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ON DISCONTINUOUS FINITE ELEMENT
~ APPROXIMATION FOR THE SOLUTION
OF TRICOMI'S PROBLEM"

' 'HuaNe MiNe-vou (%9#)
e L (Jilin University, Jilin, China)
-~ § 1, Introduction

In this paper we shall discuss a discontinuous finite element approximation for
the solution of Tricomi’s problem |

G Y YP,sa— P, py=f in 0,

o D=0 on I, I' and I, a 1)
¢ |20, ,4+®,,~0 on I, '
| d | unspecified on F1

where Q as shown in the figure of section 2 is a domain in the (z, ¥) plane bounded
by the characteristics I and I'? passing through the points (0, 1) and (0, —1)
respectively for y=>0 and bounded by the rectangle with sides I'?, I'* and I for
y<0. This problem is a lipear mixed type problem with equation hyperbolie in the
part y>>0of 2, elliptic in the other part y<0 of £ and parabolic on the line 5 =0.

It is known that by transformation preblem (1.1) can be reduced to a first
order symmetrio positive system. In [1] and [4] a finite element method for the
solution of Tricomi’s problem has been presented in the form of first order system,:
where the finite element space is a subspace of H*(Q) consisting of piecewise
polynomials of degree <<+. And an error bound in L; norm. of O(k") for this
continuous finite element. ‘method wag shown, bmd on the reaults of Lesaint in [2]
for the finite element method for first order symmetric positive systems This error‘
estimate is not optimal compared with the approximation properties of the finite
element space employed. .

The discontinuous finite element appreximation for Tricomi’s problem to be
disoussed is constrnoted first by transforming (1.1) into a first order symmetrie
positive system and then applying a. discontinwuous finite element procedure
presented in [8] to this reduced first or_der system. We aim at studying the
stability and convergence properties of the finite element method for Tricomi’s
problem in a wider situation whare the ﬁmte element space is only a subspace of

Lq(2). We shall prove that the ra,te of ﬁonyergenﬂe is O(h +E) provided the finite
element space is chosen as the space of piecewise polynomials of degree <s. This
result shows the effectiveness of the discontinuous finite element, and it also is an
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improvement of the known result for the continuous finite element method.

5 2. Reductlon of Tricomi’s Problem

We mtmdnee the followmg tra.nsformatwn of the 1ndependent v&rmbles

H""(ul), .-"b.'l.'I|=d ¢fl‘!. u‘ﬂ=6 ;h‘@f‘rf'
Uy

Then the equation in (1.1) can be written in form of first order system

(2 0= ) o2 o) )3

which is symmetric. Multiplying this system by matrix

¥ . ¥ * - 'y 1 '
i A s TP o o - s : na il L 1 2 it g o
PRy ol e SR T T S aed BT S e
b G [] [ - 2 (B o
- * -1-'l..'|'r . M .P""-I1. 1 - 1 [ B
R L ; . PRt

we obtain |
Ju= Alu,.f%i— Aqte, gt Agtt = g oce? 4 (2. 1a)
where

3 ay by o by —~a Ay hby) , (aa""- )
— Ag= .| I .
4 (by u) " (—m -——b) B (lby AG ; be™ ™. f

It can be seen that. W1tl1 the. ﬁhome nf a.==2 b=1 and }..==0 1 system (2.la) is a
symmetrm posltlva system in Q In the sequel weo shall ﬁx this choice. Let L’ be the

formal adjmnt of L

—tel P,

L U= — (A1u)..- (Aau«) .r+Asu-

g .. r 04y 049 _[ 0 4y+10. 23!) s
. L+L A3+A . oy ( 0.29 . 0.4 _
and (L+L‘) is strmﬂy pomtwe, i.e. *there emsts a eonstam.m>0 suoch that s
u? (L+ L*yu>an’ ‘u- -in Q for wecR. - - (2.2)

We now exﬁmlne tho coi-respotiding boundary condmon of system (2. 1a). “The
bﬁundﬁry Bﬂ of ¢ 15 ﬂhown in tha ﬁgure Let 7= (7, ny) be the outer umt nurmal

on 39

B E.'.- [T}
L : _.rh:' .‘.}

¥
" characteriatio " characteristio
e My "y ... i 2 - g |
_ot~g(e 1 R i i T
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The following matrix is called the boundary matrix

2 ngtl —2n, %
e I ).
o Vi Toalf 2Ny 213, — Ny,
We thuy have - - L . o o
TB&’F( §l) (n’ui"“”'ﬂuﬂ)ﬂ ("v 3%)(2%!4—!-%)“ e X g (2 ‘3)

2m+m

- The boundary conditions in (1.1) can be written in the form Nu=0 on 3&? with
matrix N deﬁnad a8 follows: . .

(20 e refeo-te-n)
L= 2_];1\/— Y -V S _ o B oY
Nnﬁ \/;? 1 ) on I "'{(ml 'y),y =?(m+1) }J‘
0. : 0 £ | : | . _ . e e .._._ _ _
(0 L 1 I |) ) on F3={(:'ﬁ, y)[m'==—ﬂl,__—.1<y\<§0},
2ly| || T g mew
N=(-.[ : Wl) on I*~{(=, 9)|o=1, ~1<y<0}.

It can be seen that Nu=0 i§ an admissible bouudary ﬁondltmn in the sense of
Friedrichs (see [5]) by defining a matrix M on 8@ such that’

M, (4 y) (nyts — nmuﬂ)ﬂ+|nu—yn2|(2w+ua)"" |
U 2netbm [ o

(2.4)
whioh satisfies the following conditions
(1) N =Z(M-g),
" (i8) M+M*>0, hore M*=M,
(iii) Ker(8— M) +Ker(8+M) =R2,
From (2.3) and (2. 4) it is easy 1o see that

‘ ]uT,BuliuTMu on 82 for uE—R“
hence we have

O<Tui(M—Ru<uMu ondQ. -~ . .. .. (2.5

- Now the reduction of problem (1 1) is completed The redtmed ﬁrst order
- system, equatmn (2. 1&) together with the boundary I}Ondltlﬂll t
| . Nu=0 op 8Q : (e 1b)

~ is a symmetric positive system of Friedrichs and satisfies Gondltmns (2 2) and (2.5)
which are a little stronger then what Friedrichs’ system requires. We sa.y that
4unction v satisfies the adjoint boundary condition if |
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N'u=0 for (z, y)€2Q,
where N* =NT-+ 8. Notice that here M, 8 and N are all symmetric. We thus have

N+N*=2N-+B8=M. (2.8)

The method we shall disonss is based on the reduced system (2,1a), (2.1b) and we
are looking for the solution of this system in (H*(£2))?. By means of the following

identity |
o (T, v)g+<Nu, vD0=(4, L'v)o+<u, N 0D for u, v€ (H(2))* (2.7T)

one of the variational formulation of (2.1a) and (2 .1b) is: Find u€ (H*(Q))? such
that --i i | TN
(L, 8)o+<Nu, ¥ps=(F, v)a VvE(H(D)? * - (2.8)
where (+, +)p and {+; *>: denote the inner product in (La(&))* and in (L.(82))*
respectively. B |

Remark. The matrix M defined by (2 .4) has the following explicit forms:

Msﬁsﬂm@( ¥ - «/y) e

Jity \Wy 1
r ..
M—(“zlljll 2Jlry||y| ) a on I snd T,
M—(Z i) p TR

§ 3. Diséontinuous Finil;e Element Approximation

Lot {%, h>>0} be a family of iriangulations of Q. Each % divides Q into &

finite collection of nonoverlapping elements: 2 = KU K, where h is the maximnum
=2

diameter of the elements in .%,. We assume that {.%,} is nondegenerate, i.e. the
ratio of the radii r; and r; of the circumscribed and snseribed cireles of each element

-_ri/ ro<0 for all elements and all A.
Let P,(K) be the set of all polynomials of degree<<r on K. We define
Va=( I1 P(K))

K€y
Thus V, is a finite dimensional subspace of (Ls ())3.

Let ng=(fs, Twy) be the outer unit normal on 8K. We now extend the
matrices 8 and M in section 2, originally defined on 90, to 8K for all K €%, by
using e, 7wy 10 replace n,, ny in (2,3) and (2.4), and we denote the exiensions by
B and M, respectively. Similarly to (2.5) we have

Oﬁ-%-u:“'(ll:f,,—ﬁk)w(%rﬂ,u on 0K, KG;‘Z’;._ | A (3.1)

Deofinition. us is said to be @ disconiinuous finite element approvimation of ihe



No. 4 ON DISCONTINUOQUS FINITE ELEMENT APPROXIMATION... 293

i Y IR, A

solutton of (2.1a), (2.1b) if for any *UJ.EVJ. .
L=, Yo+ <Nup, w0t 3 [ (MR [, wds=0,  (3.2)

awhere 0K°=9K — (3K'ﬂ39), [ ] =2y — u:,,, mnd u;. derotes the trace of uy on 0K from
the exterior of clement K.

This definition coincides with the one given by lLesaint in [38]. Introduce the
i‘bllowmg bilinear form for piecewise smooth functions ¢ and ¢

B (@, '.b)' {(L‘? 'ﬁ')x"l"—J ((Mp— ﬁk)(*?’ Er), :ﬁ)ds} . (3-3)J

“Where C® md _
g {0 on 3Kﬂ39 ; | AN %
I=

@ the external trace of 9 on 3K' (8K N BQ)
“Then (3. 2) is eqmvalent to

B(us, m)=(F, 1) Vu.EV (3.9
Lemma 1, For any piecewise smooth function ¢
B(op, @) -—(qo, (L+L')sv)n+--—<¢>, M?>9n+-— I ([p], Mxle])ds,

where the summation b3 i8 laken over all side faces of ; the elements of &, whmh do noé

. Bgag
belong to 2Q. | | |
Proof. Notice that by Green’s formula

(L, 0)x=(p, L'W)x+| (B, )ds.
We have |

R

1J ((Mn—ﬁk)(@’ &n), ‘P)ds}
-5 T+Ipe+3 3 {j Bt s

+J (Mi(p—£&r), @) d@}
‘Since By|s=— Bu|s and My|s =My|s, it is easy to see that

3! [ (8, p)ds—0

Keg, )2

Blg, )= 2 {5 @0, ot (o, a3 By, 9

and
EEJ?E (M (p—E&n), @)ds={<p, Mp) o+ 'Egﬂjﬂ ([p], Mi[p])ds.
'These together show the degired identitfy.
Since B(us, ux) = (F, us), we have by (2.2), (3.1) and Lemma 1 with p=u3
M * <O, (L+LYu) <KO(F, ua) <O[F |« ],
.-.hence uy is bounded in Lg norm, i.e.

|lwa| <C|F[. (3.5)
"I'bis estimate shows that the discrete problem (3.2) has a unique solution for any
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given F € (L,(Q2))* | ¢ 5
‘We shall prove a better stability estimate than (3. 5) To do th_ls we introduce
the following norm for the PlECGWiﬂE smooth function w,

||m||l——{nq},.gﬂ+m|1;@,,,us+<m,, Ml Ej ([ml, M,,[w,.])ds}

Lemma 2. - There am-ast poswwe ﬂomtwnts G and :ar.u mdepmde-mt 0 f k such that for
0< H’gﬂu ' |

E s

Kecafy

% ﬁwlﬁ”ﬁﬂ (w, v :MhL'D)—P G%Q B > ﬂL‘” LK)

where v 43 ﬂn.y precewise smooth function.
Proof. By Lemma 1 and (2.2), there existd some congtant ¢, such that

B(o, w)> 0] [0 <5, Modoo+ 3 [ ([0, Malo]) da}.
methe definition of B(- -) £ .3 | -
B(v, Ln) (Lo, Lm)a—l-—:!'—] ((M-—ﬁ)-a Loy

3 [ B (=), T

o ” 2 HEH’J;
Hence by applymg Schwarz’ meq'uaht}r, (2 5) and (8. 1) we ha.ve “
xhB(v, L) >xh|Loj*~ Lo<n, Mud,0—OphiLn, Lodn

] .Héz‘,mj (0], My[2])ds—Cu®h® 3 I _(In, In)ds

Kecs
a_GOo _ o j
> Inft = G2-o, 2= G 2[00, M0
— O™ %2R H% h HL'.'J nif{aﬁ:};
where constant C* only depends ox_iIOD.' S0

B(w, v+xhLv) =B(v, v) +xhB(v, Lv) |
i w0 2 0008
5 [2]*+<2, Mvpa0 .Séﬂ JE([w:[,M,,[w])ds

+ab] Lo[*~ 0"k 3 |Lofhon 1

Ec?,

~min (O )Iﬂwﬁﬂ O?#%?Hé | Liv|iZ.0m0s

which proves the lemma.by chopsing xo= %}_— and O=0".

§ 4. Rate of the Convergence.—

Let u € H*(Q) be the solution of the contmunus prnblem (2 1:1.)JII (2.1b). Then

i'b is e&s}r to see that
' B(u 'H;.)=(F- ‘!J:.) Vo € V;

Thus by (8.4) the error ea=u—uy satisfies equaiion
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-~ Bles, m)=0 Y&V T (4'1_)
Infroduce an apprnximamﬂn Ly of L as follows:
Lu - A:u;au + Aﬂhay+ Ash, |

| A,,,=A,,(yx) in K for KES, i=1, 2, 8,
. giis the y——mordmate of the centroid of K.

where

Then we have
BA:[ 3 + 3A.ﬂ 3.&43

oy’ oy dy
Since up+hlawn € Vs, by (4.1) we-have withm=u-—, for any 9, EV,
B(ea, ex+xhIner)=Blew, n) +#hB(en, Inm). |
Applying Lemma 2 with v=e, we. obtain R
xﬂlﬂ,lﬂ QB(.&;,, ent thﬂn) —I—O'x%ﬂﬂz ||L€;,{ 2. 0K)

_ ‘Q.B(Eh 'T'}) —I"H}bB(Eh, Lﬁ?}) +OHI?:EB (ﬂﬁ,, LFE,,,)
O h? > Le3ens (4. 3)

K € @y
We now estimgte each term on the right hand suia of (4. 2). ‘Firss, by Schwarz
inequality, {2.5) ﬂnd (3 1) we Rave for 5150 =~ U

B (es, 1) "'"KZ (Lﬂh, V})H..]___J. ((M ﬁ) 6‘15, T})ds

L-L,.+t'7"w L = 9,1

s e

o | EJ ((My— 31-) ('-"”ﬂ 5’*) ﬂ)ds .

2 Kea o B s _
<efh 3 [Lalbim - Haduat 3, j (T 2ol
| +Oal {h_lﬁr%i"q?ﬂ (E}"["BZ ""7 D:(ﬂﬂ}}
Similarly, for sg>0

B (e, Tar) = 3 (e L)+ o (M= B Tddls
b [ an-pce-, Lrjds.

K E &

<s {h 51 [ Easffank oo Medt 3 j (tely Ha LoD *
+Us| {hxz ||7? Hlm‘l‘hﬂ 2 “Lh??uhfﬂr}}

and for s3>0 r | ; |
}IﬂB (ﬂh; Ligh) e EE.@' hﬂ (LE;&, I: eﬁ)E—I—%_ hﬂj ((M B) ’5.&; Lrﬂﬁ,}ds
+é hﬂ 2 J ((Mk_ﬁk) (ﬂh fr.,) Lfﬂh)ds e
_ EEE".-. !

Ch

<er {3 Metias o Heda+ S j (el Bl
RO B el +4 3] Dafhenk
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Since the triangulations {.%»} are nondegenerate, the following inverse inequality

holds
> [nliaen<O-A™2 Z |nli.m for &V

HEE"A

Thus by using the triangle inequality and noting that v,—u, €V we have
h® 2 |en] fay < Oh® N |nlina + 0k 2 o -]
HEL, K <@

Ky
<O{&* 2 “ﬂ"ﬂﬂi(ﬂ')"}'hxz | oa—ta [y }
Kegh c 2

QU{hﬂﬁZﬁ (7l +Rlea]®}.

Similarly, since L’ (vs—us) and L(vy—us) are piecewise polypomials we have
Bt 2| L’ﬂnﬂi.(mﬂah‘ﬂé | L | 2oz + OB 2 (L (v —ta) | oo

<OW* S| | Fltan+O0R 3 mn—taluen

K e 82,
‘;O{hiﬁéﬁ "LF L:(ﬂﬂ'}“"’hﬁ;ﬁ i@h—unnL.(E)}
<O{h* % | L'l a0k 15 2 Iml%.x+Rlleal}

and

h EEZE H-Lﬂhﬁ.mmgahﬂ E [[L”?ﬂ%.{ﬂ}“‘ahgﬂg ||L(‘vh“un)ﬁ.{9m
QC"[hﬂ > 1 Iml|Zeom +h32 | L (vp—1un) ||i.m}
Hest)

<O{A° E L L)\ 2 om + P E “Lﬁn"mxr“hxz InlEa}-

Substituting these bounds into (4.2) yields
. alalP < (s1+x8a+Creg+0x* + O (sa) B) el +0{27* 2 [LEe S

3] [l 3] [lhon +4 3] Enlton
+ A? E | L0 | Za0oms} -

K E ),

So by suitably choosing s, 4=1, 2, 8, and » we obtain for & small enough
laal?<C{h 2 nftm+h 2 Inlbem+ 2 [9)ten
K&t EE&s K esh

+ 13 (nalbon+ I hen}- (4.8)

Tt is well known that the subspaces {V»} defined in section 2 has the following:
approximation properties: if u€ (H"™(Q))% r>>1, then

inf { 2 (ee— o4 L,{E}+h2||u—‘vn”ﬂ:{m) }EQOF&"HH | mrescay,

V¥V

inf { E (Ju—wal E.om+ A D (u— ) [1.0m)) }Eﬁahrh‘rﬂuﬂnmm

waEFPa Kcah

Therefore, by (4.3) we finally have the following result for the discontinuous finite-

element methed.
Theorem. The diserete problem (8.2) has a umique solution w, for any F&.

(L (2))?. And if the exact solution u € H'*(Q) (r>>1), then for small A
ju—wi+( 2 || L(u~—un) | F.cmr) !{Ohﬁfﬂ | &0y
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