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COUPLING CANONICAL BOUNDARY ELEMENT
METHOD WITH FEM TO SOLVE HARMONIC
PROBLEM OVER CRACKED DOMAIN’
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Abstract

Using the canonical boundary reduction, suggested by Feng Kang 0.9, coupled with the finite
eloment method, this paper gives the nnmerical solution of the harmonic boundary-value problem over
the domain with erack or concave angle. When the coupling is conforming, convergence and error
estimates are obtained. This coupling removes the limitation of the canomical boundary reduction to some
typical domains, and avoids the shortcoming of the classical finile element method, because of which
the accuracy is damaged seriously and the approximate solution does not reflect the behaviour of the
solution near the singularity. Numerical caleulations have verified those conclusions.

The author wishes to axpremhmmtmmarathankstohm adviser Prof. Feng Kang for all his

belp, advice and comments.

It is known that elliptic boundary-value problems can bs reduced fo integral
equations on the boundary in different ways. The canonical reduction, suggested by
Feng Kang in recent years ™+#, is a natural and direct reduction, which preserves
the essential cbaracteristios of the original problem. Unfortunately, it is only
applicable to some typical domains. The classical finite element method can be
applied to relatively arbifrary domains, but except cracked domains. Therefore it is
only natural to couple the canonical boundary element method with the finite

slement method.

1. The Method

In [8], a numerical method by canonical boundary reduction with error esti-
mates is given for solving two kinds of boundary-value problems of harmonic equa-
tion over sector with orack and concave angle. For the harmonic boundary-value
problem over general domain with crack and concave angle, we can couple the
canonical boundary element method with the finite element method as follows.

Let £ be a domain bounded by two sides 1"y and I'y of a concave angle a(wr<la<
2x) and a smooth curve I". When a= 2w, the domain contains a crack. Consider the

boundary—value problem |
{du=0, in Q, . ' D
ou=0 onl L, ot=1, on. I
where fE H "7(1’ ) satisfies the consistency mndlhon

[ faa=o.
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It is well-known, that problem (1) has a solution unique up fo a constant. Let
. D(u, ») F.jJVu'?wdp_ 5
Then problem (1) is equivalent to the va_ri;af’;tinnal problem /
~ ( Find ﬂEHi-(Q)/P._; suc.h ﬂmt .
{ D(u, v) =j ofds, weﬂl(n)

where P, ig all consiants. Uamg the Lax-—Mﬂg:am lemma, we can easily prove that

problem (2) has one and only one solution in H1(Q)/P,,
Now take the vertex of angle « as origin and place I'; on # axis. Then draw in 2

an aro I = {(R, 0) |ocecar dividing Q2 into £2; and £2;, where £ ig a sector. We have
([vuvodpm[[Vurvodps v,
5 T :

(2)

Ly
and | - |
B il s k. R, 0)d8,, 0<b-
Uy (§) = M.R- Ll( in® g_gr . - 0+ )“( 2§ )ayg’, <V <a,
200 2ol '

which is the canonical integral equation of I obtained in [3]. It containg a singular
kernel and can be defined in the sense of distributions. Then problem (1) is equiv-

alent to the variational problem |
{ Find w€ H*(8,)/Py such that

Dy(w, v)+Da(r'u, ¥'0)=| ofds, Vo€ H(Q)), -

where Dy(u, v)= ”‘U’w‘?w dp,

Ly

it o 1 ‘ s 1 | | 5
Da(uo, o) = 4’;2 ‘L(Einﬂ 0—0 m 0o Gl A0 )%(9’)%(6)6’9 do
20 20

+’ is the trace operator maping H(Q;) onto H 1}(I“') _
From the existence and nnigueness of the solution of the variational problem (2)

the following is immediate.
Proposition 1. The v&mtmnal problem (3) has one and only one solutmn in

H*(€,) /P,

Now divide aro ¥ into N, and subdivide @, into triangles such that its nodes on
I'" coincide with the dividing points of I, Let {L;(z, ¢)}¢¥* < H*(£2,)be basis func-
tions, for example, piecewise linear; then their restrictions: on I are approximately
piecewise linear on I"”. Let | '

Ni+Ny @
u=U(w, g)= 2, Udu(e, y),
where the subsoripis ¢=0, 1, N 1 norrespond to the nodes on I, We have

Ni+Ny
S Du(y, LOU,+ B Du(y' Ly, YL U= fLids, =0, 1, =, Nyt N,

§=0
or, for simplicity,

QU =b, . (4)
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The system matrix is R
[Eﬂ(?th Y!L!)]fN1+1)}E{N1+1) ¢

Q=[Dy(L, Li)]m.+ﬂ.+1mar.+ﬂ.+1)+[ oy
| 0 | - ON. w N g
=[] + [g]. | | o |

Ts first part can be obtained by the finite element method, and its second part is

given by the following formulae™ ®

9520)=95fm ”% %; 902131“ ﬁfﬂ“?aﬂu i
g{mggm)=ai; ' q5§}1=9%34=aﬂl"h i"=1.r e ‘Ni—l.!
95?3'=q‘”3'~m-3+m+;, g, j=1, «, Ny—1,
161%72 & naT
where g, = E 2N1 COS Ni ko, k=0, 1

Then we obtam o | |

Proposition 2. Q is a semi-positive definite symmetric matrix with rank N+
Ny, and the system of linear equations(4)has a solution unique up to a constant vector
O=(c, -+, ¢)T, where ¢ is a constant.

Proof. From the positive definite symmetry of bilinear form D,(x, v)+Ds (¥4,
yo) on (H*(8y)/Po) x (H*(Qy)/Py) it is immediate that @ iz a semi—pogitive definite
symmetrio matrix with rank N;<4-N,. Moreover wo ha.va the conslatency condition

Ni+N; Ni+ Ny . L L
i=2U bi= i§ ijL‘dsmlENE{P}J f idsnf f(l N | )ds=[Pfd3=01
where N (I") is the set of subscripts GOIIESpDndlng to the nodes on I", Thus the proof
is complete. |

In order to guarantee the uniqueness of the solution of (4), some condition is
generally added. For instance, in the numerical example of this paper, we assume

Uy,a=0,

2. Convergence and Error Estimates

Leb 8,(2:) < H*(£21)be the finite element space in £, associated with triangles
and let So(I™) = y"Sh(Qi) il 3 (1" )be the boundary element space on I”. ' IT: HY(Q,)

—S8,(Q21)and Ily: H 3 (L™ ) — Sox (F’) are mtﬁrpalatmn operators. Suppose they are
conforming:

L

T’H"L"=ﬂn"}”ﬂ,* V‘WEHI(Q]_)_

Let u be the solution of (3) and U, the solution of (4), |-| ¢ |5, are energy
norms on. H*(2,) /Py and H*3(I") /P, derived from Dy(+, - Yand Dy(+, »)respectively.

Lemma 1. Di(u~U;, V)+Da(v/(w—U,), ¥YV) =0, VV €S5(2),
”“* Uh”nl+|lT“ ’Y’Uhnmﬁ m:m (”“_V"m‘l'”?“_’}”Vum)

€8x (a;)

Proof. Since
Di(u, v)+Ds(¥'u, v'o)=| vfds, Vo€ H @),
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Dy(Us, V) +Da(y'Ts, ¥V)=| Vids, WV ES(@,

taking v=V €5,(Q2;) and subtracting, we obtain - - . .
| Di(u—U,, V) +Da(v'(u—U3), ¥'V)=0, YVES(R).

Moreover, from the seml-pomtwe definite symmetry of Dy(u, v) +Da(y'u, ¥'v), we
have

Di(u—U,, H-U;)—!ﬂ'ﬁg(TF(H*U;), TI(M"‘Un))
=Dy(u~V, u—V)+Ds(y' (u=V), ¥ (@w—V))
=DV, Up—¥FV)— Eﬂ('}’ (U=V), ¥y ({Ux—V))
<Di(u~V, u~V)+Ds(v'(u~V), v (H*V))
VVESa(QJ.)
The proof is thus completed.

Theorem 1. (Convargenﬂe) If I mmﬁﬂs

h—0
HQ}_H@HH‘(E:.J_} 0 V@GHI-(QI),

then |
Lim {Il%—-Unlln,+ |v"u— 'r"Ua.Ilm}fﬂO

Proof. Since the norms || « [l o, ‘are eqmva.lent and the norms I .
and [ « [ gincreysp, 870 equivalent as well, thera exist constants K and K, such that

|2lp.<K|v)|m@s, VoEH(Q),
| vl < Kolvo| mincr, Vvo€ HYA(I),
And from I”<dQ, and the trace theorem, we have a constant T’ such that
lY" v onca<T|v|mws, VoEHY(Q:).
Since u € H*(Q2,), for any given &8>>0, there exists w €0 (2) such that

o~ &
"”—ﬂﬁmm*im.
Moreover, for fixed #, there exists A, snch thai

2 - 8
|9 — M oy << 2 K3+ K273
“when h< he. Using Lemma 1, we obtain
lu—Uslo,+ | Ye—yTilg=_inf (Ju—V]3+[ve—7YVIi5)

¥ €80
Q(K"I'E?)Tﬂ)(ﬂﬁ—§l|ﬂlcn.}+”“""H”"H*(nﬂ)ﬂ“iﬂs:
i. o.
1

(a3 +lyu—yTald) i<,
The proof is complete.
Theorem 2. If uc H*(Q,), k>1, O satisfies

u‘v_'Hw"H"(ﬂﬂgc‘}h‘f"m"I'I'l.ﬂu V‘UEH"-FI(QI): j=1: G k.l
then
. 1 '
(lu—Uals,+ fr'u—vTUil5.) * <OW*|tt|1sr 0,
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where C 48 ¢ constant independent of u and A,
Proof. From Lemma 1 we have

||‘"f— Uh ” D, | y'w— ’J”Uh " DS 1313& ; 0"“‘ V Il H1(@y)

<O|u~Huj le,-}'%Oh“ A

(Je—Ua| s+ |7'e— ’J"Un ”m)ygmﬁk ||“||n+1, 0.
Thaorem 3. If uc H**(y), k=1, U s&mﬁss the mﬁm of Thearem 2,

| j (u—T)dp=0,
then |
|%— U 1y <CH**| U] 41, 2
Proof. Let w be the solution of the following boundary-value problam
{ dw=g, in Q, ‘ o

| %%==0 on 89,

H'—Uh, in 91,
where g-={ ,
0_, 1n Qﬂ
The solulion evidently exists. Since
U= Uﬁ & Hi(ﬁi)C:Lg (ﬂl)
50 ¢ € Ly(£2), Then from the differentiability of the solution of the Neumann problem
of harmonic equation, we have w € H*(Q), and
o0l aars <O19 | e = Cli— Ul .

Since |

[[s—Twap=[[(—aw)vap=| v 5 ds+Dicuw, v)

o, £ :

i 3‘10 k' f ’
=J P ds+ Dy(w, v) =Dy(w, v)+De(y'w, 7 v),
where 7 is the inward normal of @, taking v=«—U, and using Lemma 1 and the
trace theorem, we obtain - -
ju—TUnl3an=Di(w, u—Us) + Ds(y'w, ‘}"(H‘Uh))
=Dy(w—Hw, u—U,) +Da(v'w—y'Hw, yu—vyUs)

v <KO|w—Hw|wwyede—Usl o, <Ok|w] mey/ru— Uiﬂ Dre

By differentiability we have o
”u_Uhﬁﬂ.ﬁl{ﬂn}‘gakHu‘"Uh“h(ﬂ:}ﬂu—Uﬁ"Du -

l46— Ul raon <Oh[u—U, | p..

Then from Theorem 2 we gel
' - e—Uilz0o<OF**|u]iss, 0.

Mﬁreover in the classical theory of thefinite element method thereis the fo]lowmg
- Lemma R. Let S, be the space spanned by piecewise linear bamfmctwwmmted__
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with triangle elements, and lot 4, denote the ares of trwngle slement e, v ES,, then

v|z.ms4/124, ||‘”||ht¢>
From this Lemma and Theorem 8 we can obtain

Theorem 4. Lot IT: H(Q,)~—>8,(8,)be the piecewise linear interpolaiion operator
assoviated with trianglo demonts, w€ HA(@,), j j (u=Tn)dp=0; then

g,
ﬂu-—U;.ﬁ:._m,)-QGhII ﬁ

This estimate is nt}t the best. The proof is similar fo that of the correspondmg resuli
in the classical theory of the finite element mathod and so is omitted.

3. Numerlcal Example

Let Q be a eracked square

2= {(=, y)lirt |y|-=:1}\{(ﬂ’ 0) loce<1}t,
and let I" be its boundary. Solve the boundary-value problem

du=0, in 0,
{ oa(z, +0)=0u(e, —0)=0, 0<:m<‘.1

where Gt - v
1+/1+42
Ja&, y)==+ STy 20,
' [Pl
Fe=1, y)n?J 21(’;3+1) , g0,

7, 1= 32(@+1)(m+~/¢v’+1
J"(m —1)=

V2(z*+1) (m—l-\/ 2+1)"

We take R=0.5, 0.8 and 0.99 respectively fo solve numerically the problem by
coupling the canonical boundary element method with the finite element method,
and compare the result with that obtained by the finite element method.

Table 1, The maximum error at nodes

y s e %P o ~ Maximum error | -
Method Ny Number of nodes X "5 I | ] .Ratm K
8 - 19 - 0, 38450718 .
FEM | o L o v Saaic et S 1.69778724
16 69 0.22647548
8 18 0.14888466
R=0.5 e Bl i 3.82161713
16 Bl © 0.08737545
Coupling [ B==0.8 : - . o i 4.21704760
) =0, . — — . ;
. 16 8L s 0,01955700
N Tl b lﬁ ! D L 51 B0 o : g : -—D; 9 . 4 SR i
L R=-U 99 e o G B 1.85738649
. 3 S JL 24 I- ! LT5 s % N SRS ﬂ.@?&ﬁT% o oEm o T
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Table 2. The jump through crack

Number ' 0.75 0.50
| U(e, $0)~U(z, —0) | 3.24017620 2.66844702 2.00671783
19 - . el — . ! - —_
BRelative error 0.185955695 0.22968574 0.25869810
FEM ' — | _
U (z, 30 =U{z, —0) 3.64538860 2.11208820 2.46181011
69 _— ' e e -
Relative  error 0.08865385 0. 10161757 0.12961845
| Uz, +0)—U{z, -—ﬁ) ' 3.74924565 3.20859575 2. 66794586
18 ° ' ' _— i "
Coupling Relative error 0.062683850 | 0,07376824 - 0.05673844
R=0.5 Oz, +0)—U(z, —0) 3.93803215 3.41174126 l 2.78790343
51 S - — S
Relative error 0.01549196 0.01511518 I 0.01429520
Exact value ulz, +0) —u(z, —0) 4 . 00000000 3.46410180 2.82842636

____-_-_—____—-ﬂ—-——_-—_"—__—-___ﬂ_—_
Table &. ,'_I‘ha jump through crack near singularity

W

Method " 2 0.1 0,01 0.001 0.0001
U(z, +0)—U(z, —0) | 0.41934865 | 0.04193436 | 0.00419344 | 0.00041934

. N Relative error 0.66847951 | 0.89516430 0.96684820 | 0.98951650

S - U(m,1+0)—U(m,-—ﬂ) 0.63291341 | 0.06329137 | 0.00632913 | 0.00063291
. ﬁelaﬁve oTTOT 0.49963825 | 0.B84177158 0.94996386 | 0.98417725

B Uz, +0)—U(z, —0) | 1.20084095 } 0.37975490 o.izmsgn 0.C3797540
Coupling & Relative error 0.05065:31 | 0,05061275 | 0.05061270 § 0.05061500
5 0..5 Uw, +0)—U (2, —0) | 1.24850368 | 0.39481878 | 0.12485290 [ 0.03948190

| » Relative error 0.01297363 | 0.01295309 | 0.01295165 | 0.01295250
Uz, +0)—T (z, —0) | 1.22803402 | 0.38834321 | 0,12280506 | 003883439 -
Coupling o Relative error 0.02015481 | 0,02014197 | 0,02914124 | 0,02914025 -
Be0 .8 . Uz, +0)~U(z, —0) | 1.2557334¢ | 0,39709&5930 0_12557393 0.08970994
o Relative errc}r‘ 0_00725597 1 0.00725275 | 0.00725142 | 0.00725150

Uz, +0)—T(w, —0) | 1.25798552 | 0.89779496 | 0.12579346 | 0,03977967

Coupling " Relative error 0.00551511 | 0.00551260 | 0.00551588 | 0.00550825
=), 09 U (z, +0)—U(m,ﬂ-—0) 1.26164341 | 0.3989668% [0.10618473 | 0.03989674
" Relative error 0.00258377 | 0.00258288 | 0.00258078 | 0,00258150

Exact value wlx, +0) —u(z, —0) | 1.26491165 | 0.40000000 0.12649117 | 0.04000000

M
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4. Conclusions

8. The coupling of the canonical houndary slemens method with the finite eloment
method keops the advantage of the finite element method, which is applicable to rela-
tively acrbltrary domain, and removes the limitation of ca.nonma.l boundary reduction,
thereby itg range of application is extended greaily.

~b. This coupling is applicable to probloms over infinite domains and domain with
crack or concave angle, which is due to the merit of the canonical boundary redue-
tion, and avoids the shorfooming of classical finite element method, by which the
accuracy will be da.maged seriously whon we deal will singularity. In Tables 1—8 we
have seen that the result obtained by finite element method is far inferior to those
resulis obtained - by coupling. - Especially near the singularity, the former can not

embody ‘the beha.vmur of the solutmn at all, but th& latter still preserves ideal
accuracy. '_

¢. This Gnuplmg can be bml;Ight into the ﬁaleulﬂ.tmg system of the finite slement
method; in fact, the subdomain in which the canonical boundary reduction is carried
out is exactly a “large element”™!, Jompared with the finite element method, the
coupling hardly increase the complexity of programing. When their numbers of nodes
are equal, their computation times are mnearly equal, let alome the number of nodes
associated with coupling is far less. |

d. In order to decrease nodes and raise accuracy, the subdomain in which the
canonical boundary reduction is carried out should be as large as possible. For
example, in Tables 1—8 the result obtained by taklng RE=0.8 ig better than R=0.5;
when B=0.99, the result is the best.

This coupling ig applicable to sulvmg ha.rmomﬂ and biharmonic problems over
infinite domains too. |
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