AN L₁ MINIMIZATION PROBLEM BY GENERALIZED RATIONAL FUNCTIONS*¹⁰

SHI YING-GUANG(史应光)

(Computing Center, Academia Sinica)

Abstract

Let P, $Q \subset L_1(X, \Sigma, \mu)$ and q(x) > 0 a. e. in X for all $q \in Q$. Define $R = \{p/q : p \in P, q \in Q\}$. In this paper we discuss an L_1 minimization problem of a nonnegative function E(x, x), i. e. we wish to find a minimum of the functional $\phi(r) = \int_X qE(r, x)d\mu$ from $r = p/q \in R$. For such a problem we have established the complete characterizations of its minimum and of uniqueness of its minimum, when both P, Q are arbitrary convex subsets.

I. Introduction

Let (X, Σ, μ) be a σ -finite measure space and $L \equiv L_1(X, \Sigma, \mu)$ the linear normed space of all integrable functions on X with the norm

$$||f|| = \int_{X} |f(x)| d\mu.$$

Assume that both P and Q are subsets in L and q(x) > 0 almost everywhere in X for all $q \in Q$. Then we may construct the set of generalized rational functions

$$R = \{ p/q : p \in P, q \in Q \}.$$

Suppose now that E(z, x) is a nonnegative function from $(-\infty, \infty) \times X$ into $[0, \infty]$ such that $qE(r, \cdot) \in L$ for any element $r=p/q \in R$, where $E(r, \cdot) = E(r(\cdot), \cdot)$.

Our minimization problem then is to find an element $r_0 = p_0/q_0 \in R$ such that

$$||q_0 E(r_0, \cdot)|| = \inf_{r \in R} ||q E(r, \cdot)||,$$
 (1)

such an r_0 (if any) is called a minimum to E from R.

For a solution of the equation

$$||E(r_0, \cdot)|| = \inf_{r \in R} ||E(r, \cdot)||$$

we have not found, to the author's knowledge, its complete characterization and the complete characterization of its uniqueness. For a solution of equation (1), however, we can give all of them, provided that both P and Q are arbitrary convex subsets.

The minimization problem includes as special cases a number of ordinary and simultaneous approximation problems, such as

^{*} Received October 18, 1982.

¹⁾ This work has been supported by a grant to Professor C. B. Dunham from the Natural Sciences and Engineering Research Council of Canada when the author is at the University of Western Ontario as a Visiting Research Associate.

$$E(z, x) = |f(x) - z|^{s}, \quad 1 \le s < \infty,$$

$$E(z, x) = \sum_{i} |f_{i}(x) - z|,$$

$$E(z, x) = \max_{i} |f_{i}(x) - z|.$$

etc.

II. Main Results

Suppose both P and Q are convex subsets in L. For r=p/q, $r_0=p_0/q_0\in R$ and $t \in [0, 1]$ write

$$p_t = p_0 + t(p - p_0),$$

 $q_t = q_0 + t(q - q_0),$
 $r_t = p_t/q_t.$

Our main results require several lemmas.

Let f(x) be a convex function. Then for any r=p/q, $r_0=p_0/q_0 \in R$ Lemma 1. $\phi(t) \equiv (q_t f(r_t) - q_0 f(r_0))/t$

is increasing with respect to t in (0, 1].

Proof. Let $t \in (0, 1]$. Since

$$\phi(t) = \frac{q_t f(r_t) - q_0 f(r_0)}{t} = \frac{q_t (f(r_t) - f(r_0))}{t} + \frac{(q_t - q_0) f(r_0)}{t}$$

$$= q_t \cdot \frac{f(r_t) - f(r_0)}{r_t - r_0} \cdot \frac{r_t - r_0}{t} + (q - q_0) f(r_0)$$

$$= q(r - r_0) \cdot \frac{f(r_t) - f(r_0)}{r_t - r_0} + (q - q_0) f(r_0)$$

$$tq \qquad (1)$$

and

$$r_t-r_0=\frac{tq}{q_0+t(q-q_0)}(r-r_0),$$

for fixed x if $r(x)-r_0(x)>(<)0$, $r_t(x)-r_0(x)>(<)0$ and $r_t(x)$ is increasing (decreasing) with respect to t, which by the convexity of f implies that $(f(r_t(x))$ $f(r_0(x)))/(r_t(x)-r_0(x))$ is increasing (decreasing) with respect to t [2, p. 6]. Thus in both the cases $\phi(t)$ is increasing with respect to t.

From $\phi(t) \leq \phi(1)$, $t \in (0, 1]$, we obtain the following lemma.

Lemma 2. Let f(x) be a convex function. Then for any r=p/q, $r_0=p_0/q_0 \in R$ (2) $(q_t f(r_t) - q_0 f(r_0))/t \le q f(r) - q_0 f(r_0), \quad t \in (0, 1].$

In order to state the following basic lemma we need to generalize the notion of the directional derivative to be applicable to our case. To this end for $r_i = p_i/q_i \in R$, i=0, 1, 2, define

$$e(r_0, x; r_1, r_2) = \lim_{t \to 0+} \left[(q_0 + t(q_1 - q_2)) E\left(\frac{p_0 + t(p_1 - p_2)}{q_0 + t(q_1 - q_2)}, x\right) - q_0 E(r_0, x) \right] / t$$

if the limit exists. Hence

$$e(r_0, x; r, r_0) = \lim_{t\to 0+} (q_t E(r_t, x) - q_0 E(r_0, x))/t.$$

Let P and Q be convex sets in L. Suppose that E(z, x) is convex with respect to z for each $x \in X$. Then for any r = p/q, $r_0 = p_0/q_0 \in R$

$$\int_{\mathbb{Z}} e(r_0, x; r, r_0) d\mu \leq \|qE(r, \cdot)\| - \|q_0E(r_0, \cdot)\|$$

$$\leq -\int_{\mathbf{x}} e(r, x; r_0, r) d\mu. \tag{3}$$

Proof. By Lemma 2 for $t \in (0, 1]$

$$(q_t E(r_t, x) - q_0 E(r_0, x))/t \leq q E(r, x) - q_0 E(r_0, x).$$
 (4)

The left expression of the inequality is increasing with respect to t in (0, 1] by Lemma 1 and always possesses a limit $e(r_0, x, r, r_0)$ as $t \to 0+$. Furthermore we have [1, Chap. 5, Exercise 17, p. 177]

$$\int_{X} e(r_0, x; r, r_0) d\mu = \lim_{t \to 0+} \int_{X} (q_t E(r_t, x) - q_0 E(r_0, x)) / t d\mu, \tag{5}$$

Then from (4) it follows that

$$\int_{X} e(r_{0}, x; r, r_{0}) d\mu \leq ||qE(r, \cdot)|| - ||q_{0}E(r_{0}, \cdot)||,$$

which is the left inequality in (3). And the right inequality in (3) follows from interchanging r and r_0 in the above inequality.

The main results are as follows.

Theorem 1. Let P, $Q \subset L$ be convex sets and $r_0 \in R$. Suppose that E(z, x) is convex with respect to z for each $x \in X$. Then r_0 is a minimum to E from R if and only if

$$\int_{X} e(r_0, x; r, r_0) d\mu \geqslant 0, \quad \forall r \in R.$$
 (6)

Proof. Necessity. Let $r=p/q \in R$ and $r_0=p_0/q_0$. Since $r_t \in R$ for $t \in [0, 1]$,

$$||q_t E(r_t, \cdot)|| \ge ||q_0 E(r_0, \cdot)||.$$
 (7)

Then (6) follows from (5) and (7).

Sufficiency. By Lemma 3

$$||qE(r, \cdot)|| \ge ||q_0E(r_0, \cdot)||, \forall r \in R,$$

which means that r_0 is a minimum to E from R.

Theorem 2. Under the assumptions of Theorem 1 if there exists a minimum to E from R, then the following statements are equivalent:

(a)
$$||q_0E(r_0, \cdot)|| < ||qE(r, \cdot)||, \forall r \in R \setminus \{r_0\};$$

(b)
$$\int_{\mathbb{X}} e(r, x; r_0, r) d\mu < 0, \quad \forall r \in \mathbb{R} \setminus \{r_0\};$$

(c)
$$\int_{x} e(r, x; r_{0}, r) d\mu < \int_{x} e(r_{0}, x; r, r_{0}) d\mu, \quad \forall r \in \mathbb{R} \setminus \{r_{0}\}.$$

Proof. (a) \Rightarrow (b). Statement (b) follows directly from (a) by Lemma 3.

(a) ⇒ (c). Statement (a) implies (6) by Theorem 1. From (6) and (b) it follows that (c) is valid.

(b) \Rightarrow (a) and (c) \Rightarrow (a). Suppose not and let $r \in R \setminus \{r_0\}$ be a minimum to E from R. Thus for such an r we have by Theorem 1 that

$$\int_{x} e(r, x; r_0, r) d\mu \geqslant 0$$
 (8)

and by Lemma 3 that

(9)

 $\int_{x} e(r_0, x; r, r_0) d\mu \leq 0.$

But (8) contradicts (b), and (8) and (9) together contradict (c).

I am indebted to Professor C. B. Dunham for his guidance and help.

References

[1] G. Klambauer, Real Analysis, American Elsevier Publishing Company, Inc., New York London.

Amsterdam, 1973.

[2] A. W. Roberts, D. E. Varberg, Convex Functions, Academic Press, New York and London, 1973.