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ON THE CONVERGENCE RATE OF THE
BOUNDARY PENALTY METHOD"”
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Absatract

The convergence rate of the boundary penalty finite element method is discussed for a model
Poisson equation with inhomogeneous Dirichlet boundary conditions and a sufficiently smooth solution.
It is proved that an optimal convergence rate can be achisved which agrees with the rate obtained
recently in the pumerical expsriments by Utku and Carey.

1. Introduction

The boundary penalty finite element method has been developed to approximate
Dirichlet boundary conditions in the solution of elliptic boundary value problems.
(see, for example, references [2] to [5].) In finite element programs there exists
another technique for approximating Dirichlet data by adding a large number to
certain diagonal entries in the stiffness matrix and by scaling the load vector. Utku
and Carey 2? have recently discussed the relationship between these two techmiques
for treating Dirichlet data and derived an abstract error estimate for the boundary
penalty method. They observed that the rates achieved in the numerical experiments
are bettor than those obtained in the theoretical analysis. In this note we show, using
the regularity of the solution of the given problem, that the theoretical result of
Utku and Qarey can be improved, and we present an error estimate which fully
agrees with the numerical experiments in [1].

2. A Model Problem

Asg a model problem, congider the solution of Poisson’s equation
—fu=f in & (1)
with inhomogeneous Dirichlet data - |
u=g on 9Q, (2)

1
Suppose that g€ H*(8Q), Then, by the irace theorem (sea [6, p. 143]), there exists
a function g € H*(2) such that |7 |s0=g. The inhomogeneous Dirichlet problem (1),
(2) is equivalent to the following variational equation: find u € H1(2) such thai
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where '
au, v)=[ Vu-Vodsdy, (f, 0)=| fodady (4)

Assuming the given domain 2 to be a convex polygon, we decompose it into
triangular elements K satisfying the usual regularity conditions for iriangulations.
For simplicity, consider the continnous piecewise linear funotion spaces V,€ H'(£2)
and let II; be the interpolation operator of functions » € H?*(Q2) at the vertices of the
triangles K in &, such that

HwueV, v H'(Q2), ' (6)

From interpolation theory the following estimates are obtained:
[u— U)o, g <CR? |23 &, (6)
t— |, g <Ch|tt]s, x, '- (7)
for u€ H*(2), and | | )
| wds<om|wltx+Stlulie . ®

for w& H*(Q), uniformly for all elements K. Here and in the following all O,and C
denote generic constants independent of 4. As direct consequences of the inequalities
(6), (), (8), we have for uc H?(Q2):

|lee— I yu|| 3<CR%|ul3, | - (9)
LD (u— ITy)® ds< Ch® |3, | (10)

The penalty method for approximating the solution of the variational equation
(3) by the finite element spaces ¥ consists in finding u, €V such thab

_ ‘I('u‘h: 'IJ;;) +A7° .Lﬂ (%_"g)@hds= (f: ‘L";,)', @KEIVM ) (11)

where ¢>>0 is a penalty parameter to be determined in order fo mazximize the rate of
CONVergence. |

3. H°-Solution

Lemma 1. Let vy, u, be the solutions of equations (3), (11), respectively, and
suppose that uy C H2(2), Then the inequality

- 2 -G 3’“0 o . P
J%ﬂ ‘Ha1,|1+h J.ﬂﬂ (—'an h ']"uh g) ds

s 2 — 37-‘0 o _ .
<luo—val34h~| (22 hrsu—g) ds (12)

holds for all v, EV .- o |
Proof. Since u, is the solution of the variational equation (11),

a(us, w)+b77 | (= g)? ds—2(7, w)

<a(m, )+ | (m—g)*ds—2(f, m) (18)
for v, €V, On the nthér hﬁnd, it follows from (1), (2) that
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a(o, W)= | 2 nyds=(f, o). (14
Hence, by (12) and (13), we have

to—tr 1+ [ (9 by g) dsma(uo, we) +17 [ (Go) ds

o ou e ~o — N2 ds
ELn on B H“)_I—.h .Ln (s — g) ds

~2( aGuo, w) = | 20 uds)

a0

etio 10+ [, (2 d-2f, 2 girate,

+h—vj (vs—g)%ds—2( a e, *vh)—L Po_yyds)

o on
oot (28 o)

Theorem 1. Suppose that w, € H*(&2) and let u, be the solution of (11), Then

ald

3 .
[t — a1 << Ch* s . | (15)
Proof. Taking v,=Iu, €V, the Lemma 1 gives

o 2 - | auﬂ ) e 2
"H-o 'Ua.|1‘+‘h Jbﬂ (—*—-an h° +uy g) ds

- 2 LE-> &u.;. i g — ?
< [t~ Mytg |3+~ | (22 b+ Iyuo—g) ds (16)

Oonsider now the second term on the right. Using the trace theorem and the
inequality (10), we have

o] (B Moo ol (2 s [, =)

<O (Ao 3+h%7 |10 3) SO +2277) | uo 2. (17)

Application of the inequality (9) to the first term on the right side of (16), in
combination with (17), yields |

g — s | IS OR™ | w0 5, - (18)
-a Oty 7.0 ey 2 3 2 |
3 Lﬂ (Z= 7 ) ds< 0N uol, (19)
where ) | '
" o 3—0
Jo=IMin (1: | ?: T)- (20)

Now, it follows from (19) and the trace theorem that
e 20 o gy gY ds oo | (2)’
Lﬂ' (ﬂﬁ g) ds%Q(Lﬂ ( on h+uﬁ g) d3+h sﬂ( on ) dS)
<O B+ 157 o3 ' ' (21)

and, therefore, nsing Poincaré’d inequality and (18), (21), we have .
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|2 —2a i3 QOH(I%—MIHL‘: (g—un)® ds)

<O (B + B +177) o |3 < OR™ o 2 (22)

gince 0 >>0 and 2u<io, |
From (22) it is seen that the optimal choice of the penalty parameter, maximizing

the order of convergence, i8 o= -g— We thus obtain the error estimate (15).

Theorem 1 showa that the order of convergence 18 pn= —3— in the H'-norm, which
is much better than 1 in the H*-seminorm as indicated in [1], However, we should

2
mention here that (15) can be obtained from a general theorem of Babuska™,

4. H°-Solution

In the following we shall show that Theorem 1 may be substantially improved
10 achiove an optimal order of convergence, provided that the solution u, of the given

problem is smooth enough.
Theorem 2. Supposs that ue© H®(2) and let u, be the solution of (11). Then

[2t0~tn ]|+ <ChJuso 5. (23)
Proof. Consider the auxiliary Dirichlet problem:
Ay=0 in Q (24)
with
P == %‘L on &Q, (25)
: _ g 8 |
Since u, € H2(Q), the trace theorem gives .~ c H? (2Q2) and
K 2
H on || mneey <O a, %)

o |
E _é?T“HM {smﬁ(} |1uo[| 3, {27)

Henoe the problem (24), (2b) has a unique solution », which satisfies the following
estimates (see [6, p. 181])

. | Hug |
o 8
[vlla<Cs a0y <Ot 3, (28)

(29)

on
_Oug.
[vla< 0o on |ia ooy <Cluo]s.

Applying the inequalities (9), (10), (29) %o v, we gei
|y — M| 2<OA2 | 2| 3<OR% ||l 3, (30)

[ @0 ds<Ouh® | o 3<OR* ol (31)

Therefore, setting v,=Ilue— A’ ;9 €V, in Lemma 1 and using the inequalities (9),
(10), (28), (30), (81), we have
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= i 2 —or auﬂ o s :
|2t —wn |3+ sn(—_ﬁn R +uy, y)ds

<3(|up— Myuo |3+2% | Hyw—n |I+4* | v[D)
|  ( &u > o N\
+2(}.», J ( Hﬂ:) ds+h .Ln (I yu—g) ds)

20 \ On
<O (|t -+ 13 o3+ A2 fato |3+ H** a3+ 5 | |9
<omejult,  w-min(1, o, 257). 2)
By the same argument used in the proof of Theorem 1, we conclude from (32) that

| tt0— 24 || 1S OF* [ 10 [ s, (33)

From (88) it follows that the optimal penalty parameter is =1, giving the order
of convergence p=1 in the H'-norm,
This theorem shows that the theoretical order of convergence fully agrees with

the experiments of Utku and Carey in [1], E
Note that Theorem 2 cannot be derived from the similar result of Babuska—Aziz

in [4, p. 268], according to which one obtains

g — 2| 1 <<CB| f | 1 (34)
for the case of homogeneous Dirichlet boundary conditions, i. . g=0 on o0, In that
case, from Theorem 2 we have "

42— 23| 1 S Ot | s < Ch| fl1, (35)

giving a better error bound than (34),
The above Theorems 1 and 2 were formulated only for linear elements. It is

easy 10 generalize the results to higher order elements.

The anthor wish to express sincere thanks to Prof. F. Stummel for his
suggestions and stimulating interest in the subject. |
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