmaturally in the iteration scheme bassd on a modified Newton-
Raphson technique. It appears that the bwo—stage implicit hybrid method (2.1) is
superior to the second derivative mulfistep method (1.1) in handling “highly”
nonlinear stifl systems and therefore worth further studying.

Before discussing the choice of coefficients we shall mention some particular cases
of (2.1) that correspond to the method (1.6) and (1.7). .

(i) The fourth order one-step hybrid method

i yn+13yn+_6]; }b(fn“{'fn-kl) 1 % k‘fﬂ+%;

< | (2.6)
1
: 'yn+%= "é‘ (yn+yn+1) +% k(fn '"'fn+1) '
corresponds o (1.8) for the fest equation ¢’ =2y, Re(A) <0
(ii) The two-parameter method
N 1 1 1 1 . I3

[ yn+1—y,+h(§~ @)f"_l-h(? C8(r—1) )f"H 6y (r—1) f_"'""’ 2.1

1 Yn+y = (""'-1)2(1'1‘2“1")?}1!"“1’[2‘5‘(:’_1)24“ (? —2) 1 Ynsy
h +av(v—1)%fy o (v —1) [L4aly — 1) Af s,
If o and » satisfy —1/2<<a(r—1)<0, then (2.7) has a$ least order 3, and for the test
equation ¥’ =3y, Re(L) <0, it eorresponds to (1.7) with 0<e<<1/8 and b=1/8; if
a=0 then this method has order 3, and for test equation ¢’ =2Ay, Re(A)<0, it
corresponds o (1.7) with a=b=1/3.

3. Homologue of Enright’s Method and Error Estimate

For two-stage implicit hybrid method (2.1) our purpose is to derive stiffly stable
formulas corresponding to those of Enright’s method. Therefore these formulas should
also satisfy the three principal requirements desoribed in the first section. Acocording
to Theorem 2 they can be wrilten as
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Hapr L e - ha S T P

roi=Yurs i Hh B BP O farsHWBP fuis, ¥4, j=O0DE,  (3.12)
Unty ™ — Z ﬂ{m (p) yn+f+hﬁmj (p)fnﬂr-: k{?_ (3 . 1b)

If the sauxiliary formula (8.1b) is of order (k+1), then the two-sgtage hybrid
method (8.1) derived from (2.5) has order (%¥+2) and the stability properties of
Enright’s method for the test eqﬁatmﬁ o' =My, Re(A) <0, Therefore we need only fo
oonstruot the (k+1)th order auxiliary formula (38.1b).

In [1] we have derived the k-step (k-+1)th order auxiliary formula (3. lh) 1ts
coefficients read respectively

&P (v) =&} (k) (u—-k)II (=), §=01)(k-1),
h‘-f

&P () = (ﬁkl’+3k) k_ (p D), (3.2)

P =3 I -0,

where
k-1

&y (k) = I1 (i—D,
j ('? k)fhﬁf

- | (3.8)
a=2 (k=) b= — (A+Ea).

In addition these coefficients sahsfy the fnllowing recurrenoe formulag

[a;(k) ", , k=1(1)7,

T (R D)
&% (k+1) =; & (), d=1(L)F, k-m)s

ﬂlslj 51= , (3.4:)
=Bt
k¥+1 (k_i_l)r
bosa=— [1+ (b+1) el =b— (1+a).
The local truncation error of (8.1) reads
- (B (%+3) (»—k)vn 3f e+2) } k+3
where Cy.s (see Table B) denotes the error constant of Enright’s method (1.8).
From (8.5)it is eagy 1o see that if the principal formula (3.1a) is of order (5-+3)
then -

k=1(1)86,

o Cam o D
Ci+s=0y:3 (+1) (b+2) =0,

namely
=" =%+ Opea(h+1) (5+2) /W, (3.6)
where .4 denotes the error constant of the prinoipal formula (3.1a)}.
The second problem is that of estimating the local iruncation error of (3.1). In
fact what we shall do is to find a more accurate ¢, 88 the solution given by the k-step
(k-+8)th order implicit hybrid method and use [¥ssx—Yasxll= 85 an estimate of the
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error in the solution y,m of (3. 1) The method which i is qmte s;trmlar to (8.1) can be

written in the form

{th& principal formula (3.1a) with p =",
Yn+oe "'2 ﬂjm (V )yn+:f —hﬁml ("’*)f ptk—1 +h§(k) (v’ )f Ak,

(3.7a)
(3. 71‘!)

What remains 10 be donse is to nt}nstruﬂt the k—step (k+2)th order aulelary formula
(3.7b). From (3.1b) and (8.2) it is eagy 0 see that (3.7b) can be derived by finding a
polynomial approximation Py.a (tx+ k) of degree (k+2) to the solution such that (et

ta=0, A=1)
P’H‘ﬂ(”) ved = Ynig, j=0(1) ;7: L
Pk:l-ﬂ(p) r={k—1) =fn+lc.—1, | (3_8)
- Prz(#) | pmt=fuss
namely al
" -1, foré=4, . | -
e ST _ |
ai” (¢) {0, fﬁr'ﬁ%j, %y 3 _0(1)57,
B, (5) =BR(3) =0, +=0(1)%,
13 (@) =0, i=®G—1), jmﬂ(l)k (3.9)
B (b —1) = B (k) =1,
Lg{k}’ (3:) g-:ka (%— 1) =0
Similar to (3.2) wo have
o (») =aj(B) (v —k) (v — fe+1)1‘[(p 3), §=0(1) (k—2),
I*_f
a2 () = - (_If;bkll)pt+ﬂk_1 (v —k)ﬁz (P;z)
1P (v) = akpﬂ_}_kbfp-l—ﬂk H (P—E) e _ (3.10)
B2y (v) = 7 7 0 -0, LT
LEE"’)(I’:‘=W(P~k+1_)é[_]ﬂ(#-—lﬂ),. .
where | |
&3 (k) = A Tl =0 G-1)
[ - PR (JE+1) I8 (3—=1)7
~ k2 1 .
-1 = T 1y—4] o R
| bk—l_(l 25) @y yrik; |
¥: ck—1= _k(;ﬁ {Im_l"f‘_g];.;jl), (3'11)

k—1 :
'ﬂ?ﬁ=1 +2 (%_"3—')*1,
i=0 i
bk= (1"'2]#){3;;'_1_,

Cgp= — (L +-Fo by + 52 ay),
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But -we are interested in deriving the relationship between the coeflicients of
(3 7b) and of (3.1b). By calculations we obtain

EP(0) = 8P () + L P () =aP () 4P (), =0 G-D),

(j—k+1)
| a3 () =824 (#) = (v +b+1) (B-9— )82 () =8 (v) +5”‘}1(=’), |
4 rr-:}(,,) - &P (¥) - (@+1) (v —F)* 4P () =4P (p) +88 (), (3.12)
(v—hb)a,—1
B () =k(»v—E)BP (),
BP0y =BP () + (v =B AP (¥).

Thus the k-step, (k+8)th order hybrld method (3.7) becomes
¢ the pnnmpal formula (3. la) with y =",

PSS G PRI VA —§035*}<v*) Gnss .7

+h (0" — B) BP () (Rfwsn-a+ fasa).
._ Assummg that the solutions values g, ¥s+1, ***, Ys+s-1 aTe available, our algorithm,
in which (3.1) is used in practice and which includes the local error estimate, is carried

out in the following steps:
(1) Compute 44+ 88 the solntmn of tha stifily stable hybrid ma’ﬁhod

{ Un+kx = Yn+x—1 +h E. )Bffk}.(l’*)fnﬂ +hﬁ5- fn-:—r*;

yn-l-ﬂ' S E ﬂ(k} (V*) YUnts™= hél(nm (p')fn+k-

Here the- nonlinaar algebraic equations defining s, are solved using a modified
Newion—Raphson technique iterated to convergence. |
(2) Compute fuix=f (fwtks Yniw) B0

Inii=— E 8 (¥ ) Ynsi— 3{*}(v'5§;+n+h(#*—k) Ei“(v*) (ke fari-1+Fnir).
(3) Gompute Ytk ag the solution of 4—step, (£+-3)th order byhrid method

{ y"+h==yn+k 1+h E B(k}(’-’*)f wtiHhBY i P (83.7a)"

L o 2 &(k} (P )?ﬂn-{-f 2z k’ﬁ(m (”i)fn-l-k + Gn+x. | (3 . 7b) "

Note that it iseasy 10 see Y1 =y{ts+v"h) +O(h"’+“) in (3.7b)* therefore the
solution g, of {8.7)" still hag the accuracy order (k-+8). Here again the nonlinear
algebraic equations deﬁnmg nix. Bre solved using the same technique iterated to

convergence. Note also that there ig a little difference between the algebraic equations
deﬁmng rospoctively sy and Y.+%, and practical experience hag shown that, since the
valus g4, usually serves as a very good initial approximation 0 94y, this iterated
procedure almost invariably converges in one iteration.

(4) Compute the quantity v = | Yn+n— g,,;m |.. ag an estimate of the local error in
¥n+1 and control the steplength of integration on the basis of this estimate. If 744y i8
less than a prescribed local tolerance, the solution g;,,.,.k is acceptable; otherwise the
steplength or order will be changed.
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In a word, our complete algorithm reqmrea to evaluate at most onoe the
coefticient matrix W,,, and LU factorization. '

We will not discuss the computational aspects of our algorithm any further,
Theoretical analysis indicates that the hybrid method has all the advantages of
Enright’s method but not its principal disadvantages. The numerical results given
in the next section show that a well-implemented version of the hybrid method
(3.1) will be useful for the numerical integration of stiff systems.

4. Numerical Results

We present some p:rehmmary numerical results which can be used to make a
comparison between the second derivative multistep method, namely Enright’
method (KE2M), and the two-stage implicit hybrid method (H2M). The aim of this
investigation is to demongstrate numerically the generally superior ' performance ot
H2M of a given fixed steplength over E2M with the sama staplﬂngth for a small
selection of test problems. At the prosent we do not olaim that our numeriocal results
demonstrate the superiority of our method over Enright’s. However, as stated in the
previous section at least, we do feel that our results indicale that a properly imple-
mented version of our method should be useful for the numerical integration of stiff
systems.

All the numerical test prﬁblems were implemented on a FELIX (-512 machine.
Numerical results are obtained for linear and nonlinear stiff problems using double
precision arithmetic. For comparison the problems were also solved by Enright’s
method (E2M). The numerical integration formulas which we considered are ‘Tespeoc-
tively

H2M(k=1) _
3’“””’”[(%"61??)}?“"'(‘%“ e(pl—i) )f'”]
— (,,h_ 5 Fer forv=2, 2, 2,
Ynew=(v—1)* n—'P(P—-Q)yﬂ+1+v(v—1}hf,+1_
HM (% =3)
| hiiast §§0 (153772 (155 2y) Fuvart (208 (pmz)) Fore
< +(135 : (v3—83)) Tnss y(r—1) (f2—82) (»—3) f"""’]

for »=1.5, 2.5, 4,

= =35 (=D (=2) =B +L 59 -2) 5= 8)pea

—-jL y(r—1) (l—*—3)5 ﬂ+s+—3—ﬁ- v(»—1) (v —2) (11> — 39)yn.s

+T§ v(v—1)(v—2) (v —8)Afpea.
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E2M (b=1)

nss=Uat Yoo Yr) — 5 i

and E2M(k=8)

1
yﬂ+3=yﬁ+ﬂ+h(1{]80 y:t- 20 y'ﬂ+1+ 40 %4"5 '

307 (f,f}n+ a) 11890 hﬂyn+3.

These formulas were implemented with the fixed steplength 2=0.1,
The two test problems ([7], p‘roblems B and E2) in the interval 0<Ci<<1l are

regpectively

"ya_ —10{!}14—}-&5}:,

| ¥2=— par—10ys
y;.= — dys ~for #-3: 8, 25: 60, 100,
(PL)S ¥a= —%4 y(0) =1, ¢=1(1)6, t;=1,
. { o
Ys '2—@!5
F sy 1
Lyﬂ 0 y’ﬂ.l
(P2}{y:l Y,
Yo =61 —2%) -ya—11, 1 J1(0) =2, y3(0) =0, {;=1,

In order to save space in Tables 1 and 2 we give only part of the numerical
results obtained for the integration of (P1) using E2M (¥=1) and H2M (k=1) with
y=0.5, 1.5, 2, where L denotes the number of times of the iteration.

As can be seen from the two tables, the iterated scheme of H2M (4=1) eonverges

Table 1. Partial results for the integration of (P1) with «=8
Wﬂm

H2M (k==1) E2M (k=1)

Hxact sol. : —— -

p=0.5, 1.5, 4, L=1 L=1 L=3 L=5
0.883111#10-4 |  0.393271x10-% 0.879544=10-% |  0.189080#10-3 |  0,188477#108

—0.515225#1074 | —0.727544»10% | —0.747251%10"8 0.403636=10—4 0.316680%10-4

0.183156#10-1 0.182564x10~1 0.219211%10-2 0.224850%10-1. .0,224852#10-1
0.367879 0,367874 " 0.373623 0.373663 0.373863
0.606530 0.606530 . 0,608976 0.608980 0.608980

B
0.904837 . 0.904837 - 0.004837 0.904837 | 0.904887

M

 Table2. Partial results for the integration of (P1) With u=50

H2M (k-=1) E2M (k=1)

v—{} 5, 1 5, 3 L 11 i | T T,=3
0.318976#104 0.183124w10~4 = — w108 f 2302 | =10
0.557212x10~4 0.4175608106. |’ = — TulQP : , e=da1(2 3510

 Phe remaining are the same with Tahle 1 -

. .
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in only one iteration but E2M (k=1) can not, and for (P1) with =50 (including

w=100) the solution of H2M (¥=1) is stable but

L2M (k=1) is not.

In Tables 3 and 4 we give details of the numerical results obtained for the
integration of (P2) using H2M (=1, 3) and E2M (¥~1, 8), Where ER; (L=1(1)4)
denotes greabest ralative error at i=1, h'

- Table 3. Resulis for the "intogrltinn of (P2
e e i —————— R R,

| | H2M (k=1)
e .1 Hxaectsol. . . E2M (f=1) R S T S A B TR B
a ' ve=0, Fp=1l p=8
" yy=1.860409210 1.86932736 1.86961334 1.86950285 |  1.86946621
ya= —0.1482399437| —0.14823453 | ~0.14821197 | —0.14821464 | —0.14823196
ER, 4. 380108 1.80%10-4 1.71w10-4 5.39%105
; 1.86915116 1.8693798 1.86942872 1.86941763
- - ~0.14828214 | —0.14823609 | -—0.14823725 | —0.14823871
ER, 2. 854104 2. 60w10-5 1.82#10-5 8.32%10-6
" 1.86914305 1.86943690 1.86942681 1.86941655
—0.14828383 —0,14823624 —0,14825751 —0,14823886
ER; 2. 96104 2.50%10-5 1.84x10-5 7.31#10-6
. 1.86914217 |  1.86043689 |  1.86942679 1.86941653
—~0.14828404 | —0.14833624 | —0.14828751 | —0.14823886
KR, 2,98x10-1 ER, ER, ER;
v 5 g5 P , T
ERE ERg ER3 Eﬂg -ERa

Table

4. Results for the Integration of (P2)

H2M (k=3)

b E2M (5=3)
il 5 »=2.5 I il
. 1.869185544 1.869401661 1.889377504 1.869288182
—0.148238475 —0.148241053 —0.148244414 | —0.148256711
ER, 1.1dw10-4 7.48%10-6 | 8024108 ' 1.13w10~4
" 1.860240757 1.860409982 I 1 .869408853 | 1.869403162
~0.148268008 |  —0.148239874 —0.148240069 —0.148240828
ER, 1.89x10-4 4.72410-T 8. 438107 5 088106
\ . 1.860247190 1.869410010 1.860408898 1.869404779
—0.148267030 —0.148939870 —0.148240029 —0.148240603
ER, 1.83%10-8 5.00#10-T 5. 786107 4.45#10-8
. 1.869247962 - | | 1.880408900 |  1.869404830
. —0,148266907 —0.148240028 | —0.148240600
ER, 1.82010 ER, 5.6710-" 4.43¢10-5
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Where the exact solutions are given in Table 3.

Ag oan be seen from these two tables, the solutions of H2M (k=1, 3) are more
accurate than those of E2M (=1, 8), a:nd tha 1terat3d schemes of H2M converge more
rapidly than E2M B

- Table 5. Error constant Cires

% 1 1 8 3 a " 5 B 7
= EA T ot B a1 | ;| _sse3 | 27718
i 72 1440 7200 | 30240 8468720 14615200 | 65318400
)

Wo oonclude by a remark concerning the multistage implicit hybrid method
which does not involve multiderivative. If the stability for the linear system g = Ay
is analyzed the multigtage implicit hybrid method can have the stability properties of
a multiderivative method, The multiderivative and equivalent multistage hybrid
methods require the solution of a linear equation involving & polynomial in the
Jaocobian. If this polynomial is chosen fo have equal roots, an LU factorization of a
linear polynomial can be performed, followed by multiple back: substitutions. This
makes maximum use of the gparsity by avoiding powers of the Jacobian, For example,
the optimal second derivative methods developed by Enright in[11]corresponds t0 the
“optimal” two-stage implici} hybrid method which comprises two-parameters,
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