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WAVE EQUATIONS BY FINITE
DIFFERENCE METHOD"
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(Institute of Applied Physics and Computational Mathematics, Beljing, Ching)

§ 1. Introduction

1. The nonlinear wave equations are often appeared in fhe physical, chemical,
mechanical, biologiocal, geometrical problems and others. For example, the Sino-

Gordon equation |,
) Usy — gy = SIN U, (1)

the nonlinear vibration equations

YUgp— Uy 1&3 == 0, (2)
Uy — Uy + U =0 (3)

and the equation
%ﬂ—“u«mg‘l"ﬂiﬂh%=0 (4)

belong to the number of the nonlinear wave equations. A lot of works contributed
to the study of the various problems of the nonlinear wave equations™ ™ and the
fairly wide systems of nonlinear wave equations™®™?%, such as the periodic
boundary problem, Cauchy problem, firs, second and other boundary problems. In
the expressions of the conditions of so—called the absorbing boundary problems for
the wave equation, there are the derivatives with Tespeot 1o the time variable and

space variable®™ ¥,
Lot us consider in the present work the system of nonlinear wave equations of

the following form

WUy~ Uz gra,d F(’M) =f(m1 t: W, Uy, 'u’t): (5)
which contains the above mentioned nonlinear wave equations as the simple
gpecial cases. Here u(w, t)=(us(w, ¥), -, un(®, 1)) is a m-dimensional vector

funection, F{u) is a soalar function of vector variable 4 G R™ and f(w, {, v, p, ¢) i8 a
m—~dimensional veotor funotion for the scalar variables «, ¢ and the veotor variables
w, p, ¢ER™ In the rectangular domain Qr={0<o<l, 0<i<T}, we take into
account of the boundary problem with the nonlinear mutual boundary conditions

of the form
u, (0, 1) =D (u,(0, 1), u:(1, 8), w(0, t), u(l, ), 1),
—a, (1, ) =Dy (1,0, 8), u.(l, 3, u(0, 1), u(l, 1), t)
" % Received June 11, 1984.

(6)
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and the initial conditions

u(z, 0) —p(2),
7
Hf(m: 0)=';6‘(m): ( ‘

where Doy, p1, Yo, %1, 1) and Dy(py, p1, %o, Us, £) are two m-dimensional veotor
functions of ¢€ [0, T'] and uy, ui, Py, P1ER™ and p(@) and Y(a) are two m—

dimensional vector functions of 2 € [0, 1].

We are going to construct the global generalized solution of the general
nonlinear mutual boundary problem ¢6) and (7) for the system (5) of nonlinear
wave equations by the finite difference method. The convergence of the solutions of
finite difference scheme is established and the limit is the solution of the problem
(6) and (7) for the system (B) of nonlinear wave equations.

By similar way we also consider the mixed problem with the boundary

conditions

'u‘#(ﬂ: t) =@ﬂ(u’m(0.& t): u(OJ t)r t)r
u(l, 1) =0

and the initial conditions (7) for the system (5) of nonlinear wave equations.

We adopt the similar notations and conventions used in [23—24].

2. Buppose that for the system (5), the general nonlinear mutual boundary
conditions (6) and the initial vector functions in (7), the following assumptions

are valid.
(I) The scalar non—negative convex function F(u)>0 of the m—dimensional

veotor variable w CR™ is twice continuously differentiable with respeot to u CR™.
(II) f(@, {, u, p, ¢) is a m—dimensional continuous in (@, , u, P, ) € Qr X R*™

veotor function, continuously differentiable with respect to variable z and vector

variables u, p, ¢ €R™. Further for any (2, {) €Qr and u, p, ¢ €R™, there are

J@ b, u, 0, 1% |fela, b, w, p, O | <A{F(w)+|u|>+]|p|*+]|g|*+1},
fulw, b, u, p, @) |P*<A{F (u) + |u|*+1}, (9)
fﬂ'(m! tr 'u’.! .p: Q) I: Ifﬂ(m: t: ﬂ’: P Qr) , Q‘A:

where A4 is a constant and for brevity |+| denotes any components of the
appropriate vector functions and any elements of the mentioned matrices.

(III) @o(po, p1, o, %1, t) and Di(p, D1, Uo, %, 1) aTe two m—dimensional
continuously differentiable vector functions of the variable +€[0, T] and the
(Do, Dy)
| 3(.@0: Pi)
of the 2m—dimensional vector funection (&,, @;) with respect to 2m-dimensional
veotor (po, p1) I8 positively definite, i.e., there is a positive number ¢>>0, such

that

(8)

veotor variables wug, uy, 2y, p1 ER™, The 2m X 2m Jacobi derivative mairix

(n S )= |a|? (10)

for any 2m~dimensional vector € R*”, Furthermore, thers are
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| @4(0, 0, o, s, )|, |&,(0, 0, uo, 41, ?)| < A{|wo | + |u2] +1};

| Bou, (D0, D3, Yo, U, 1) |5 | Pow (B0, Bay Yo, %, 1)1, | @14, D0, D1, Yo 1, D1 (11)
| B 14, (o, D1, Yo, U1, b) | < B(uo, 1) {|Po| + | 1] +1};

| Do, (Do, D1, o, U1, 1) |, | DP1s(Pos P1s %o, Y1, t) | <B(%o, w){|po|?+ 1| ?+1),

where A>0 is a constant, B(ug, u1)>>0 is a coninuous function of e, w1 €ER™.
(IV) The m~dimensional initial vector fanctions p{x) € 0*([0, 11) and (=) €
OMD( [0, 1]) satisfy the boundary conditions (6), i.e.,
b (0) =Do(¢'(0), @' (1), @(0), (1), 0,
— (1) =B1(¢' (), ¢’ (D), ¢(0), (1), 0).
3. Suppose that the rectangular domain Qr= (0<<a<], 0<<i<T} is divided into
small grids by the parallel lines g=a;(3=0, 1, -, J) and t=t*(n=0, 1, -+, ),
where @;=jh, {*=ndt and J h=1, NAt=T. Denote the m-dimensional discrete vecion
function defined on the grid points (; ) by o} (§=0,1, «-, J; n=0,1, -, N).
Let us construct the finite difference system

(12)

A+l S hised "+ 1
v i"fé""”i | A+ﬁf-z-g'”i_._+LgradF(w?+T)dT

_ Z‘,vn+a ,vr;+u___lvn+ﬂ-1
i +
= f(y 0o, Ty, 2O, M, (5)s

Gl B, wney, o ik L B eor, NF]

corresponding to the gyster (5) of nonlinear wave equations, where

v} = o)t +a’v)+ a''v} ™,

d’”}iﬂ _—_-b A_Fgfﬁm ..l_b" A_zr;+m . (13)

* ,vn+n‘. o {I’U"+1 e (1 _ ﬂ:) "
and O<a<l, aa+a +a’'=>b+b'=1. As 10 the ponlinear mutual boundary
conditions (6), we have the corresponding finite difference boundary conditions

41 -+
"EDL -"‘Uﬁ ;) A+’UE i ‘d.—wﬁ'—lﬂ 1118 n+o tn+ar-
At 0 h 2 ) y Uy Vi-1, )
(6)n
1 +
W}+ _'U:; — A+,u:|];+-:: ﬂ_@f} = ,Uﬂ+t= nigq gnta
dt S ¥ £ § h 3 h s Y1 Vr--1s s

where n=1, 2, .-, N—1. For the nitial conditions (7), the corresponding finite
difference conditions are of the form

q}?=‘;p§! j——-—O, 11 gt J: i
1 d ()
*1?1=¢35+Ailbh .?=1.! 21 "t d —1
and v} and 2} are the unique solutions of the system
s % a
mﬂd;ﬂo = @, ( ﬁ';:J“ y A}:,J " {Pi"i‘ﬂdti‘bi, l}'?.r-i-l—ﬂﬂfrlp‘r_i, ﬂiﬂﬁ), )
(7” B

e * 7
%df" = &y (Afn : A"}:}J , p1tadify, @yatadtly_, Mt)’

where acdt<h and g;=@(@;), Py=1p(2;) (j=0,1, -, J).
In fact from (7'')n, we have



No. 2 THE GENERAL NONLINEAR MUTUAL BOUNDARY PROBLEMS... 137

(ﬁﬁ;%: i A-;fﬁ' : (W}‘;:;JJ’ A;:J#)
L[4, 05, 45 s oy, L)
{ (A}.a 7 OT, Afg -7, A}awf? )]dr_(ﬁfﬁ : @3)___(4’.1}wa , ﬂ)

1 0lo 02
QE{IQDI + | D7(2},

where the index “4” means &7 = @(-r ‘d}fg,r A;f?, V%, ¥5_4, mﬁt)(O*Qr‘\Il) and
similarly for the others. This implices the existence of the solution »§ and 2} for
the system (7"'), by means of ordinary approach of fixed point technique.

Suppose that »5, #1 and v}, ! are two solutions of the gystem (7'')y. By simple
verification, we get

1 LT, | i 2 L | 3 O
Yo— Yo Uo— Yy Vi— Uy
e J’ (%, + @3, dr,

At 6 A h
ol —7l 17 pl—7d R S |
2 Jdt e Jn(@1”° "h -+ 2%, Jh r)d""'

Thus there is
ag At

h

| 25— 32+ 03—} |2 {19 =3[ "+ |03~} |},

- oo At

Hence v§=2}, ol=172! ag 7 <1,

§ 2. Solutions of Difference Scheme

4. Now we turn to consider the existence of the solutions of the finite difference
gystem (B)y, (6)y, (7)n and (7"),.

We see that the finite difference scheme ig explicit as a=0. So v7*1 ( j=0,1, .-
J) can be obtained by direct caleulation from the finite difference system (b), and
(6)n, where o} and 271 ( j=0, 1, ---, J) are regarded as known vectors.

When «>>0, the finite difference scheme (B)n, (B)n, (7)y and (7'), is implicit.
So the system (5), and (6), for the unknown vectors 27*! (§=0,1, «-, J) ig a
nonlinear system with given vectors vi and v} (§=0, 1, .-, J).

In order to prove the existence of solution it (§j=0, 1, ---, J) for the

nonlinear system (5), and (6)n, it is sufficient to obtain the uniform bound of
27 (j=0, 1, ««+, J) for the nonlinear gystem

P+l 21:3 g Bl A d+f1—~;-§+“ ;q,J‘i grad 7 (+7*% )dr
41 h 0
_ A ndo nt+a o nda-—1
"'I"‘}wf(mj: tn+a’ .1,;1-, ‘d'!';: . _Q.'.J.f ﬁ:! ); (5)1

7=1,2, «e. J—1
and
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J—=1p

,vnri-i__,un n+x 9 n+o
{} ) e }\;@0 -’-14-1"1} Vr 1}111:+m, ".[J"'l'“ tn+a- ,

At h ho 7
n+1 n n4ot ndo (6)1
T Uy _"q}i = ;\“@ ( ‘d+'vﬂ A—’UJ ,Un+c:r. ,vn+ﬂ= tn-h::)

At 1 h 3 h P 1 } J—12

with respect to the parameter 0<i<<1l, where v} and vt (j=0,1, -, J Y} are given

vectors and 4t, h aTe given posiiive constants.

n+l
V4

Making the scalar product of the m—-dimengional vectoT At_ Vi pAt and the

m—~dimengional vector equation (5), and summing up the resulting relations for
j=1, 2, «+, J =1, we obtain

J=1 nt+l __ a0 n+l __ Q0 n=1 J—1 nd+l__ o0 4o
2 _'I_J" Vi Uy 2‘1}3"]“'”} h.dt'_l”'}uz ( V; Yy A,I.A_.:?;_ )hdt

=1 At : 4t* =1 At A h
VIS0 pad (o) deYhdim 5 (S s £1 hat 14
1.3 (g [, gz (o) de Yt =1 3 ( ) VR
At nto _ anto—1
where f7t*=f (m,, e oy Ami i A:j - ) By simple derivation, there are
J=1 ntl 1 +1 n n—1 =1 n+1 n |2
Uy — Wy _Q)’; '_.2'1134'_‘13_ _1_ | vy '—'E'LI
E = ar At )h‘ﬁ?ﬂ Ei At 2
LG v 15
2 4= At B, (15)
J=1 g gn¥l_gn (1 - J-1 F1
S (A ,Lgmd F(uy)de Yhdt= 2 F (o) h— S F ()b
f=1 e =E

Tor the second sum of the equality (14), we have
"‘21 ( it — 0] , A A_v}H” )hﬁlts gl "21( A .03t A7 A,.;:J}‘_)h
=0

$=1 At h? h h
it —af  dyvet” vt —a; 4_97*
o Tk )4t (0 4. (16)

Here, we see that

Fid ﬂ_[..'ﬂ}‘"'“ A+q}:}+1 _ 4.5 ) ot nilll2 1—3&—}-3&5 i
igﬂ ( h 2 ) h h< 9 “ OV UE 4 Ilafvhuz.
And also we see that
_(‘”ﬁﬂ"“’ﬁ A5 ) . (1?3”--1:'}_ A_u5” )
A’ h | A’ A

n- -t
B et

%%{léﬂ(oj 0: q}1I+ﬂ-’ qﬂ}iﬂi:l tn+a-) 1ﬂ+ 1@1(01 01 ‘UF{-I-G;'UT-E?; tn.hm) lﬂ}

<0 { |1t ) 2+ |05 %) A0 <AC@{| v P+ |03t: 17} +ACs
%2}\.01&“{ max l‘!J?-FiI}ﬂ-l‘?LOa

§=1,2, =1

J—1
<h -‘Sinamgﬂn% + A0 § |71+ 2h+A03
41 n |

-@.iuawg“ni-;-wmtﬂ*ﬁ [ My WKV, 2
8 =1 4t | !
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where O’s are constants depending on known values as ¢} and 277" (j=0, 1, «--, J)
and others. Thus (16) becomes

-_— 21 ( H;;m? . d+d};fn+u )hﬂt%%(]_—%’_) “ 5,1,34-1“%

T MOl S | 2

J=1

ﬂ-+1 ‘U?

2
M| 4RO

As to the last term of (14), we have

7 1

of — n+1 n
Vy —— Yy i x _
E( %, 11 )hﬁt-@ﬁt(g

At

LAY (S )

Here

o —
St 171 <0s | ZF Db+ 3 o3|

=1

30" 2+ 23 | =

ﬂ-+1 ‘IJ_;

At
where O; I8 a constant and Uy depends on o} and 25~ (j==0, 1, --«, J). In fact since
F(u) is convex, then F (v}**)<aF (vj*)+(1—a)F (2}7). Hence

=1 n+1 — "
(B, prrehdi<aiOs { 3P )b |05 13

h}-{-c',;.,

-1

+ 2

§=1

T}F-H

At

Combining the above obtained esfimations, (14) can be weplaced by the
following inequality:

< | v =) [* oA +1]2 < nl
E T -’H‘T"ﬁ"ﬁ ||2+22.EF(’”1 h

} - 41043,

J—1 ‘l?"+1—"v" H |
<At0x 2 T
Tl

+ A0, jE F (v ) h+ 405
=]

h4AdtO0yg S5+ (|3

or

n |3

n+1 ‘!?1

Vi

J—1

(1—4tCy5) 2

hl?u(“

o — 4t om) | 803*1|2

FA(2— 4i04,) g F (i) he< A0

When 4 is sufficiently small, there is
J—1 m?q—l_q}n 2
=] At

where Uj4 is independent of parameter 0<<A<1 and depends on the known vectors

v}, v} (§=0, 1, +--, J) and the positive constants 4, 4¢ and «. This implices

|| <047, §=1, 2, »-+, J—1,
where U4y is independent of O=<CA<1.
From (6),, we get
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___( R A M ) . ( A *v;’%“—w})
|

Y B! 4
n+1 n+1
i ____( d+’;::| y ?L@ﬁ-liﬂ) ( A—";;J ; R@g+a)

| 2

a 1 i) )
Qﬁﬂ @, ((1—.::) ‘5';:’“ ] —&) 4 , VI, e, t"*“);

4:{]' h |

1 n 2
i \ B, ((1-0) 2%, (1—a) 45, g, opy, ) }«wm.

i

On the other words, we have
(03 =¥, ot ol + (3 —ell], o —a7) <Cushdt.

Hence

|,.v:::.+1|2+ IW}+1|2’QO:[B,
where Oi, is a constant, independent of 0<A<(1l and dependent on 27, )i
(=0, 1, +--, J), h, 4t and «.

Hence this completes the proof of the uniform boundedness of all possible
solutions »71*! (§=0, 1, +--, J) for the nonlinear system (), and (6), with respect
t0 A. By the usual argument of fixed point technique, we obtain the existence of the
solution v}*" for (5), and (6)..

Lemma 1. Suppose that the conditions (1), (II), (I1I) and (1V) are satisfied
and suppose that aodt-<<h and At is sufficiently small. The solution o} (=0, 1, ---, J;
n=0, 1, ---, N) of the finite difference nonlinear system (B)n, (B)n, (7D and (7"')y
corresponding to the nonlinesr mutual boundary problem (6) and (T) for the system
(5) of nonlinear wave equations ewists for any 0<<e<l.

§ 3. A Priori Estimations

5. In order to establish the convergence to limit of the finite difference scheme
mentioned above, we want to get a series of estimates of the finite difference solution
ot (§=0, 1, «+, J;n=0,1, -, N) for the finite difference nonlinear system (B)y,
(8)4, (T")s and (7"), corresponding to the ordinary boundary problem (6) and (7)

for the system (5) of the nonlinear wave equations.

n+l 0
Taking the scalar product of the m~dimensional vector — T Y% hdt with the

m—dimensional vector equation (5), and summing ap the resulting relations for
j=1, 2, +», J—1, we have

g—1 o 7 n+1 n n—1 - J—1 n+1 n n-4&
vy — Wy Yy —21.1_1—]"111 ) Yy _"""UL d+ﬁ|..’ﬂj )
12-]1 ( at At2 hdt E A’ h2 hdat

¥l
Yy

+35( it — ] f grad F(u}*7)dv Jhdt— St Uippehd, (A7)
f=1 At *Jo * =1 At s !

where n=1, 2, ---, N —1. Here we see that (16) and (16) are valid.

Suppose that —é—%mg 1. Then the first pazrt of the right side of (16) becomes
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( Aot Aoptt A} )h

3=0 ’ h h
=1 n+l n
-=a:2 gar. zm)g(_"_ff_,%&)h
- (1—a) 3} | S5 h gl our i3 — ],

(18)

And for the remaining part of the mght hand side of (16), we can derive as follows:

" ( ‘11}11.4-1 —*1?3 A+,vn+u ( 'u}“—*v} A ,Uﬂ:-!-n' )
a4 7 b a4 7k

{Idjﬂ (0 0 n+¢:r. ‘ﬂ}tﬁ:{', tﬂ-l'm) |2+ Id‘ii(o 0 ‘UHH‘, ,vgti’ tﬂ+m) Iﬂ}

'Qoi{l‘vfi'mlﬂ‘l‘mﬂﬂﬂ} +01€201( max |¥f**|)?+4-C,

=1,2,rJ=1
<Oy 805+ )|3 + O, 121 |7+ [3h+O4,

‘where U, and U, are constants independent of 2 and Af. Here
[dv3**|2< 20| 3937 2+ 2(1 —a)?| B3 |2,

J=1

o Bl F o iataa-ar 3wl
and

k

ay, — 1 |2

J—1 J—1 v—1 =

S [*h<2 oyl hrarn 3

§=1 f=1 =] k=l
Hencs we have

( QJE+1—QJH .ﬁl+1}"+n )

]
i

( pitl—at  A_ptte )

4 ' h a4’k
; ; J=1 | el ok |2
<O dv5*? | 3+ Ugldvi |5 4 Ogt™t* 217 jdt Ll hAt
je1 B0

J—1
-+ 03 521 |@,Iﬂh+03.

For the right part of (17), from the condition (II), there is

J=1 ,u}t+1__,v}1 _— oF— 1| n+1 —_ J- Y
,gl(_ rra )}"QEEJ At 2 |f’ 'S
g 1 ?21 i ﬂ+1 Eh-—]—(ll E _ﬂ?+“—W?+“_1 -ﬂh
] j=1 4t
J—1 ’ .ﬁ].;.‘!l?'l-ﬂ J—1 ﬁ_ ;:+a: ' J—1 P
+Oéj1l A h+04521 7 | h+042|1? 'h
=1 — o |
+0¢j=_21 AR CQ;} |22 R O‘EF(Q}?H)}" o

Since F(u) is convex, then
71 J—1 7—1
,ZE Fu"h<a ;Z F(7™Mh+(1—a) iz F{v})h.
- -] ]

By the similar way mentioned above, we have

(19)
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o1 n+1 dg—1 | n+1 #—1 |4
V5=V pnto | Ug Uy vy
S (T sy F gt e B | )
J—1 J—1
(|50 [3 + 03] 3)4‘05( S P (a3 P () h)
g—1 n iIL.,Z"¢=+1 ‘1? |
Ot I | ! hdt—!—Oﬁ,
Y1 k=0 At
n=1, 2, -», N—1, (20)

where Oy i3 a consiant independent of 47 and A.
By means of the inequalities (15), (16), (18), (19) and (20), (17) can be

replaced by the following inequality'

Jg—1 ,Un-+1
(1—;:1::03){; =2 +1|] —l—ZF(m “)h}
=1
J-1 Jg—1
i (1+4toﬁ){; , > F(fu,)h}

J—=1 n ,vi'ﬁ-l- "H

<Cutt 3 3 | Mt hA#—I—OEdt(?_,:‘L |¢;§|%)+cﬂaz. (21)

1l &= ATE
Let us denote w i

W= 33 | L= b+ |3wi13 + 2 F (o), (22)

where n=1, 2, .-, N . Then (21) becomes
r1
Wn+1—andtOﬂ(W.+1+Wg)“I".ﬁith—'—Oﬁﬂt EIW;;ﬂt, 'n==1, 2, "ty N"""j..
Kan

J—1

where U=, (1—|— 2 |@;|*h ). Hence we have

Wn+i _W:[‘QOB 2 (W]H.i +Wn)dt +ﬂﬁtGT +Oﬂ 2 E Wyp{'fca

I=2 k=1

T'hig follows that

n+1

War1<<(20s+T) E Wedt+{(O0:T+W34).

It can be verified from this recurring relation, thaf
W< (C:T+W1) (1 —2Cedt—T dt) ™.
Therefore we get the following lemma.
Lemma 2. Suppose that the conditions (1), (II), (III) and (IV) are fulfilled

and suppose that aocAi<h, l%aéél and At is sufficiently small. For the m—dimensional

discrete vector solution 2} (j=0, 1, «-, J; n=0, 1, -, N) of the nonlinear finite
difference system (B)y, (6)y, ('7”')1jl and (7" )h, there are estimates

max A h—l— max |82 + max DI FONDA<K,;, (23)

n=1,2,-,N jm] .At n=0,1,,N n=0,1,-, N j=1

where K, i3 a constant independent of At and h.
6. Lemma 3. Under the conditions of Lemma 2, there is the estimate

max |7} <<Kj, (24)

H-=ﬂ’1. "‘“’N
¥=0,1,,J

where K is a constant independent of At and h.
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e

Proof. From the first estimate of (24) and from

=1 n

E l*vflﬂh*€22 |@s| *h+-21" 23 2,

jma] E=1

1-.--1

m’ _I hz:li

there is immediately

Jd—1
max 2 |v7|2h<Chs,

n=0,1, N Jm=l
where (5 is a constant. From the Second egtimate of (24), we have

P
h

Then by use of the interpolation formula for the discrete functions™® 24, we get

max
n=0,1,,% =1

hQKi

max 23] =<C.

Since

=
=F
N
=
b ¥
1
i

61}3“2\/?1
CAR U Y [ PR

then the estimate (24) is valid for any =0, 1, «-+, J and =0, 1, +-, N. The lemma
is proved.

7. Again we make the scalar product of the m-—dimensional vector
n+u n+u—1
4.4 (7 N - with the m~dimensional vector equation (5), and sum up the

resulting relations for j=0, 1, »--, J—1. Then we obtain the equality

J—1 Ll,;..d (,”n +ax a—l) "UHL'I':[ — 9 + ‘!}’;_1
= -, M
_ E ( A_I_A (,vn+n: w}l-]-ﬂ-*j.) ‘d+A_®?+u

=1 At > Al

J—1 A.;.ﬂ_("ﬂ;-l-u—"!??-l_ﬂ_l) j’l i
+§1( i N egrad F )dfs)hdt

T

j=1,2, -, J—1;n=1,2, ---, N—1. (25)
For the first summation of (25), we have

)hdﬁ

2 (ﬁl.pﬁ[ (,un+ﬂ -n'.—l) ,vn+1 2W?+W?_1)hdt

j=1 At ! At?
_ d+(,vn+u u—-l) 4. (’U"’+1 f 21}?_[_@3:2
fz f hdt Y s
(A+(wn+u n+ﬂ—1) "!Jﬂ+1-"2’!}'n—|""ﬂﬂ I)At
hdat d Vit
.d ( n+a n+t=-1) ‘1!?}+1 _— 2’1??"}’ '11:}"1
+( hAt ? At )At’
w=1, 2, o, N—1, (26)

"Here since %«éaél_ there is
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d+(@?+ﬂ—ft}“+ﬂ—1) d+(wn+1_2ﬂ}1+w1-—1))
E ( Y A— Hd hdi
o+l 7 )] __ZL\ -t:l;.—-*trﬁ"i) .

[ i | " (27

For the remaining part, we have
gnel_ ( Ay (W52 —5t1)  ptt— 20843t )
hAt ’ At
(A (q}“"'“ n+t1—1) ‘1?}-'-1 2‘”;‘[""‘1?"_1 )
? fal
( J.'j.;.. (,vn-i-n: n+n:-—1) @u+a @H+a—-1 )
At
n+n: n+r:=-1 @n+a ¢u+n-—1

( ) At 1 ) (28)

Here we see that
@f{;+ﬂ_¢r&+u—1 (J':I. ) V. (,vn+n_,un+a—1) ('[1 4 (,un+a__,vn+n-—1)
E » &7 + A\ Yo 0 | T ) J =
4t o o Rt s i T
1 o n+o—1
T VT — U
(.[ 0 O"'dr) 4t
M, 1 n+u__ n+-.fx——1 1
(R T (P
and _Eﬁri+u_dj§+a—i=(]1 @r )A.;.(‘Hﬁ"ﬂ Jt:lfllgn'-!-im:—dl) (J & )ﬁl (,vn+n n+u—1)_-
At e Rt i @ hd4t

n+a n+o—1
&7 ) PITE—?
+(.[ e @ At

x—1
+ (] 2 b ) P (J 2, dr)

where the abbreviations are as

A ,.U:-':-+ﬂ‘r d wﬂ"‘ﬂr'—l d_ JIHi"is+::n'. ,vn+r:l--1
TE@ 4= () } vy -+ *¥0 o b s e LT
@ 0 (7 }3 (1 T) }E » T h (1 T) h 3

T,Dﬂ.+n_|_ (1 —T)"Uil-"a 1, T-"‘U}f{ﬁ‘ (’1 ‘—T') ,un+ﬂ-— tﬂ+u+-’r—1)

and others. Since the 2m X 2m Jacobi derivative matrix 0(Do, D) _ ( Pog. Dopy >of

a(pﬂl Pi) @11': ﬂsiﬂ'l
2m~dimensional vector functions @, o, p1, e, u, t) and Dy(po, p1, o, %y, t) with

respect to 2m-dimensional vector variable (p,, py) is positively definite for £ € [0, 7]
and py, p1, Ug, u3 €ER™, then we have

.ﬂ (‘1’“-"# rH-n:-l)

Zrtieg ﬂ'{ A+("”’{‘l+u ‘UE_I-H—I) |B

4 hat

1 { (j‘i ) e ,Hn+a—~1 ﬂ wnia .y ,Uniu—l 2

o >z d‘l‘.’ 1 (J of J J
il c i Lo At |

| i ,vg+n'. — ,Uqﬁx—l |r 2 ( J‘ ’UJ_:[ s "Uﬁiﬂfﬁl | 3
+|(], wﬁf) i +|(J,om ) G|

| 1
—l—'J’ @E,d'r
0

}.
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s T T ~Cxalilinilh

For the terms on the right part of above inequality, we can derive for example as

follows:
1 ﬂ.+n‘. n+x—1 '3
d -
‘(L o T) x:!ﬁ !
- 1w e 1, R T4 g1
-@O‘ig( A, 0% —I— A V% ‘ A_v% lx.‘!_'v _[_1)
h h
.( fﬂ'il+1 "U? 2 : ‘1?’1‘“-’11'?{_1 iﬂ)
At T
<Oy (| Bo3r*)% 4+ || dvp*F= 1|2 +1)
-( max v~ | 4+ max (LY “q’u_i !E)
§=1,2, o pF—1 At Je=1,2, o f =1
<O (|| 003+ || 823 **| s+ [ Sva+e—|a] 8 T“_I"ﬂ‘*‘l)
1
u+1 R |3 1 ) n+l__ . m |9
: %~ Va ““’h) % \’” T”J h
{(E At ’ :=1
1
7 —1 ” n—1 |2 3 'r.t —1 J—1 | H—1 | 2
% — ) (ruk v} ) ] — ] }
+(§1 M\ )&l |
< oﬂ{( 5303+ o+ [ 870321, + 1)
r
A w’ﬁ”—wh [l ol — fng* _) )}
( 3( At + 0 2+1
and
: | . AI_,.‘IJH"'“ i ﬁ+‘ﬂﬁ+“"1 4 : I ﬂ_q&ﬁ""”' 4 !ﬂ_?}?ﬁ'“'l [4 }
L‘” { i R | - hl+1

-@OH{IS% +u"2+”52 n+u-—1"§+1}.
Finally we get the estimate

i 1'_'1.;.. (“Uﬂhl.u n+n:--1)
LS { hdt

__I_,O'iﬁ(uﬁﬂ +t:l:”2+ uaﬂ n+a—1 "2)

,ug-!-l 'Uk 2 : "Uh w:rh:-l
+0u([8( )|+ |a( )
As 10 the second term of (28), it is easy 10 see 'bha,t

A.4 (yrte n+op—1 AL A e 1 oy 1 | g
J_1< + (’1‘ hgﬁt — U ) . i h:’ )hﬂﬁ%—ﬂﬁ”wf ”% _._2_“591.vh+ 1”3. (30)

2
The third term of (25) can beexpressed as
J—:l. ! " s a=1
j ( 4‘.’1+A_(W_f ’Hj+ ) j gr&d F(@H+T) d"ﬂ')}bﬁt
]

A (,u:n+a n:+n:—1)
+H

}

)+015 (29)

24t
J—1 nta ﬂ- a—1 n+%
-3 (A [ [} grad® B (upn) A4 d dg Yt

ndo _  dda—1
-—( ”(‘v“; o ‘v'"+ ),fgl'ad F(@E*’)cﬂr)ﬁt

ﬂ_(qﬂ."'“ "UJ-H‘-J) n+v
+( = j grad F(v;*")dv )dt, (31)
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. T

where
ViiE=EriiiHE(1— )0t + (A — & i + (1 —£) (1 —w)].
The last two terms of the above equality can be dominated by the expression

agdt A+ (’IJ""'“ n+n—1) 2 A (Ql?j+a L ,uf.}+a 2} ;
_a_ﬂ T Rt Pl (32)

where U4 i8 a congtant independent of 4¢ and A. And for the first texm of the right
part of the a.bove equality, we have

Ll T 0 j grad® P (v317) A8 ds dg s
1-1 hAt h
R — fv:,, vh— 3" )'2)
th(}ﬂ( 5( T ; + 3 T ;
+ 48047 (1805 |2+ H dv3|3). (33)
Now it remains only to estimate the right term of (26). Thus we have
J—1 1.1.|.L"| ( nfm ,vf;+a-—1) | i
,2.1( T , F7 s
oo o —2 A.;.(‘Un-l'ﬂ n+cr.—-1) A+fn+u )
2 ( Tt -
& Zj.;.("-!]“"-ﬂ ‘!.'-'ﬁ-l'a 1) st ﬁ[ (’@nﬁ: w-}+u—~1) Gl
( i , )i ( 7t » 31 )48 (54)

The sum of the last two terms can be dominated by the following expression
c At { _A+ (q?15+a - wrﬁ+a—-1) ot (,uﬂ-i-ﬂ n+u-—-1 }
8

hAt hAt
2t ok n4o ™
22 (L Fre P L (35)
Here from the condition (I1I), we have
n o nto ﬂ+ﬂ H+ﬂl » 2
| F1+e|2+ | fod ﬂ“€013ﬂ A5 I° . AR Ml O - 2 [ 495 !
' h AR
o Rl W el 5 2}
= At l At s
g omta=1 |12
-@4013{"3 wmH s+ {w" b } O1s
4t 0
n=—]
<Oso{|8ronsel + [5( )"+ |a( =W "] 4 g,
Again we have
ﬂ+(1!"+a w}a+a—l) A+fﬂ+u>
211( hii -
n.+1 3 n—1 [
-@ltﬂ.a "’*)f‘ ]a{"”* s ) }+At2 “’+i1+ (36)
[ﬂ fur] !

‘Thus from the condition (II) satisfying by the m-dimensional vector function
f(:l‘», t, U, P, Q), wo have
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E , d+ iﬂﬂ:

d J—2 1 n+a_ anta—1 2
S (L f;'dfr)’-“f(’”f L )} h

=11 & =1 | hAt
iy i | . df_@}ﬂ-ﬂ ; A+A_,v}l+l:l 9
+3 (L 5 d«r)(b 4 Ley ) 2
J—9 L 4,00 |, A, A0 }9
~+ = (jﬂ fu d‘?’)(ﬂ:ﬁ 7 4/ 7 € h | h
J—2 1 Td,'
+.1=-1 .[u Jz T‘h |
g a2 o |isf PhTT— 25 [ ” w’::-w}t“l) ”}
<O{[8p<l5+ 5(B =) " 4 [5( AN L0, (87)

where the index “t’” means that for example

T n4o " i E i ] z ¥
f .Ef(mﬁﬂ ezt (1 —v)v), T w}i (1 —7) zf 5

m‘l}fi-tlﬁ__m?;i?—l } (1_.1*) ‘H?'I'a"—‘i!?"-a_i)
At At

T

and so forth.
Substituting the results obtained in (26)-—(387) into (25), we obtain the final

inequality

(]?_‘_Atgﬂi)wn-]-ig (1-|-£|t031) W,.—l—ﬁtﬂﬂ, 'ﬂl=1, 2’ "', N"‘l, (38)
where
W= |8( @E“@ﬂ_l) 2 + || 5%pte-t|2, n=1,2, -, N
" At 5 A 2 3 “3 s .
This implices immediately
Wo=(TCs+W1) (1—2044)", n=2,8, -, N, (39)
where
4
W 1= | 8ipa][3 -+ | 8° (@r+adiyn) [3<2| aﬂ¢h||%+(1+—ﬂ.—a) |8tfn |2 (40)

for ﬂc;ft <(1. Hence the right part of (39) is bounded with respect 0o n=1, 2, ---, N

for sufficiently small At.

"Thus we obtain the following lemma.

Lemma 4. Under the conditions of Lemma 2, for the solution v} (j=0, 1, « J;
n=0, 1, «--, N) of the nonlinear finite difference system (B)n, (B)n, (7)n and (7'')n,
there are the estimates

L S Y 3, n+a 4
max & ; lﬂ—l— max 1|]5‘v?, o K g, (41)

“'—_011:“':”_1 ‘d n=ﬂr1l"'l-N'_

where K g ©8 @ constani independent of h and Ai.
8. Lemma b. Under the condittons of Lemma 2, for v} (=0, 1, +-, J; n=0,

1, «--, N), there are estimates
27—t
4t

= K-h (42)

max

=01,
n=1,2, N n=0,1,-,

1
1
where K, is a constant M&p&ndﬂnt'ﬂf h and At.
Proof. From (23), we have
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max |87 <Ky,

H=D|1| "".I'!T‘_].

Then from (41), it follows

max | 39}+*] < OCags
n=0,1,,N—-1

From (23) and (41), we also gei

n—1
max Vi Yy < Jag.
1=1,2, =1 A3
=19
ﬂ—1 n__ an—1
And the boundedness of | . ‘ WY | follows directly from the

discrete boundary conditions (6) ». This completes the proof of the lemma.
Lemma 8. Under the conditions of Lemma 2, there is estimatls
n+l _ n—1
max [H BTN | <K, (43)

R=1,2,-,N—1 At*

where K5 ts a constant independent of h and 4.
Proof. From the system (B)n, we see that

J—1

ﬂl+1 +,vn—1
A 2

From the boundary conditions (6),, it can be verified that

h@ 024|

max
R=1,2,w, N=~1 Fml

n+1 ) n-1 |2
2'!?[] +‘T".|) h ﬂ]ld

n+1 2 "l." n—1 ‘dtﬂ
‘;;; L4 h are bounded. In fact for example,
i+l — 2%+t | ﬂh= [Em_@ﬁm—l ﬂh
ﬁlﬁﬂ At
nto n+m—1 2 n+u—1
<O, |-A2(¥ . ) |* p 0y | A= e * Ok

The right part of the above inequality is bounded. This completes the proof of the
lemma.

§ 4. Existence of Solution

9. On the base of the estimates of the m—dimensional discrete vector solution
ot (§=0,1, <, J; n=0,1, ---, N) of the nonlinear finite difference system (D)4,
(6)n, (TDn and (7")p corresponding to the general monlinear mutual boundary
problem (6) and (7) for the system (5) of nonlinear wave equations, obtained in
the Lemmas 2—6 of the previous section, we obtain the following estimation
relations with the help of the interpolation formulag for the diserete functiong™ 24,

Lemma 7. Suppose that the conditions (1), (II), (1I1) and (1V) are satesfied and

“"1‘45 <1 and 4t is sufficiently small. Then for the discrete solution v}

(§=0, 1, ¢»«, J; n=0,1, «--, N) of the nonlinear sysiem (B)a, B)n, (T)n and (7" )p,
there are the estimation relations:
'IJ?I QKE, j=0? 1.: e J: 'n’=0: 1.! iy N; (44)

1
2

suppose that

.08 SKA%, §=0,1, -, J—1; a=m0, 1, s, N; | (45)
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| de2i ™| <K b, j=0,1, -, J -1 n=0,1, .-, N=1; (46)
3

Iﬁ]_,.,r_‘]_’v’;'l'ﬂl < Kgh?, f=il, 2, ek —l; =0, 1, o N=1; (47)

|03t — o | <K 4, 4=0,1, «, J;n=0,1, -, N—1; (48)

1
A-!-w}l-l-l"'d-lﬂq}}ll Q-K.E‘dthf: j=0: 1, vy J—l: n=0, 1: "t N—1; (49)

= 20)+ 01| < KoltE, =0, 1, -, J3 mm=l, 2, oo, N—1, (50)
where K's are constants independent of h and A4t. |

10. For the purpose of the limiting process 71— 0 and 4t—0, we make some
preparations as followse

For the m—dimensgional diserete vector function #7 (=0, 1, -+, J; n=0,1, -,
N), we construct a set of m—dimengional piecewise constant vector functions as

s n41
follows: Let w4 (, t) =27 and v,,(®, ) =£+—%L—- in @' ={h<<e<<(j+1)A;

fn+1

ndt<t<<(n-4-1)4t} for j=0,1, ---, J—1; n=0,1, ---, N —1. Let Ty(2,1) = d*i;:”—-
n+1

in @ for j=1, 2, -, J—=1: =0, 1, «=s, N—1 and Tpa (o, 1) =-2:4=%" 1, ga+1 for

3
n=0,1, -, N—1. Again let bus(a, ) =21~ in @j** for j=0, :}f sms ool e,
1, =, N—1.Let Bpa(z, 1) = ’*‘-"f”l“i"g*“’”?“l in QU for §=0,1, -, J—Tin=1,2, «-,
N—1 and F4u(e, t) = w?—iﬁ—l—w? = *v?—(wz;lfdtlp;) in @} for =0, 1, -, J—1.
Similarly we define %4 (@, t) = A+(w%;1t-— %) in ¢t for j=0,1,-,J —1; u=0,1,.-,

N —1. Also we define v}y (2, t) =" in @Q7* for j=0, 1, -, J~1: 2=0, 1, +--, N —1
then 25,(®, ) =awv (2, ) +(1—a) v (2, t—41). Similarly we have vf,(e, i),
Vi, 1), Toy(2, t) and 0%, (2, t).

From the results in ILemmas 2—6, we have the estimation relations for the
above constructed vector functions:

max |vag(, 2) |si0,0+max|vasn(s, 1) | Lo, +max|Bra (=, ) | Loc0.n
Ot 1<t<T Ot

+m33”’5m:('; £) Hbsfﬂri}_}_mﬂx”%ﬁdf(': t) HL.m.n'P'mﬂKWm(', t) "Lt(DJJ'goﬂﬂ: (61)
O<iaT ] O<icT Ot

where Uy, is a constant independent of 4 and 4.

From the estimations (44), (45) and (48), there exists a m—dimensional vector
fanction u(e, ) defined in the rectangular domain @r and we can select a sequence
of m~dimensional vector functions {w 4, (2, t)} (¢=1, 2, :--) from the set of
m—dimensional vector functions {vw4(®, t)}, such that {4 (2, t)} converges

uniformly to x(«, t) in @r ag A;—>0 and 4¢ —0, where Sk <&<1l is preserved

h
for any ¢. From (44) and (48), we have |
|| <Kg, §=0,1,,J;n=0,1, ¢, N—1 (44),
and
|oite— ot <K df, §=0,1, -, J—1; n=1, 2, --., N—1, (48),

‘Then from (44), (46) - and (48),, we know that the sequence {of s (o, £)} is also
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uniformly convergent to w*(z, ) =u(x, t) in Qr as hy—> 0 and 47— 0.
Here (49) can be rewritien as

1.
Id+q’?+u_‘ﬁ+w}l+ﬂ_1| <K3dih?, j'":U: 1, 4, J=—1; m=1, 2, =, N—1, (4‘9)1:-
and

3
| ppte— Qe g gta | S KpAt?, =0, 1, =, J; n=2,38, -, N-1. (B0),

Then we can select from {k;, 4i.} a subsequence still denoted by {A, 4%}, such that
from (46), (47) and (49),, the subsequence {v%4,(z, t)} converges uniformly to
w*(z, t) in Qp, from (48), (49) and (B0), the subsequence {v;..,(®, t)} converges
uniformly to u(w, {) in Qp and from (48),, (49), and (50),, the subsequence
{v% 4, (@, t)} converges uniformly to u*(x, ¢) in @r. Similarly we can obtain that the
subsequences {7%,4, (2, 1)}, {%%.4,(2, 1)} and{% 4, (2, )} are weakly convergent to the
m~dimensional vector functions u*(e, t), @ (e, 1) and #(z, t) regpectively in L,(0, T';
L,(0, ) for any 2<{p< oo, Since the norms of u*(z, t), ¥ (s, ¢) and #(z, £) in
L, (0, T; Ly(0, D) is uniform with respect to 2<\p<lco, then u*(w, ), ¥ (4, ¢} and
#i(z, t) belong to the functional space L..(0, T; La(0, 1)).

It is easy to verify by usual way as in [283—26], that u*(#, {)=u.(2, t) and
u(z, t)=u;(x, t) are the Holder continuous derivatives of the m—dimensional
limiting vector. fufiction u(«, t) respectively. Similarly u*(z, £) =u,(z, t), ¥ (2, )
=gz, 1) and ¥(e, t)=uy(x, t) are the appropriate m-dimensional generalized
derivations of the m—dimensional limiting vector function u(z,¢). Hence the
consiructed vector function u(z, ) belongs to the functional space Z={u(z, ) |u €&
L.(0, T; H3(0, 1), u.€ L.(0, T; H(0, D), uy €L..(0, T; Ls(0, 1))},

11. Let ¢(w, t) is a smooth test function. Denote by gis(®, ¥) the piecewise

constant function constructed as before corresponding to the diserete function
g?=g(m51 t") (j=01 1.! =iaks! J; n=0,‘| 1_’ s N)- WE dEﬁIlE

1
Graul2, t) =jﬂgrad F (07" )dv

in Q* and Hyu,(e, £) =f1* in Q;* for §j=0,1, -, J—1; #=0,1, -, N—1, As
h—>0 and At,— 0, the sequence {G4 4, (%, 1)} is uniformly convergent to F (u(w, t)).
Since v (2, 1), Vi (2, t) and 24 (z, t) are uniformly convergent to u(®, i),
u.(x, 1) and u, (@, t) respectively in Qr, hence H, 4 (2, ) uniformly converges in
Qr to f(w, t, ulz, 1), us(o, 1), u,(2, 1)) as Ay—>0 and 44> 0.

From the finite difference system (5)y, we have the identity

’&§—1 -1 n+1 n -1 n-+a 1
ntl J U5 T Yy +1}:f A.;..d.."’ﬂf j n+¥
.;21 ’glg, { e x “grad F(vit%)ds

i B8

i 4.
-— f(m,, " aguittta’vl+a'lvy T, b =1

R
; d_’l?}'"l'“ ’U’}+“'—ﬁ?+a+1)} =
+b e a T h At =0.
This is evidently identical to the integral relation

j.J’th (@, 1) [Tass(®, t) — Thu(®, t)Grn(a, {) — Hyy(@, t)]dzdt=0.

Or
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- = L _rEe

og .ﬂiﬁ;
fig

When A— 0 and 4¢,— 0, such that <eg<1is preserved for any ¢, the abeve

integral relation tends to

[[a¢@, ) (@, ) ~ttea(a, ) +grad F(ulo, )

Or *-f(ﬂ’, t, u(z, 1), us(®, 1), -u.t(m, t)]da:dt=0.

This shows that the m—dimensional vector function u(w, t) € Z satisfies the system
(5) of nonlinear wave equations in generalized sense,

On the other hand, since the convergences for v, (w, ), vixu(z, ¢) and v2u(®, 1)
are uniform, then the generalized nonlinear mutual boundary conditions (6) and
the initial condition (7) are satisfied by the m—dimensional limiting vector function
u(x, 1) in classical sense.

Hence the consiructed m—dimensional vector function u(z, {)& Z 18 the
generalized solution of the nonlinear boundary problem (6) and (7) for the gystem
(6) of nonlinear wave equations.

Theorem 1. Suppose that the conditions (I), (II), (11I) and (IV) are satisfied.
Then the generalized nonlincer mutual boundary problem (6) and (7) for the system
(B) of nowlinear wave egquations has at least one m—dimensional generalized wvector
solution w(®, ), belonging to the functional space Z=L.(0,T; H*(0, DINWe 0, T;
H20, DYNWD(0, T; La(0, 1)) and satisfying the system (B) in generalized sense and
the boundary conditions (8) and the imitial condiiions (T) in classical sense.

Remark. For the existence of generalized global solution w(w, ¢) of the
nonlinear problem (6) and (7) for the system (5), the smoothness assumptions for
the initial vector function ¢ (@) and )(¢) can be weakened that ¢(z) € H*(0, 1) and
Y (x) € H*(0, 1). This can be justified by a simple approaching process.

§ 5. Uniqueness of Solution

12. Suppose that »(w, ¢) and u(=, t) € W (Qr) are two m—dimensional
goneralized vector solutions of the general nonlinear mutual boundary problem
(6) and (7) for the system (D) of nonlinear wave equations. Hence we have in
generalized sense

Upt — Uze +grﬂd F('H-) sf(m: 1y Uy U, 'u‘t) (5)

and L B L
“tr"‘%m+gl‘&d F('i'.&) =f(ﬂ}, by Uy Ug, ‘IL:). (5F)

u(w, £) and u(w, ¢) satisfy in classical sense the boundary conditions
(0, 1) =By (u,(0, 1), us(l, 1), w(0, 1), ull, 1), 1),
—u; (1, £) =Dy (4. (0, 8), w(l, ), (0, ), u(l, 2), 1)
1_‘[’#(0: t)ﬁgﬁﬂ(a’a(ﬂ: f’): -‘I_E.#(L £), 1_‘:"(0.: t), E"(l: t): t):
_i'at(z:r £) =€151(‘113(0, t): 'E’s(z: t), 1—1’(01 t): I‘LGJ t): t)

and satisfy in clagsical sense the initial conditions

(6)
and

(6)
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U\, 0) S m) 2
( @( 7
Uy (Sﬂ', 0) =¢’(w)
e (2, 0)=p(a)
“(z, 0)=¢p(2), ,
: . (7')
Uy (@, 0) =yi(w).
For the m-~dimensional difference vector function W (w, ¢)=u(z, t) ~u(z, t),
there is
Wﬂ'—Wm'l'gTW =}1EW+};W#+}WH (5)
where

@"=J:grad2 P (zu+(1—))do,

f§=ﬁ Fulm, ¢, %+ (1—2)u, TUp+ (1—7)u,, v+ (1—2)u,)de

and similar for 77 and f&. (B) is a linear System with Holder continuous coefficients.
W, t) satisfies the lineaxr homogeneous boundary conditiong

W0, 1) =@, W (0, &) +85,W. (1, ) +85, W (0, t) +&5., W 1, t),

6
Wil =G5 W.0, D+ BLW.LG, )+ BLI (O, ) +BLW @, O
and the homogeneous initial conditions
é W, 0)=0,
(7)
Wt(m: O) =01

where the coefficients in the expressions (6) are bounded.

Making the scalar product of the m~dimensional vector function W.(z, £} with

the vector equation (B) and integrating the resulting relation in rectangular domain
Qr, we get

4

J’ (W, Wﬁ)czmdt—J;;[(W,, W oo)da d +ﬂ (W,, GW)duds

~|[tw., 720y + (W, FoW - W, FoW o,
Qr

By simple calculation, this equality transform to the followi
IWe(e, T) o+ | Wal+, T) F

Llfﬂrn

ng inequality

<2, W0, 0, W0, 0)ai—2 (" (W00, 1), W0, 1))

o

FTOn{[W |00+ Wel2ion+ | W:| Zugn)s (52)
where the boundary and the initial conditions are used in derivation. Hers

B=| (.0, 0, Wit 0)at~ [ (W00, 1), W0, 1))a

< B (1B 4 18 [+ B8 2 18513 (W 0, ) |21, 1y a,

where | 51}."“_[, Jgﬁul, |§fu.] and léfu,] denote the elemen
1w, and éful respectively. Thus we have

18 of the matrices Diuos D,y

i 4
B< Oy y | W (-, t) 1z 0,0t <Oap{|W| fueo T [ Wal2,w@ols
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Since the initial value W (&, 0) equals to zero, then

| W [ g <T | W || 0o
Hence (b2) becomes

We(e, D) Eon T IW (e, D Z0n<Ouo{lWilio+[Waliien}.

This implices W, (z, {) =W, (2, ¢)=0, thus W(«, t)=0.

Theorem 2. The m—dimenstonal generalized vector solution u(z, §) € WE*(Qr)
of the general nonlinear muitual boundary problem (6) and (7) for the system (B) of
nonlinear wave squations 48 uniqus.

§ 6. Convergence of Finite Difference Scheme

13. We can select the subsequence {vs . (%, t)} from the set of m—dimensional
vector functions {v.4(#, )}, defined on the base of m—dimensional finite difference
solutions 2§ (4=0,1, «-+, J; n=0, 1, ---, N) of the nonlinear finite difference system
(Bu, (6)n, (7)n and (7"")s, such that as k—>0 and 440, @4, (z, t) tends to a
m—dlmensmnal vector function « (2, ) € Z, which is a m—dimensional generalized
vector solution of the nonlinear boundary problem (6) and (7) for the system (5)
of nonlinear wave equations. Since the generalized global solution of the nonlinear
boundary problem (6) and (7) for the system (5) is unique, therefore for any

{I{Tﬁﬁ;
}i!-{
sequence {4, (%, t)} tends to the unique limif «(z, ¢) € Z. This means that as A—0

and At->0 with “‘;j't

generalized global vector solution of the nonlinear boundary problem (6) and (7) for
the system (B).

Theorem 3. Under the conditions (1), (II), (III) and (IV), the finite difference
solutvon v (j=0,1, -, J; =0, 1, -, N) of the nonlinear finite difference schema

(Bn, B)n, (TDn and (T")y with l-&‘;a%}l converges to the m—dimensional wvector

2
Junction u(z, 1) €Z, as h—>0 and At —>0 preserving h‘dﬁé <1 in the following

a1
sonse: {v7}, {‘d""u’ }a-m:i { i1 } are uni formly cmwrgmt to w(w, i), (@, t) and

h Pty

g " ﬂ A_,Hﬂ-l-ﬂ- /.‘ﬂ »*u“'i'“—-'u”'l'“—l n+1 2,1? +"Uﬂ 1
uy (2, 1) dn Qr respectively mnd{ + 7 i }j{ + (¥ — s )} wnd{ dﬁj }

are weakly convergent 10 Uz (2, 1), Un{w, 1) and uy(e, t) én L,(0, T Ls(0, 1)) for any
2<\p<co respectively. Furthermore the limiting vector function u{xz, t) €EXL is the
unique generalbized global soluiion of the nonlinesr boundary problem (8) and (7) for
the system (B) of nonlinear wawe squations.

Hence when A and 4¢ are small, the finite difference solution 2% (=0, 1, ---, J;
n=0, 1, --, N) of the nonlinear finite difference system (b);, (6)y, (7)w and (7'"),
may be regarded as the approximate solution of the nonlinear boundary problem
(6) and (7) for the system (B).

sequences f;—>0 and A4/4,— 0, which preserve << g <1, the corresponding

< g<C1, the sequence {vy4(%, )} converges to w(z, t) & Z, the
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§ 7. Mixed Problem

14. In this section. we are going to construci the m~dimensional generalized
clobal vector solution u(z, t) of the problem with the nonlinear mixed boundary
conditions '

2, (0, ) =D (u(0, £), u(0, 1), 1),
w(l, t)=0
aend the initlal conditions

(8)

u(z, 0) =(p(m),
us (2, 0) = (z)

Ugy — Uge +grad Flu)=F(z, t, u, Uz, %) (5)
of nonlinear wave equations in rectangular domain Qr={0<<a<l, 0<¢<<T}, where
u=(Uy, *-, Uy) is & m~dimensional unknown vector function, f(=, ¢, u,p, ¢),
d(p, u, 1), p(a) and §i(x) are m—dimensional vector funciion for O<<z<l, 0<?<T,
u, p, g ER™ and F(u) is a non-negative convex scalar function of vector variable
uc R™. .

Suppose that the conditions (I) and (II) are satisfied. Further let us assume
that the following conditions are fulfilled:

(IIT") ®(p, w, t) is a m—dimensional continuously differentiable vector funciions
of the variable #€ [0, 7] and the vector variables v, p&R™, The m Xm Jacobi
derivative matrix @,(p, u, t) of m—dimensional vector function @(p, u, {) with
respect to m~dimensional vector variable p €R™ is positively definite, i.e., there is
a positive constant o>>0, such that

(€, By(p, u, DE) > |E|? , (53)
for any m—dimensional vecior & € R™, Furthermore there are
|D(0, w, 1) | <A(|u| +1),
|Du(p, u, 1) | <B(w)(|p| +1), (54)
I@t(.p: %, t) ‘Q_B(’E&)( P 2+1)1
where A is a constant, B(w) is a continuous function of v €R™,
(IV") The m—dimengional initial vector functions @(z) €0?([0, I[]) and $(z) &
O ([0, 1) satisfy the boundary conditions (8), i.e.,
p(0) =2(¢'(0), ¢(0), 0),
p()=y¢()=0."
(V" grad F(0)=0and f(1,-¢, 0, p, 0)=0.
The finite difference approximation of the system (5) ig also the nonlinear finite

difference scheme (b),. Corresponding to the nonlinear mixed boundary conditions,
the finite difference boundary conditions are of the form

fn+1__ .0 [ )
Vo - ‘1’{}_=¢, ( Aj+iﬂ , atte tﬂ-i»ﬂ'-)’
Pitle=0, m=0,1, «-+, N—1.

%

for the system

(565)

(8
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The corresponding finite difference initial conditions are

1‘1?=?§J j=0.! 11 .”: J; (7;)
=@y +Atp;, j=1,2, ., J :
and 2 is the unique solution of the sysiem
0~ FPo __ Ay ) "
%~ ( 20, gutadtpy, adt), (7%

where @;=g¢(z,) and ;= (x;) for §=0,1, ---, J. The gystem (7")n has a unique
solution 2} as acdt<<h.

15. In order to establish the existence of the finite difference solution of
(j=0,1, -+, J; =0, 1, ---, N) for the nonlinear finite difforence system (5)n, (&),
(7 and (7"), and the existence of the generalized global solution w(w, ¢) € Z of the
nonlinear boundary problem (8) and (7) for the system (5) of nonlinear wave
equations, it needs us to derive a series of a priori estimations for the discrete
solution % (§=0,1, «--, J; =0, 1, ---, N). In the process of these estimates, the
different boundary conditions (6) and (8) may give the different contributions and
different influences. The boundary condition in the lateral sides =0 of the
rectangular domain Qr of (8) is the special case of the general nonlinear mutual
boundary conditions of (6). So it gives the similar bui somewhat simpler
contribution in the process of estimation as in the process of estimation for the
boundary problem (6) and (7) of the system (b). Hence we ought to notice the
influence of the homogeneous boundary condition at @=I in the process of
egtimation.

In the equality (17) of the proof of Lemma 1 and Lemma 2, the part
contributed by the influence of the homegeneous boundary condition u(i, ¢) =0 or
the homogeneous discrete boundary condition v3=0 (n=0, 1, ---, N¥) is confained in
the second term of (17) or in the expansion (16). This is the expression

"1134'1 ’U? d wn+a) =0 1 gy N._l
At b h ﬂt} L b ¥ ¥ x

which equals to zero.

In the proof of the Lemma 4, the terms related to the boundary values on the
lateral side @=1 is

(d (‘T}ﬂ+ﬂ +::—1> 'U:;hl*l 2‘1‘!;“{"‘!}”“1 )At
hat ! At?

at+a __ .mta—1 1 o s S n+a—1
(2D o (L0,

The first two parts of the above expression are equal to zero from the homogeneous
boundary condition (8), and the assumption (V). Since

4o L% n4-o—1. d ﬁ+ﬂ
7328] = | (1=, 0o, Ty, DL, TN g, e, 0,295 0)

o k25
‘“( At )

< |Fol B+ | Fotha] +

¥

where
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1 — Auts 1 20 il
},#=J'u fz(z_q:h: tn+u’ TV, }i 1 ,T( dT AtJ 1 ))

and similar for 7, and f,, then

Aotita A (05— antg 1y At }

nta) o _Avyiy +( P77 =1 ") +Vr_1

lfJ—il "H-.Oaih{ h + h/’.’lt | o & l h +031h
1 +& _ nta—1 1
<Ok foogtela+ | A=) |3hy max (S0l }+Oush.
| hdt k=n-1,1,n+1
Thus

‘d“ (@:}+u_ "?Jf;'l'a— 1) n+n‘.) | w?£+1 — 'UE 3 ’ ’Il':: s "!.?’;:_1 2 )

’( hAt , 35 At‘ggﬁﬂ(!a( At )l’g g3 ]5( At ),,g +0sa.

The above discussion. shows that for the discrete m-dimensional vector solution 2%
(j=0,1, +-, J; un=0, 1, «--) N) of the nonlinear finite difference system (5),, (6)s,
(7On and (7'"),, the estimation of various difference quotients can be obtained
by the similar way used in estimation for the discrete m—dimentional vector
solution v} (§=0, 1, »-+, J; n=0, 1, :-., N) of the finite difference system (6),, (6),
(7)) and (7"")y. Hence we get the following lemmas for the discreto m~dimensional
vector solution 4} (j=0,1, ---, J; 0n=0, 1, -+, N) of the nonlinear finite difference
system (B)y, (8}, (7)s and (7" .

Lemma 8. Suppose that the condittons (I), (I1), (III), (AV)) and (V') are
satisfied and suppose that acdi<h and At is sufficiently small. Then the nonlinear finite
difference scheme (B)y, (8)n, (T)n and (7")p, corresponding to the monlinear miced
boundary problem (8) and (7) for the system (B) of nonlinear wave equations has ai
least one m—dirmensional discreie vector solution v§ (§=0,1, -+, J; n=0, 1, ---, N) for
O<<a<l,

Lemma®. Under the conditions of Lemma 8, for the m—dimensional discrete
veclor solution v} (§j=0,1, -, J; n=0,1, «--, N} of the nonlinear finite difference

1

scheme (B)y, (8)y, (7)1 and (7" with —fﬁmﬁi, there are estimates
& ] | ot~} |
max [dv}s+ max [d%it*|s+ max |
R=0,1,-,5 #=0,1,,N=~1 n=0,1,m ,N—1] At 2
Juiﬁ:-}-l —_
+ max [o}|s+ max {6( : ")
n=0,1,u N n=0,1,,N—1 P bs g
vptt — Q0% +op T ] a
+n=1],£§ir-—1 A2 | 2 <K, (5 )

whers K g &8 @ constant imdependent of h and 4i.

16. Using the estimations of Lemma 9 and the common argument of limiting
process as before, we can get the existence theorem of the generalized global
solution for the nonlinear mixed boundary problem (6) and (8) of the system (B)
of nonlinear wave equations as follows.

Theorem 4. Suppose that the condittons (1), (I, (II1D, AV’ and (V') are
satisfied. Then the nonlinear mized boundary problem (8) and (7) for the system (7)
of nonlinear wave equations has at least one m~dimensional generalized vector solution
uw(z, 1), belonging to the funcitonal space and satisfying the system (B) in generalized
gense and the boundary conditions (8) and the initial conditions (7) in classical sense.
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L= W it T

Remark. In the above theorem, the smoothness assumptions for the initial
vector functions ¢(z) and y(2) can be weakened that @(2) €H2(0, ) and (a) €
H*'(0, 1), This can be justified by the usual approaching process.

The uniqueness of the solution can be established by same method as before.

Theorem 6. The m—dimensional generalized vector solution w(w, t) EW>(Qr)
of the nonlinear mized boundary problem (8) and (1) for the system (B) of wonlinear
WaAve equaiions &8 UNLQUS.

Hence we can obtain by the similar method, the following theorem of
convergence.

Theorem 8. Under the conditions (I), (II), (III), AV?) and (V), the m~—
dimensional discrete vector solution v (§=0, 1, =, J: n=0, 1, +--, N) of the nonlinear

findte difference scheme (B)y, (8)y, (7)n and (T'")y with lé;'mgl, converges to the m—

2
dimensional vector function u(w, ) €Z as h—>0 and 4t — 0 preserving n*a;it

] g at—1
the following sense: {v}}, {d"}f-‘ } and, {q’* A? } are uniformly convergent to

"4 n+a __ . nda—1
u(®, t), u(w, 1) and w, (2, t) in Qr respectively and { A'Fd;;:aﬂj : }’ {A!F(}vf hﬁt% )}

a'nd "1?,;-'-1 — 2‘!.:‘? R W}‘_l H d ;
T are weakly convergent 10 v, (x, t), uy(e, t) and uy(z, t) in

L(0, T iﬂ(ﬂ, 1)) respeciively. Furthermore the imiting vector function u(w, 1) €EZ
i8 untque generalized global solution of the nonlinear mized boundary problem (8) and
(7) for the system (B) of nonlinear wave equations.

<eg<<l in

§ 8. Infinite Domain

17. Let ug in the infinite domain @r—={zE€R*, 0<<t<T} consider the problem
with nonlinear condifion

(0, 2) =D (u;(0, 1), u(0, 2), £), t€([0, 1] (67)
and the inifial conditions

u(m: 0) =‘P(m):
u(z, 0)=¢(z), zERY=[0, <o)

for the system (B) of nonlinear wave equations by the limiting process I—> oo in the

nonlinear mixed boundary problem (8) and (7) for the system (5) of nonlinear
wave equations.

Suppose that the conditions (I) and (ITI') are satisfied. And suppose that the
following conditions are fulfilled:

(II"} The m-dimensional vector function f(z, ¢, w, p, ¢) is continuous in
(x, t, u, p, ¢) € Qr XR*™ and is continunously differentiable with respect to # €R* and
%, p, ¢ €R®. Further for any (w, ¢) € Q% and u, p, ¢ ER™, there are
@, 8w, p, O, | falo, t, w, 9, ) | <A{F(u)+ |u]?+|p]?+ |q|2+¢%(e, 1)},
Jul@, b, u, 9, @) | <A™{F(u) +|w]|?+1}, (69)
lf:ﬂ(m.r t: U, .'p: Q') ‘: fﬂ(ml j; ‘H», P g) I GQ-A*:
where A" is a constant and g(«, ¢) is a continuous function in Q% with

(58)
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“g(': t) HL.(nﬂ{:Dﬂ}.
(IV*) The m-dimensional initial vector functions ¢(v) € H*(R*) and ¢ (@) €

H(R*) satisfy the conditions
$(0) =8('(0), 2(0), 0), -
p(l) =0.

Further F (p(w)) € Li(R*).

(V*) Also we have grad ¥ (0) =0 and f(=, ¢, 0, p, 0)=0.

For each 2<l< oo, we construct a m—dimensional vector function ¢;(«) such
that @,(x) =@(z) in [0, I—11, p(2)=0 in [, co) and p(x) € H2(R*) and we also
construct a m—-dimensional vector function ¢ (z), such that i, () ={(=) in [0, 1—1],
Y, (2)=0 in [I, o) and Y (2)€ HY(RY), further |@|am@gy<K: and ||| memy < K7,
where K is a constant independent of 2<i<0.

Then in the rectangular domain QP ={0<a<l, 0<t<T} we consider the
problem with nonlinear mixed boundary conditions

s (0, 1) =@ (u,(0, t), u(0, ), ?),
] u(l, t) =0, O0=<U<T
and the initial conditions

(8

u’(ﬂ:: 0) =@ (m): (7)1
u’t(m: 0) ='1f’z(ﬂ’); 0“{%{3%{

for the system (B) of nonlinear wave equatlons. Denote by w(z, {) €Z(QF) the
unique m-dimensional generalized vector solution of the nonlinear mixed boundary
problem (8), and (7), for the system (6) of nonlinear wave equations.

For the set of m—dimensional vector functions {au(z, £)}, we can obtain the
following estimations by the analogous method as used in finite difference study:

sup [w(+, t) |mxo.n+ SOP | (-, t)|guo,n+ SUD latage (- ) [ Eac0 0 < K, (61)
T Qi Ot T

Dl

where K is a constant independent of 2<{l<oo.

By the method used as in [27—29], it can be proved that there exists a unique
m~dimensional vector function

u(z, £) € Z(Qy) =L.(0, T; HARH)) NWE(, T; H'(R*)) NWE(0, T; L(R¥)),
guch that for any 0<L<oco, the sequence {w;(@, {)} converges 1o u(w, t) in the
rectangular domain QF” in the following sense: {u(z, 1)}, {uwn(e, i)} and {un(e, £)}
uniformly converge to u(z, ), 4@, 1) and u(2, t) respectively in QF, {¥ws(2, £)},
Lo (@, 1)} and {uy (=, 1)} are weakly convergent 10 e (®, 1), Ua(®, ) and ug,(e, 1)
respectively in L..(0, T'; La(0, IY). And u(=, t) is the uniquse m—dimensional vector
golution of the problem (57) and (b8) for the sysiem () in the infinite domain Q.

Theorem 7. Under ihe conditions (I), (II*), (IIL), (IV™) and (V"), the nonlinear
boundary problem (B7) and (B8) for the system (5) of nonlinear wave equations has a
unigue m—dimensional vector solutéon u (e, )Y€ Z (@) in infintte domain Qr, satisfying
the system (B) in generalized senss and satisfying the nonlinear boundary condiidon (57)
and the initial conditions (B8) in classical sense.

Theorem 8. When l—>co, the solution w,(x, t) € Z(QY) of the problem (B), (8)
and (7)), tends to the solution u(z, t) € Z(Qr) n the following way: wi(e, t), Uz, 1)
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and u, (@, 1) converge uniformly to w(x, t), u.(w, t) and us(w, t) respectively in any
finite domain and Up,(x, 1), Uw(v,t) and uy(w, 1) converge weakly to Us.(w, 1)
U (2, 1) and w2, t) respectively in L,(0, T; Ly(0, L)), 2<p< oo,

Hence u;(2, 1) € @ may be regarded as the approximation of u(s, ) € Z (Qr)-
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