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PERTURBATION THEOREMS FOR
GENERALIZED SINGULAR VALUES **
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Abstract

Let 4 and B be m X% and pXn complex matrices reapectivelj. Thig paper, as a continnation of
the author’s papers [7] (Math. Numer. Sinica, 4(1982), 226—233) and [8] (SITAM J. Numer. Anal.,

to appear), discusses perturbation bounds for the generalizad smgular va.luea of the mat-nxu-pmr{d B}
in the case of rank ( B)

Let m, p and n be arbitrary natural numbers, 4.and B be mxn and pxn
complex matrices respectively. Van Loan™® Paige and Saunders™ have suggested
forms of the generalized singular value decomposition (GSVD) of the matrix—-pair
{4, B}. In two later papers™® the author has analysed the perturbation of the

singular values and the singular subspaces of {4, B} in the case of rank( §)= n, In
this paper we investigate the perturbation of the singular values of {4, B} in the case
of rank ( B )~<n (Pertarbation bounds for generalized singular subspaces of {4, B} in

this case have been given by the aunthor in “The siné theorems for generalized
gingular subspaces”).

It is well-known thai the singular values of an m Xn matrix 4 are the non-
negative square rootg of the n eigenvalues of the positive semi-definite matrix 474 (A%
ig the conjugate transpose of 4). In § 1 we generalize the singular value concept and
derive the GSVD exactly from this point of view. Formerly, any pair (a, 8) with
e, 820 and (a, 8)+ (0, 0) was regarded as a singular value of {4, B} in the case of

rank (ﬁ){n (Ref. [10}, [4], [7]), and consequently it is difficult to investigatethe

" perturbation of Bingular values in this case; we shall clarify this problem in §1, In
§ 2 and § 8 we prove a Weyl type theorem and a Hoffman—Wielandt type theorem

respectively. The results show that, in the case where (g)is acutely perturbed, if we

use the chordal metric to desoribe the perturbation of gingular values, then the
singular values of {4, B} are ingensilive to perturbations in the elements of A4 and

B,

Notation. Capital case is used for matrices and lower case Greek letters for
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scalars. The symbol €™ denotes the seb of complex m Xn matrices, Cm=C™*1 and
¢ _CL AT and A¥ stand for transpose and conjugate transpose of 4, respectively. I®
is n X n identity matrix, and 0™ nXn null matrix. A>0(>0) denotes thab 4dis a
positive definite (positive gemi-definite) Hermitian malrix. The column space of A
i« denoted by R(A). | [a denotes the usual Fuclidean veotor morm and the spectral
norm, and | |r the Frobenius matTix NOTM. Tmax(A) 80d T (4)are the maximal
gingular value and the minimal singular value of 4, respectively; and ol (A) is the
minimal non—zero singular value of A, G,s denotes the complex projective plane.
The chordal distance between the points («, B) and (y, 8) on (4,9 18

ad— By |
(e, B, O, )= T (B (Y F+ 131

§ 1. Gzeneralized Singular Values and GSVD

We begin with the generalized eigenvalue conceph,
Definition 1.1°°. Let 4, BEC™", and

max rank (ud—AB)=k,

(M prEG
A number—patr (e, B) €G41,a ts an etgenvalue of the pencil pA—AB if rank (BA—aB)
<k, | ¥
The set of all eigenvalues of A — 2B is denoted by A(4, B),
Theorem 1.1. Let H, K €C**, and H, K>0. If

max rank(vH+0K) =k, (1.1)
then there exists a non—singular S €L™" such that
' H=8A8%, K=8Q8%, (1.2)
where
A=diag(4;, 0), @=diag(£:, 0), (1.3)
Ay=diag(I®, Az, =) Q,=diag (0", {4y, Jik-r=0), (1.4)
Am=diﬂg(a2r+1, "';.ﬂ?-+s); ﬂm=diﬂ»g(33+1, i E+:):
1:"ar+1;"“?ar_+s:"0; O‘::BH:L‘Q'””QﬁrH{l; (1*5)

o+ B=1, r4+ilKi<<r+s
and r, 320, r+s<k<n,
Proof. From (1.1) there exist ¢, 70 satisfying ¢%+7" =1 such that rank(vH +
oK)=F, Let :
fHmoH—-tK, E=vH+0okK, . (1.6)

Then thers is a non-singular Q € C**" such that
| I{l::} 0

0 0)’ Hﬁ@ﬁ@ﬂﬂ(ﬂiﬂi

Suppose that ol +Hu>0 for a cortain 7¢>>0., Lei
4 G
L-=( i
—HEMmI+Hu)™ 1

K.;.———QEQH':( (1.7

)J n}ﬂﬂ-



RALIZED SINGULAR VALUES 235

e

No. 3 PERTURBATION THEOREMS FOR GEN

Then

L(nKo+Ho) " =diag (n]+Hyy, Hes— HE(nI+Hy)Hy),
From (1.1),
Has— Hiy(nd + Hyy) 2 H15=0, V=
and so
Hi3=0, Hgq=0, - (1.8
Decomposing | *
Hyy=U,TUF, Ty=diag(z, e, Th), TS BT,

where Uy is unitary; substituting into (1.7) and combpining with (1.6) and (1.8),
v, 0
d writing B=Q
and writing Q (0 T
H =R diag (¢T1+71, 0)RE, K =R diag( ~+T4+acl, 0)RE, (1.9)
It follows from H, K >0 and
(6T 1+2D)*+ (=140l =T14+TE>0

), then we oblain

that -
d=(cTi+7vI)+ (—+T1+cl) >0,

ence, if we set

S=R disg(4%, I), A= (oTy+vI)42, Q= (= oTytol)d-2

and
A= diag(A4;, 0®-») , $3=diag(2,, 0¥), |

then from (1.9) we obtain (1.2)-—(1.5) at once.

Theorem 1.1 shows that A(H, K)={(a?, B2)}%, for the above mentioned K
and K, where a; and 8; satisfly

1=a1= vy =m}m+1?---}m+'}m+#+1n swi =a:]ﬁ= 0"
O=B1= =B < Bry1 < < Brss<Bryspa=+++=~= By=1, (1.10)
o2+ Bi=1, 4=1, +, k.

Thig fact suggests the following generalization of the singular value concept.
Definition 1.2_. Let AcC™, BCC™" A non-negative number—pair (x, B)
is a singular value of the matria—pair {4, B} if (a8, B2) EA(AEA, BER)
The set of all singular values of {4, B} ig denoted by c{4, B},
Definition 1.3. Let A€C™* BcC*™, The matriv—pair {A, B} is called an

(m, p, n; k) —MP if rank(§)=k_

The set of all (m, p, n; k) —MP is denoted by P (m, », n: k),
From Theorem 1.1 we can derive the following result which is due to Van Loan,

Paige and Saunders.
Theorem 1.2 (GSVD)"**,  Let {A, B} €P(m, p, m; k). Then there exist unitary
UcCmxm V¥V eCr*? and non—singular Q@ € C"™" such that

U"4Q= (24, 0), VEBQ=(Z5, 0), . (1.11)
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AA r+s OB 1 ptr—k
;5:4—( . ) , 23=( ) , (1.12)
OA m—r—2 AB k—rs
r4+s k—r—s r k-r
where OAMOB are null mtrﬁoﬂs and
AA dlﬂ-g(“i: T af+l): Aﬂ=dia'g(ﬁr+11 **%, 31#) (1'13)

satisfy (1.10).
Proof. From {4, B} €P(m, p, n; k), max rank (zA%A+0BEB) =%, Hence by

o, vl

Theorem 1.1, there exists a non-singular @ € C*** such that
QFATAQ=A, QFBBG=1Q, . (1.14)
where 4 and Q are represented by (1.8)—(1.5), |
Writing Q= (Qy, Q) = (¢}, @&, @), then from (1.14), (1.8)—(1.5) and(1.13)

r+s R—r—g r K—=r a—k

we have
AFQTARAQ AT =T, QFAZAQy=0
and
AZREBEBQ, Az =1, QBBEZBQ, =0, ¢=1, 3,
Now let Uy=AQ: A7, Ve=BQhAz*, then UFU,=I, VEVs=I. let U, and V; be
chosen 80 that U= (U1, Us) and V =(V;, Vg) are unitary. Then |

omae-(5t o) L vmme=() ) o) (1.15)
r+s per—a rooker n-k

The decompositions (1.15) are exactly (1.11)—(1.18).
Theorem 1.2 shows that ¢{4, B}={(«, B}, for the matrices 4 and B

mentioned in Theorem 1.2,
The following result is a corollary of Definition 1.1 and Definition 1,2,

A
Theorem 1.3. Suppose that {A, B}&cP(m, o, m k)., Lat Z=(B), and Z =2 F
| A;\m
be a full-rank factorization of Z (Ref. [1], p. 22), where zl=(31) . Then
17 P

o{4, B} =c{4y, BJ}. (1.16)

Proof. Let Fg be chosen so that F=(F; F,) is non-singular, Then by
Definition 1.1, '

ars sl (e O)en, 1 0 Yo

— l(A.IH.A.:LJ :FBI);
and by Definition 1.2 we get (1.16).

§ 2. The Hoffman-Wielandt Type Theorem

Regarding every k—dimensional column subspace in €™*? ag a point we obtain a
complex projective space G *? consisting of all such points (Ref. [2], [9]). By [2], we
may introduoce a projective metric
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s | .dﬁt(szi) - %
du(Zs, W ={1- det(gmwgw } (2.1)

on G where Z,, W, EQP*? (i. 0. Z;, W, €C"9*% and rank (Z;)=rank (W) =
k). In this section we use dp(+, ) to bound perturbations of generalized singular
values. |

Theorem 2.1. Let {A, B}, {C, D} cP (m, p, n; k), 0<k<n, 0{d, B} =
{(ah B’l)}fﬂnh n-{o: D}={(?ﬁ- *a‘)}rul.! and ;ﬂ (ﬂ;, ﬁ") and (‘yh 31) bﬁ mm as n
Theorem 1,2 (see (1.10)). Suppose that |

are wm_mfmmm of z=(§)m£ W=(§); then

(1) >1~d%(Zs, W), 2.3)
where
pri=p({a, B, (7, O)), 1<i<h, (2.4)

Proof. Utilizing Theorem 2.1 of [8] and the above Theorem 1.3, wo obtain (2.3)
at onoce.

Utilizing the arithmetic-mean-geomefric-mean inequality, from (2.8) we can
obtain the following corollary,

Corollary 2.1. Assume the hypotheses of Theorem 2.1, Then

k PO
> p<k(L—-N1=d;(Z1, W1) ). (2.5)

Now we investigate the relationship between the right-hand side of (2.8) and the
eloments of 4, B, O and D, The symhbol Z' denotes the pseudo-inverse (or Moore—
Penrose generalized inverse) of a matrix Z, It is well-known that P,=Z71" and Pgx
—ZtZ are the orthogonal projections onte R(Z) and R(Z¥), respectively. For the
matrices Z, W, Z, and W, mentioned in Theorem 2.1 (gee (2.2)),we define

1 - 1
d Z W S— = P _.P » d Z 3 W = mrr— P I_P 1 x
#(Z, W) ﬁ” :—Pwlr, dr(Z1, Wi) 73 | Pz w.ll P
By MacDuffee theorem ([1], p. 28) we have P;=P;,,, Py=Py,, and so

dF(.Z_, W}=dp(zi, Wj_)_ ; (26)
Moreover, it ig casy to see that
: 1 1
di(Z1, Wy) = [1—detD(Zy, W1)1%, dp(Z1, Wo) = {tr[I - D(Zs, W)1}7,
where - : '
1 1
D(Zy, Wy)=(Z8Z,) 2ZFW (WiW ) *WiZ, (ZFZ,) %,

If the non—nega,tiﬁe square roots of the eigenvalues of D(Z,, W1) are cost, (1<I<h),
then we have

d(Za, W) =y 1—T1 006, dp(Za, W)=/ S sin? 6.

i=1
Obviously,
' ' | di(Zy, Wi<dp(Zi, Wi).
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Combining this inequality with the relation (2.6), we obfain

dr(Z1, Wy <dr(Z, W), (2.7)
It is worth noting thal the perturbation bounds of generalized singular values given
in (2.8), (2.58) and (2.7) are dependent on the non-Euclidean metrios dy (Z1, W)
and dr(Z, W) but not on the Euclidean metric |W—Z|p, and in general it is not
posgible to compare the magnitude of d.(Z,, W) {(or dr(Z, W)) with that of
\W—Z|». Let us consider the following two examples.

Example 2.1. Lot {4 B}={<: g), (0,0)}__ (. D}m{(g ;) (0, 0)},

where 7 is a natural number. Obviously, {4, B} and {C, D}EP (2, 1, 2: 1), o{A,
B} =¢{0, D} ={(1, 0)}, and 80 py,1=0. Taking the full-rank fectorizaiions

n O 1 0 1 1
Z=[0 0}=|0])n 0)=Z,F% W={0 0 ]=] 0|0, 1)=W,GL
0 0 0 0 0 0

we have d,(Z,, W1)=dp(Z, W) =0, but |W—Z|p=~n2+1>n,

©2 %) 000} @a-{(0 0

(0, s, 0) } where 0<s<1, Obviously, {4, B} and {0, D}EP(2, 1, 8:2), o{A,

B}={(1,0), @, O}, o{0, D}={(1, 0), (0, 1)}, and 80 p1,1=0, ps,a=1, Taking
tho full-rank factorizations

Ezample 2.2. Let {A, B}={(

e 0 0 1 0 oo
B
001 Zx
0 0 0 0 0 *
0 001+
We| o 01+g 8) W.GE,

wa have dL(Zl; W:l) -——dF(ZJ W) =1J but ”W—Z”F= ’\/_3_8":{1_

Example 2.1 shows that if {4, B}, {O, D}&P(m, p, n; k) and dp(Z, W) i very
small (and so d; (Z;, W,) is very small too), then all of the p;; are certainly very
small, even though |W —Z| is not small; Example 2.2 shows that not all of the p,
are very small even if |W —Z|p is very small.

A ]
But in the cagse where Z = (B) ig acutely perturbed, we can give an upper bound

of d, (Zy, W) with the aid of W—2Z, and so we can see the dependence of the
variation of {4, B} on the perturbaltions in the elements of A and B,
Let Z, W & C**, Wae shall gay that W ig an acute periurbation of Z if

| Pz—Pyla<1, | Psa—Pgajs<l.
Stewart'® hag proved that W is an acute perturbation of Z if and only if
rank(Z) =rank(W) =rank (P;W P3x), (2.8)
Under the presupposition of acute perturbation we obtain the following theorem
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which and (2.7) can be combined to give an upper bound of d;(Zy, Wy).
- Theorem 2.2. Let Z, W €Ct9*s  If W 4is an aeute perturbation of Z, then

| dp(Z, W)<o(W)EW-2), (2.9)
awhere |
(W) = [ (Pz=sWEW Pz) 1|32, ~ (2.10)
E(W —Z) = (I—Pg)(W—Z) Py, (2.11)
Proof. Suppose that rank(Z) =%, Decomposing
0 0 Wﬂl Wﬂ

where 7 and ¥V are unitary, Zy, W €C¥* rank (Zy) =%, Then it follows from
(2.8) that _mnk (W) =rank (Wii) =k, Affer some caloulations we get (Ref. [5], 661—

652)

wE w=U( W, (2.12)

(Pz— Py)?=U diag (XEX(I4+X*X)"*, X(I+XEX )1 X*®)U",
where X =W g, Wii. Therefrom

d2(Z, W)=tr[XEX(J+XEX) V<[ (WaWu+WaWs) s Wail 7.
(2.138)

Observe that
7w

Ppu=7( 0 E)Vﬁ, I—PE=U(0 .

0 I(m+p-—k}

o

(WEW 1+ WaWae)™ 0

0 0 )VE

(PpaWEW Pya)t = V(
and |
0 o

CF ) (W—Z)PEH=U(WH " )VH,

then from (2.13) we obtain (2.9),
‘We note that if W is an acute perturbation of Z as W approaches Z, then

o(W)=|(WEWu+WiWs) 2" =0Q), §&(W—2)->0. (2.14)

Heonoe, (2.3), (2.7), (2.9)—(2.11) and (2.14) show that the singular values of any
{4, B} EP(m, p, n; k) are insensitive fo perturbations in the eloments of 4 and B if

(;) is acute perturbed.

§3. The Weyl Type Theorem

In this section we develop a uniform upper bounds for differemces of corre-
sponding singular values of two (m, », n; k) —MP,

For each point a+48 € C satisfying o, 820 and (a, B) # (0, 0) we define #(a, 8)
as the angle subtended by the negative real axis {¢::=<<0} and {{(a+4¢8) :¢>>0} measured
clockwise. -
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o - :
Let {A, B} €EP(m, p, n; k). We take a full-rank faotorization of Z H(B) A
P e , VOT1ZA110]
7, F8 ziu(Bl) By Theorem 1.8, o{4, B} =c{4;, B}. If (a, B)E€c{d:, B},
1

i
then from Definition 1.2, (cf, B?) €EA(AFA,, BYB,), Since (AfA;, By B,) is a definile
matrix-pair (Ref. [6]), there exists a non-—zero , € C* such that
ﬁfAiI'Almi=a?B¥B imij (‘A'J.‘wlj ‘Bimi) %’ (ﬁj 0) .
Now we define the singular angles | __

Bi=0(| Aswlla, |Bails), 1<i<h, (8.1)
and assume that #,<--<0,. From B A |s=o| Biza there are #>0 for 1<i<¥
such that |

("'Algi“i! "Biminﬂ) - (t‘ai: tﬁi)f i. e. 9;"=8(ﬂ¢, B‘);

hence every singular angle defined by (8.1) is uniquely determined, i. e. the singular
angles 6, (1<i<%) are independent of the selection of the full-rank factorization of

(5)

The following lemma about unifary—invariant norm is useful for our discussion.
Let | | be a unitary-invariant norm on C***, For any 4 €C"™(¢<n) we define

|4l =I4], 4=(4, 0). (3.2)
Lemma 38.1. Suppose that X €C>®, Y cC*™ &k, I<n, 1f
XXELYYE (3.3)
then
| X | <|Y] (3.4)

for every unitary—invariant norm | | on T,

Proof. Let £=(X, 0), P = (¥, 0)€C**, From (3.8), XX#<PPZ Suppose
that the singular values of £ and P are 0<oy<- <o, and 0<r <o K,
respectively, then by the minimax theorem for Hermitian matrices we can deduce that
o<, for 4=1, -+, n, Henoe utilizing Lemma 1 of [4],we have | X|< | ¥ | . Combining
with (8.2) we get (3.4).

Theorem 8.1. Suppose that {A, B}, {0, D}€P (m, p, n; k), 0{A, B}=
{(a, B)Yeur, {0, D} = {(,, 8} s, and the corresponding singular angles are 6y<+-<6

and i<+ <y, respectively. Then for any full-rank factorizations of Z ——-(B) and

2.8, W=wiat, Zi=( g ) Wa= (')l (3.5)
we have _
P <1 ({41, Bs}, {01, Di}), 1<i<P, (3.6)
where

pa.:=p((a¢; B, (v, 8)), 1<i<k



No. 3 PERTURBATION THEOREMS FOR GENERALIZED SINGULAR VALUES 241

T({Ai: Bi}: {01: DJ})Emﬂ’x{p(("‘dim"ﬂl ,I‘Blm"ﬂ): (,I

o e Owls, |Dwls))}, = (3.7)
Moreover, if W is an aoute perturbation of Z, then there ewist full-rank factorizations
(8.5) of Z and W such that Z, and W satisfy E = g
|Wa—Z:| <|W-Z]
Jor every unitary—invariant norm | | on Contoxomin
Proof. From the assumptions, {4, B:}, {C;, D} EP(m, o, kE: k), o{d;, B =
oc{4, B} and ¢{04, Dy} =0c{0, D}, Henoce by Theorem 2 of [7] we get the inequality
(3.6) at once.

Now suppose that W is an acute
(2.12), then we know that rank

(3.8)

perturbation of Z, Decomposing Z and W as in
(W) =F, and s0 we may take

z W '
2=U(" '), FI=(1, 7=, WamU( ™), @F=(L, Q7" (3.9)
al

in (8.5), whore QECH P By Lemma 3 .1, the inequality hgj[.:];g for every unitary-—
invariant norm on LM+axtmin

Observe that

r({4s, B}, {C,, Di})%max{J (Ci—A4)a[3+[(Di—Bow

o0
et

hrla=1 | A1 E'F uBiﬂ’"g
Wi—2Z4)
g ﬂ’mu( 1 1 3 3 ; 10
T min (Z 1) ( )
hence, if W is an acute perturbation of Z and we take the full-rank factorizations
(3.9), then from (3.10), '

- . Tmax (W -7 )
r({AI: -Bi}: {01: -z:’-'l-})ig ﬂ';in(z) s |
Therefore ascording to Theorem 3.1 we obtain a weaker but mors intuitive result,

Theorem 3.2. Assume the hypotheses of Theorem 3.1. If W=( ﬂ)is an aoute
: A '
periturbation of Z =(B), then

Omax (W —2Z) ;
P’l,ig a';-]jn(Z) » 1§@<b.

Theorem 8.1 shows further that the singular values of any {4, B} €P (m, p, n: k)

A
are insensitive’ to perfurbations in the elements of 4 and B if (B) is acutely
perturbed. |

§ 4. Final Remark

Finally, we note that in the case k<7 the singular values of {4, B} €EP(m, p, n: k)

are not certain to be insensifive to perturbations in the elements of A and B,
Consider for example a (1, 1, 2; 1) — MP with

A = (2: 0): B=(_'1: 0)-
We have
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4 0 1 0O
AR 4 =( ) BHB=( )
' 0 0O 0 O
and thus

N(ARA, BFB)={(4, 1)}, o{d, By={(2, D}.

Congider the neighboring problem with

.Z==(2, g), -g"(_l']"’?: 0)1

where en#0 and [s|, |n| <1, We have

- —m? 0
3 “(; jf) §H§=((10” 0)’

and thus

This

A(A24, BEB)={(0, 1), (1, 0)}, o{4, By={(0, 1), (1, O)}.
meang, somewhat disappointingly, that in the case k<n the singular values of

{A, B) €P(m, p, m; k) may be considerably changed by a small perturbation in the
elements of A and B, |

(1]

(2]
[3]

[4]
{3]
[6]

[7]
3]

[9]
[10)

- References

A. Ben-Izrael, T. N. E. Greville, Generalized Inverses: Theory and Applications, John Wiley, New
York, 1974.

Q. K. Lu, The elliptic geometry of extended spaces, Acta Math. Sindca, 13 (1963), 49—62.

1. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford, 11 (1960},
50—59,

C. . Paige, M. A, Baunders, Towards a generalized singular value dscomposition, SIAM J. Numer, Anal.,
18 (1981), 398—405. ' _

G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares probloms,
SIAM Rev., 19 (1977), 634—662.

G. W. Btewart, Perturbation bounds for the definite generalized sigenvalue problem, Linear Algebra and
Apgpl., 23(1979), 69—83,

J. G. Sun, On the perturbation of generalized singular values, Maih. Numer. Sinica, 4(1982), 229—233.
J. G. Sun, Perturbation apalysis for the generalized singular value problem, SIAM J. Numer. Andi.
(to appear)

J. G. Sun, Orthogonal projections and the perturbation of the eigenvalues of singular pencils, J. Comp.
Math., 3:1{1983), 63—T74.

Charles F'. Van Loan, Generalizing the singunlar value decomposition, 51 AM J. Nuymer. Anal., 13 (1976),
76—83.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg

