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GENERALIZED RATIONAL FUNCTIONS™
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- Abstract

Tet P, QCLi(X, 3, ) and g(@) >0a. e. in X for all g€ ¢ Define Rem{p/q:p€ P, g€ Q}. In this
paper we discuss an Iy minimization problem of a nonnegative function Efe, x), i. e. we wish to find a

minimam of the functional ¢(r) “.L: QE (r, #)du from rw=p/q€ B. For such a problem wo have es-

tablished the complete characterizations of ite minimem and of nniqueness of its minimem, when both
P, ¢} are arbitrary convex subsets.

I. Introduction

Let (X, 2, u) be a o-finite measure space and L=1, (X, 2, 1) the linear
normed space of all integrable functions on X with the norm

71~ 17 (@) | du,

Assume that both P and @ are subsets in I and ¢(2) >0 almost everywhere in X for
all g€ Q. Then we may construct the set of generalized rational funetions
R—={p/q:pEP, ¢€Q},
Suppose now that E (2, 2) is a nonnegative function from (—o0, o0} x X into
[0, oo} such that gH(r, +) €L for any element r=p/¢& B, where E(r, «)=
E(r(-),).

Our minimization problem then is to find an element 7, = Po/ 90 € R such that
[ g0 (1o, )| ”}Eﬂ?ﬁl(‘?‘: L F (1)

such an ry (if any) is called a minimum {0 & from R,
For a solution of the equation

| E (7o, *)

we have not found, te the anthor’s knowledge, its complete characterization and the
complete characterization of its uniqueness. For a solution of equation (1), however,
we can give all of them, provided that both P and @ are arbitrary convex subsets.
The minimization problem includes as special cases a number of ordinary and
simultaneous approximation problems, such as | |

| ~inf| B (r, +)]|
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s _ _
E(z, o)=|f (=) —z|®, 1 <8< 00,
EG, )= 3lfi@ 2],
E(z, =) A | fi(@) —2|,
etc,

II. Main Results

Suppose both P and Q are convex subsets in L. For r=p/q, o=/ €R and

t € [0, 1] write
ﬂsﬁﬂ“‘#(?_ﬁ’o):

gd:=4o t(g—qo),
Ty =Dt/ qs.

Our main results require several lemmas. |
Lemma 1. Let f(x) be a convex Ffunction. Then for any r=p/q, To=Po/ o cR

p () =(q:f (re) —qof (ro)) /1
is increasing with respect to ? in(0, 1].

Proof. Let t€ (0, 1]. Since
Q’tf(‘?'t) —gof (1o = q: (f (re) —f (1e)) : (":?t‘%}f(ﬁ)
{ ¢ t

¢(t) =
C flr)—flre) 1T To 4 (g—q0)
; e ; + (g0 f (70
e=g(r—7o) * ! (Tft:{.jm - (g —go)f (o)
i tg _
wod T et (g~ q0) r—nl

for fixed  if r(@)—ro(®) > (< )0, 7 (z) —ro(@) > (< )0 and 7, (z) is increasing
(decreasing) with respect 10 3, whioch by the convexity of f implies that (f (r.(z)) —
£ (ro(®)))/ (7 (2) —ro(z)) is increasing (decreasing) with respect 1o t [2, p. 6]. Thus

in both the cases ¢(?) is increasing with respect 1o ¢.
From ¢{(¢) <¢p(1), 1€ (0, 1], we obtain the following lemma.

Lemma 2. Let f(z) be a convex funciion. Then for any 7=0/4, ro=m0/qE R
(g, () — Qo f (To)) /t<gf (1) —qof (7o), 1€ (0, 11, (2)

mma we need to generalize the motion of

In order to state the following bagic le
our case. To this end for ri=m/0C R,

the direotional derivative to be applicable 1o
i=0, 1, 2, define
ﬁfr,a"t:;fr,'r = ]lim 41 e E(-P”Fl_t(pi__pﬂ),m — To, /t
ro, s, 73) = lim [ (@o+t(a—0)) B(RELLTE o) —g0F (7o )|

t— (4

if the limit exists. Hence |
e(ro, ®; T, To) =M (g E(rs, @) —qoB (1o, ®)) /3,

=04

Lemma 3. Let P and Q be convew s¢is in L. Suppose that E(z, ©) 8 convew with

respect to 2 for each v € X. Then for any r=p/q, ro=po/Jo S B
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J.I'6 ('Tn, T T, ‘filil')“:i!a""Q HQE (’r: '*) " - "quE ('r“: ') ﬂ

< _'J‘ze (‘I", @; To, T) d#’; | | . (3)
Proof. By Lemma 2 for ¢t C (0, 1]
(q: 5 (ry, ) — gl (rr 0, ®))/1<¢gE (r, @) —qo I (10, ), (4)

The left expression of the inequality is increasing with respect to ¢ in (0, 1] by
Lemma 1 and always possesses a limit e(ro, #; 7, 7o) 88 t—0+, Furthermore we have
[1, Chap. b, Exercise 17, p. 177] |

IIG(TQJ &; 1, 'rn) d}.&= lim

j (¢.E (r s, @) —qoll (r 0, @)) /% ds, (6)
=04 J X
Then from (4) it follows that

j Lo, @1, 1) du<[gE(r, )|~ [goE(ro, )|,

which ig the left inequality in (8). And the right inequality in (8) follows from
interchanging r and r, in the above inequality.
The main results are as follows.

Theorem 1. Let P, QL be convex seis and ro € R. Suppose that E (2, o) is

conver with respect to 2 for each x € X. Then To 18 @ minimum to B from R if and only
if

JI E(rﬂ: o T, Tu) d#"; 0} vr E'R- (6)

Proof. Necessity. Let r=p/¢ € R and To=Do/qo. Since r, € R for ¢ € [0, 1],
[¢:E (e, +) 1= g0 B (1o, 21, (7)
Then (6) follows from (5) and (7).
Sufficiency. By Lemma 8

(9B (r, )|=[qB(re, <), VreR,
which means that r, i3 8 minimum o & from R.

Theorem 2. Under the assumptions of Theorem 1 if there exists g minimum to B
Jrom R, then the following statements are equitvalent:

(a) | goB (7o, ')H{HQE(‘?’: 0, Vr € B\ {ro};
(b) L’ e(r, &; 1y, T)du<0, Vr € R\ {ro};
(©) st oo, Ddu< etro, o1, r)du,  vrER\fro).

Proof. (a)=> (b). Statement (b) follows directly from (a) by Lemma 3.
(a) = (o). Statement (a) implies (6) by Theorem 1. From (6) and (b) it follows
that (¢) is valid.

(b) = (a) and (c) = (a). Suppose not and let rER\{re} be a minimum to B
from B. Thus for such an r we have by Theorem 1 that

J-IE('?", &; To, *r)d;w}ﬁ (8}
and by Lemma 8 that
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[Iﬂ(‘l’u, o T, Tg)dﬂréoi (9)
But (8) contradicts (b), and (8) and (9) together contradict (o).
I am indebted to Professor O. B. Dunham for his gnidance and help.
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