Vol. 3 No. 1 JOURNAL OF COMPUTATIONAL MATHEMATICS January 1935
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§1. Introduction

1. The purpose of this work is to study some nonlinear boundary problems for
the system | -
utt_u£#+grﬂ'd F(“) =B(m; f’: u)uf'}_f (m: t: W, Ue, u’t) (1)

of the nonlinear wave equations in the rectangular domain @p= {0<s</, O0=<<i<T'},
where u (o, 1) = (1 (&, t), -, Un(s, £)) is the m-dimensional unknown vector
function, f{z, , ¥, D, ) is given m—dimensional vector function of (#, t) €EQr and
u, p, ¢ GR™ B(z, ¢, ) i & m X m Matrix of (z, 1) €EQr and uER™, F(u) is a non-
negative scalar function of uR™ and “grad” is the gradient operator with respect
to v € &™. The well-known Sine-Gordon equation

’ uﬁ_umm=5i11u,
the nonlinear forced vibration equation
U — Uge + w' =0
and the nonlinear wave equation
Uy — Upe+8inh ©u=0

are the simple cases of the above meniioned system (1) of nonlinear wave equations.
Many authors have paid great atiention to the study of the various problems for
these special nonlinear wave equations®*". Some general systems of this type have

been considered in [18—20].
At first we are going to consider the boundary problem -for the system (1) with

ihe fairly wide nonlinear mutaal boundary conditions
1, (0, %) =grado ®(u(0, 1), u(, t), ©),
—u, (I, {) =grad; ‘I’(M(UJ t): u(?, £), t)

and the initial conditions

(2)

u(z, 0) =p(z), (3)
w, (z, 0) =i (2),
where @ (ug, %, ¥) is a non-negative scalar function of t€ [0, T] and u,, W ER",
“grad, and “srad,” are the gradient operators with respect to the vector variables

e

* Received Jure 11, 1954,
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vo and u, respectively and p(z) and f(z) are two m~dimensional initinl vector
functions,

When @ (ug, w1, 1) =De(us, t) +DP1(tz, ), the boundary conditions (2) become
the ordinary nonlinear (non-mutnal) boundary conditions |

ug {0, t) =grad Po(u(0, ), 1),
—u, (3, t) =grad @1 (u(l, ©), t).
If @ (ug, 4y, t) i8 & polynomial of uy, us ER™ of the form .
D (ug, wq, t) = (o, Boo (t)uo) + (1o, Box (#)us) + (w1, Bio (£) o)
+ (w3, Bua(®)ur) + (got), %) + (1), w1), (5)

then (2)are simplified to a linear symmetric boundary conditions

w0 (0, ) = (Boo(£) + Boo (8))u(0, 1) + (Lo (£) + Bl (@®))u(, t)+go (D),
— . (I, t) = (By:(t) + B (®) (0, )+ (Bu () + B (@))ud, ) +g.(D),

where B(#)’s are the m X m matrices, “x” Jenotes the transpose of matrix and go(?)
and ¢:(t) are two m—dimensional vector functions of t€ [0, T]. | |

For the nonlinear partial differential equations and systems, it is Jiﬂ.tural to
take into consideration of the nonlinear boundary problems both in theoretical
and in pratical studies™?*). Hence the nonlinear boundary problems are of the
number of the fundamental problems as the classical linear boundary problems.

In § 2 of the present work, we will give a series of a priori estimations for the
solution v;(#) (§j=0, 1, ---, J) of the nonlinear finite slice system. Then we will
ostablish the existence of the solution v,(¢) (=0, 1, +-«, J) for the nonlinear finite
slice system by the fixed point method on the base of these estimations. By the limit
process as h—0, we will oblain the generalized solution u(z, $) of the ordinary
boundary problem (2) and (3) for the system (1) of nonlinear wave equations. By
this way the convergence behaviors of the solution »;(¢) (=0, 1, »-«,J) of the
nonlinear finite slice system are studied. -

At the end of this work, we will take in consideration of some more general
nonlinear boundary problems with the mixed conditiong™3 3

ug (0, t) =grad @(u(0, 1), t),
_ut(.z,r t)'__.@i(um(z::t): H(OJ i): ‘H;(Z_, t).! ﬁ)

by the finite slice method.

We adopt the similar notations and conventions as used in [18—20, 25, 26].

2. Suppose that for the system (1) of nonlinear wave equations, the nonlinear
boundary conditions and the initial vector functions, p(z) and ¢s(z) the following
conditions are satisfied:

(I) F(x)>>0 is a non-negative twice continuously differentiable scalar function
of vector variables u &€R™. |

(II) B(w, f, &) is 8 m X m malrix, continucus for (z, t) EQr and v ER™ and
continuously differentiable with respect to z and u. B{wz, t, u) is semibound, i.e.,
for any £ E€R™, (&, Bz, t, w)£)<b|£|? where b is a constant.

(I1I) f(=, %, u, p, q) is a m—dimensional vector function of lower degree,

(4)

(6)

(7)
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ously differentiable with

continnous for (@, &) cQ@p and ¥, P, 4 € R™ and continu
g €R™, there are

respect to @, u, P and g, i.e., for any (w, t) EQr and «, P,
flz, t, u, p, DI |fel® & % P o) (< ALF () + u|*+ 21+ lg|?+1},

fol@, &, % D, ) 2 A{F () + [u|?+1},

‘fﬂ(m: t: u, P, Q‘) 3 |fq(m: t: U, Ps Q)I‘S;--A‘:
where A is a constant® and Jenotes any component of

any element of appropriate matrices.

(IV) P (o, Us, £)>0 is a non-—nega
u, ER™. @(Uo, U1, t), @;(uo, Ui, £) and Dy (o, Ui,
once continuously Jifferentiable with respect 0 Yo,
|, (uo, %3, T) | < A{|t0| >+ lwa]*+1},

where A is & constant. Furthermore, the Hessian matrix
gradi® (o, U, i) gra.dogra.dlcﬁ (o, U1, t))

H (up, U1, t)=
( : . ) (grﬂ"di grﬂ'dﬂ o (ﬂo_, Ui, f’) » grﬂd:ﬂtdj (u'o: Uy, t)
of @ (uo, U1, t) with,respect $0 %o and v, is non—negatively Jefinite. Hence D(to, Uz, £)

i3 convex with respect 10 o, u, ER™, i.e., for any z€ 10, 1],
@(m—&—ﬂ(l—-r)ﬁu, s+ (L—5) U, 1) <@ (o, U1, £+ (

where e, %1, Yo, U1 ER™
(V) The m—dimensional initial vector function @(w) € H* (0, ¥) satisfies the

boundary conditions (2), i.e., |
o (0) =grade® (9 (0), 21, 05
(2)0

— ¢ (1) —grads P (@(0), p(D), 0)-

(8)

appropriate vectors and

»

tive sealar function of ¢€ [0, T] and o,
t) are three times, jwice and

cRrRm. And
(9)

1“'3')@__(&}@: JIE.-‘[’:l;ur f'):

And () € H*(0, l). -

3. Let us divided the rectangular domain Qp into thin slice by the parallel
lines z=a; (=0, 1, = J), where z;=ijh (=0, 1, ooy J) ond Jh=}. Denote the
m—dimensional discrete vector function on the glice lines ©=a; PY ¥ () (j=9,

1, ev, J). We take the finite slice system
v ﬁ+i; Y% tgrad ¥ (v) = B(z;, ¢, vy) v+ f (ﬂ?’h i, Vs *%?‘ » Vs ): (D

jem1, 3, oo, J—1
E‘Uj o ﬁ_,_'ﬂ,t
b--—-h +

of nonlinear wave equaiions, where —=

corresponding o the gystern (1)
orresponding to the

b’ d_gfﬂj with b+ =1. The finite
y conditions (2) are as follows:

glice boundery conditions C

nonlinear mutual boundar
A'};:Uﬂ == gradg @ ('Uu, Vi, t) 3 : |
(2)n

’ﬂ}f’t — grad; @ (vo, vs, -

The finite slice initial ccrﬁditim;;s
’ui("‘})#‘}uh j=11 2, Ea J-1 | (3#)11

q"!({}) ='=lth .?=0: 11 e J
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and vo(0) and v;(0) are the unique solution of the gystem
20 (0) =@1—hgrade P(vo(0), v,(0), 0),
DV (‘0) =Pr.i h grﬂdi @(‘Uﬂ (0), V; (O) » D)_,

where ¢I=¢J(m:f) and '1b.f=lab(m:f) (.?=0.r 11 A J)'
It can be verified that the system (8""); has a unique solution 2,(0) and v,(0),
when the Hessian matrix of @(u,y, %1, ) with respect o uwp, 21 €ER™ is assuraed to be

non-negatively definite.

(3”)1.

§ 2. A Priori Estimations

4. In this section we want to get a series of estimates for the m-dimensional
discrete finite slice function »;(¢) (=0, 1, +--, J) of the nonlinear system (1), (2);
and (3).

Making the scalar product of the m—~dimensional vector #;(f)4 with the m~—
dimengional vector equation (1), and summing up for j=1, 2, ..., J—1 the
resulting relations, we got

=1 1y, Al 5
2 @ b= 2 (o, 225N+ 3 (o), gred F ()

J—l B,Uj :
<33 (0, Bz, £, o+ 3 (o), f (o, 05 S, 0 ) Yo (10)

For the first, third and fourih terms of the above equality, we have

J—1

4 4

;@,, =32 (3 |1,

' (v}, gradF (o)) b= (T F (0

S ' . |2
and : | a(w,, Bz, t, v)v)h<<h (E | v} | h).

As fo the second term, we can derive as follows:
_E(iﬂ; 4 d V), )h._ J—1 ( d.]."vj d_{_‘l?'j )h—!—( A_!_'Uﬂ ) (‘!J:r, 1.'.1..'1‘;

i=1 % 7
2 di (_fZﬂ [ ‘d+ru ' h)_l— (‘l}“’ grﬂdn ds('vﬂ: Vs, t)) = ('?-JJJ gT&dl @(@ﬂ, Vi, t))
L% 5 ¢ 3 t)—@ ¢
2 di " Vs (t) " 2+ — di ('Ulh Vr, ) il = ("Hu_, Vi1, ) . (11)

From the condition (IV), we have
| Dy (vo, vy, ¥) | <A{[vo]*+ |vs|?4-1}
<O1{|va|*+ |vy2|? + 2| S0s[3+1}
<Cu{(_max |oj)*+ [30ali+1},

TR,
where

1
\ "f“ A< |os| 41 |30,

|vo| < | w1

rm (12)

l%]’“l%‘—il } l A

1
A |vg—1| +RZ[dva] 2




54 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 3

and €, and O, are constants independent of 2. Since
1

a
_max o] <[donls+O(F o] ®)
=y J-1 ¢ pr—1 |
— S oy hez Sl h 04| (3 10)1% ) (14)
Al je=1 0 \j=1

We have ud
1B, (o, s,1) ] goﬁ{n amhu§+ﬁ(§1 ()| )dt—l—l}.

Hence (11) becomes

J=-1
- 2( f A+ﬁ—‘v;l )h____d_, quh(t) H —|—--di-§15(‘ﬂn, vy, t)

§=1
*oa{nawm [ (B 1ogten Yat} 0o

where Oy is a constant independent of k. As convention, we denote by O with

different index the constant independent of 5>>0.
For the lagt term of the equality (10), we see that

J—1 r h[ 1 -1 19 1 J—1 ap
S, Fh < 2 015 Z IS

oS 11 SRy S 2o sl -0
< 'I'"'jgll'ujl +§ (q:,) 3§1 *

"—1 Jg=1 t -1
<0u{S [0 |0+ [oma 3+ 3 Flopht| 3 |w;|ﬂh}+as,
. e ; =1 0 je=]

where ff=f(¢h t, vy, "é{%': 'U; ).l j=1s 2, "':J_l'
Thus (10) becomes

i {2 | vy (£) |+ | Sua(t) |3+ 2 z‘, F (0,())) -+ 2 B0 (D), (8, t)}

gog{f_zl 9 (8) [+ [30a (8) |3+ EF@,@))HL(E 10, 6) |%)ds}+o,. -
Let us denote |

w(t) = E |5 (®) |+ ] 5oy () 13+2 2 F (@g(ﬁ))h—l—E@(wg(t) ru;(t), £).  (15)
Since F(u) and @(uo, vy, t) are two non-negative scalar functlon.s, wo h:wa

B () <O () +0p+0, ﬁw(r)dr,

dt
J-1 7—1 ;

is clearly bounded. This follows that
w(t) <O, t€I[0, 7], | (16)

where Oy is a constant independent of ~ and € [0, T'].

Lemma 1. Under the conditions (I), (ID, (III), (AV) and (V) for the soluiion
0;(£) (j=0, 1, -+, J) of the nonlomear finite slice system (1)y, (2)n and (3), and for



No. 1 SOME NONLINEAR BOUNDARY PROBLEMS FOR ... 55

sufficiently small 4t, there are estimates
Sup |oat) |+ sup. foa (8} [ o+ sup | dua (8 | E‘QK 1, (17)

Ot

where K is a constant independent of h and t€ [0, T'].
Proof. From (15) and (18), we see that the third estimate of (17)is valid.

Again from (15) and (16), we have for any ¢ € [0, T]
of =1
El vy (&) | *h<O1o.

Then from (18) and (14), we get
max |2;{¢) | <OCu.

j=1| E.. it I.lr""'l

Qombining this result and (12), it follows directly the first estimate of (17). For the
second estimate of (17) we have from (15) and (16)

=1
;I v (8) |2 << 0o

Differentiating the finite slice boundary conditions (2)s, We obtain

(E +hgrad§ @(ve, v, £))vh+h grads grade @ (ve, vy, &)vh=v1—hgrado D, (vy, vy, 1),
h grade grady @(we, ws, H)vo+ (B +hgrad? D(ve, vs, £))0=0vr1—hgrads Pe(vo, Vi, t),
where E is a mX m unit matrix. This shows that », and vy can be expressed as the
linear funections of ¥} and 27_;. Thus

J=1
|05 (8) |2<<012 Elw; (%) | 2h+O1a.

Hence the second estimate of (17) is proved. The lemma I8 proved.

5 Now we iake the scalar product of the m—dimensgional vector ds ff” h and

the m—dlmensmnal vector equation (1), and sum up the resulting relations for
j=1, 2, -, J—1. Then we obtain

e ﬂ_}.d_"ﬂ i Lt A+d '1}_{ d A "U; A A_WJ
E( E w,)h E( £ Lot h+§( = ,gradF(w,))h

.=2(A R , By, 1, ‘1’1)‘”1)?”“2 £ Ammi » I )ﬁ’ | (18)

J=1

Here we have

S 4,40, 4.4 v 1 d g
(L S5 )h—?—llﬁwa(t)ll -~ (19)

Let us now simplify the first term of the equality (18). It is clear that

S e~ -5 (40

15k () |3 — —-—- grade D (e, s, 1), 20 )~ o grad; @(vo, s, 1), ¥7
dt di

1 d
2 di
1 d

where J4 denotes the sum of the last two parenthesis. Here we have
i
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Ji= (gl‘ﬂdﬁ Do, vp) + (gradi grad.;. Dy, v5) + (gl'ﬂdu gra.d1 Do, vy
+ (grad} D), v5) + (grado D, o)+ (grady Dy, 1)
d a2 @, vo) (grady grado doly, o)+ (grado grad, Doy, V)

1
7 @

+ (grad? @v), o)} — 5 {((gredd
D) 0h, 05) + ((gradi @)eth, 90T
o0} — {((grada B)e, 90+ (gTads B)es 200

1 d d
- Jg(t)—Ja(t>+—d?J4(t') Js(3)s (21)
where the expressions 1o ihe curved brackets are denoted by Ja(#), Js (1), Jalt) and
ads @, d.grade P
In fact the 2mX 9m matrix ( graT e iy )is the Hessian
grado grada @, gradi®
or function @{(ve, Vs, £) with respect {0 the am~dimengional

otric. It is easy 10 86 that

&) b, V) + ((grads grade ®) vy, o)

- ((gradn grﬂdi
A % { (grado P:, o) + (grads e,

Js(t) in order.

matrix of the scal
vector (e, ¥s), Thue it is symm

T | <Cas {19 @ P+ [ I),
74(8) | <O {6 () |2+ 25 () o4 |y (£) |3+ 15D 1)

| J 4 (2) "‘éaia{h’::-(*) + |05 ()1}
| J5(2) | < Oga{|26() |7 |y () |2+ | 90(8) |+ |05 (#) |-

4 (1) | <CU14 |05 (£) “12

Since b (£) |+ | o, () | <24 | 3w} (F) \l!§+014llmi(t) |2,

then. (T () \Q%—\lawﬁi(ﬁ) 12405, =2, 3 4 5 (22)

Hence wWe have

For the third term of (18), we bave

(&) + T () +J5(8)- (23)

; [‘fﬁ ([50h () 13+ Ta() +27 s

J=1 ¢ A A . =1/ A0y As
S (St el P h=— B (R F(o))h
A, A_vh
.._';B , grad F(wy) )—l—-(-—-——-h " gradF(ﬁ;)).

2 Vi
As (grad F(0))) = ([} grad F (ot A=) o)de )L,

o = : :
we gob \ > (_ﬁ'iﬁ“i, A gmazr(m,))h\ < |804(6) |3+ Ose:
§=0

On the other ha.ndl, we have
!
(L5, grad F (o) )| =1 (@
< O17{] v

(S i 30

From

rade @), grad F(vr)) |
() |+ 1058 | +1}3< |95 (8) |3+ Osse

< |50, (@) |2+ U1s-

Similarly
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Hence we obtain
1.: 1

| 1-1( d+d_1}j , grad F(w-*) h‘ <CO1p{ |0, (8) |2+1}- (24)

Now we furn 1o conmder the firgt term on the right hand side of the equality
(18). At first we have

=1 i J=1 | g
LA Bla, 1, oy Jhm — 3 (42, GE(B@, 1, 9)9)

(-Z]F:”L , B(0, ¢, vo) fu[;.) I (d}f:’ , B{, t, *‘-'J.r)‘l’fr)-

We can expanded the expression containing in the first term on the right pard of
the above eqnality as follows:

i
Ls (B(ay, 1, v)v)) =B, 1, o) 22 1 (* (Bu(@yae, 1, opsat (A=) 0 )

1
+L( u(mj+1r: t, TUp1 1 (1— —7) '”f) 4 1); ‘1’j+1)d1?'

where B,(z, t, ¥) is a mXm xm tensor of three-dimension and then B.(z, ¢, u)v is
a m X m matrix and Bu(z, ¢, w)vw is a m-dimensional vector for v, v, wER".
Hence we haw

(“‘-*L1 0 Bay, 1, 00 A<BIBB(® 1+ [Ta® |+ [T2@ |+ Ta®B], (20)

since from assumption (IT), B(w, £, w) is semibonnded, where
J—1

T » ( 1 . " ; .d+ru',
&)= 5 ([ Bu@sor, 1, w0t A=m)0) tha dr, S57L),
=0 \Jo h

J=1 1 '
JT (t) i E} (jﬂ .Bu (mj.l.q,-, #, T"Uj_;.i-‘l"' (1—*1;"} ’uj) _A_';;ﬁL@;_]_l d‘!’»‘: ﬂ-{-}-:}.f )
and : Jo(t) = ((grad @);, B(0, %, vo)vy) + ((grad ®),, B{, t, vr)v5).

f,Here we have

| T6 () | <Os0| 803 (E) [lo] 25 () | a< 021|804 (2) |2+ On
and |Js(®) | <Cas{ w0 () |2+ |¥5(0) |7 +1} KOs 805 () | 8+ Oas.
From the expression of J;(?), we see

1718 | <Oue| 803 (8) [al50a (D 7] 04 &) 1.

By means of the interpolation formulas for the discrete functions,

|84 ()] 4 <035 802 (3) | ;“39‘1‘&(*) ”%1_"'025 |30a(E) |2y
101, () Do <O 94 8) 151 89 (1) 13 + Ol | 94 (8) L.

Then we obtain | |
| T2(8) | <Cse{]8% (@) |5+ |8%24 () | 2+1}-

I+ remains o estimate the last term of the equality (18). This term can be
Tawritien

S (el Yo - (G, I (B ) (5 1)

L |
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Here we have
4y ([ gaan) (L) e ([ 0e) (0 Y 25

R
R

—

where }', =fe (mHﬂ b, TU41 (1—z)v;, 7 Aw}iﬂ +({1—7) d}T L, 24t (1—%) v} )

and gimilar for fa, fp and F,. Since from Lemma 1 ond the assumption (ITI1), Fu, T
and o are bounded and f. ig. bounded in L.(0, T; Lo (0, 1)), we get the egtimation

relation

tg (—-é%]ri-, A';bf’ )h‘ 'Q.O:a?{iia'vi (&) |1§+ |8%05 (8) |2+1}
On the other hand, we have
\( d'f:) :f:l)\ = | ((grﬂdu@jn fol

<Oa( | ] + 105} +D( 124l +
<Caef |30 (D) |2+ 8204 (%) | 2 +1}

(555 £2-1)

Hence we finally have the estimate

A.;.‘U(L
h

: A.{."'Ui
h

—1—1)

and similarly

<0y {[504() |3+ 16705() 1313

G (Lol £, Y| <CwlIBh O B 1Ol 41) (26)

Qubstituting the obtained ostimations (19)—(26) altogether into the equality
(i8), we obtain the equality |

-%—{nafv;(t) 12+ [ 820a () |3+ Ta(8) +2J ()} <Cu{[39h (1) 13+ [5%0a (8) |3 +15

Integrating this inequality with respect to ¢, we have
t |
504 (8) |3+ [8°0a () 13+ T3 (8) +2J 4 (8) <Cus L (1894 () 13+ [8%0a(®) 1D do+Cosy

where Coa=Caz+ |85+ Fpriz+ J 2(0) +-2J4(0).
We see that :
J2(0) | <Csa{| o]+ | i2+1k,

T4(0) | <Csa{] o] + o] +13,

where (Ugs is a constant depending on [@a]e OT @] Thus we have

¥
w(t) <Ca L w(v)dr+Cas,
wheore w(t) = | 505 (F) 2437 (£) 3.
This implies thal
w (t) @035,

where Og is a constant independent of % and £€ [0, T].
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Lemma 2. Under the conditions of Lemma 1, for the solution v, (£) (=0, 1, *-,
J) of the nonlinear finiie dice system (L), (2)a and (8)., there are estimates

sup [ o4 (&) |a+ sup |87 (#) [a+ sup | 520, (8) |2 <K 5, (27)

VP 2 O<t<T Ot
where K. 8 a constant independent of k and 1€ [0, 1. |
The first estimate of (27) follows immediately from the later two estimates and

the vector equation (1) |
Corollary. Under the conditions of Lemma 1, there are

sup [80a(2) |+ sup |2 () |-<Ks, (28)

Otz T = P

where K i8 a constant independent of A and € [0, T'].

§ 3. Solution of Finite Slice System

6. In this section we are going to prove the oxistence and the uniqueness of
the solution v;(?) (j=0, 1, -+, J) for the nonlinear finite glice system (1)y, (2)n and

(8), by the fixed point techniqus, where %>>0 ig regarded as a given constant.
Denote G®=0% ([0, T]) for k=1, 2. For any m~dimensional vector functions

2,(t) EGVE] =b, 1, »+, J),we define the m~dimensional vector functions v,(f) (j=
0, 1, -, J) by the following way: -

ﬂg (t) =}*"‘d+§;zi*h A g'fﬂdF(ﬁJ) +AB (mf: Z, zf)z; +?“f(mh t, %, _‘}?' ’ zrj)l (1)3-

j=1, 2, =, J—1

and
vo(t) =1 () — Ab grado @ (vo, 2y, 1), )
| 0y (£) =v;-1(8) — M grada @(vo, ¥, 1) “'
with the initial conditions |
- 0,(0) =gy, j=1, 2, =, J =1 (3)
0, (0)=Ap;,  §=0,1, -, J *
and _
2o (0) = Ap1— Ah grado @ (2(0), 2,00}, 0), 3",

'UJ(O) =MJ-1_?“h gra'di @(Wﬂ (0> ’ 'UJ(O) rL 0) ¥
where A€ [0, 1] is a parameter. |

From (1), we see that v;(t) €G® for j=1, 2, -, J—1. -
Let us now turn to consider the solution () and v;(¢) of the system (2), for

ic [0, T].

‘Making the scalar product of the m—dimensional vectors v,(%) and v;(#) with the
m~dimensional vector equations of (2)a respectively and summing up the resulting
relations, we get |

| wo| 2+ | ws[® = (%o, 1) + (v, Vs-1)
;}‘h(wﬂx gl'&dn@(’llﬂ, V1, t))—?\.h(‘ﬂ;, gr&dldj(wﬂ: Vo, t))'

Mhis can be rewritten in the form
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|‘vulﬂ+ I'U;|ﬂ=- (o, '1?1) + (v, Vy-1)
— AhA (2o, DZovo) + (o, BTow;) + (v, d%1v0) + (2, ﬁfl‘t’:)}
— 2 (v, grade D(0, 0, £))+ (vs, grady 2(0, 0, 7))},

1
where 5;&.=L gradi @ (zv,, Tv;, t)dv and similar for @i, p7, and @7,. Since the

Hessian matrix of @ (ue, s, t) with respect to (o, ) is non-negatively definite, the
expression in curved bracket is non-negative. Hence we get
|vo |2+ |0y |2<< (w0, v1— Ak grade @(0, 0, £)) + (v, V51— Ak grad; (0, 0, ©)).
This shows that [v| and |v,;| are bounded, i.e.,
l‘l?u]ﬂ-f' le|ﬂ<K*,
where 1>>~>0 and |
K .= max 2{|v; |2+ |v;_1|2+ |grade €(0, 0, 2) |*+ |grad, @(0, 0, t)|%}

Ot T

is a constant independent of A and € [0, 7].
Let us regard (2) as a mapping
vo=Ao(v0, vs), vy=A(wy, ;)
of 2m~dimensional ball B={w,, 'u,r‘ vo|?+ |vs|?<<K}. Heore
B0 |2+ | B |2 | 4|8+ | ws_a |2+ 2252 { | grade @ (vo, ©s, ) |+ |gradi P (vo, v;, ) |*} <K,
for gufficiently small 2>>0. Hence (2), has solution for any A€ [0, 1].

Suppose that ve, vy and v, ¥; are two solutions of (2),. Then wo=1ve— o and
s PYy— -'E; E&ﬁ&fy

Wo = — lhﬁgﬂwﬂ = lk@ 10wy,

wy = — M@ Erwo— AMD Ty,

- 1 | — e i e
where @ = L grad3 @ (zve+ (1—7) 0o, 70+ (1— 7) vy, t)dr and similar for @, Pa

and E;i. This iﬂlpliﬂﬂ ‘!ﬂo=‘w;=0.

Hence (2), has a unique solution v,(¢) and 2; (t). From the twice confinuous
differentiability of functions 4;(?), v;1(¢) and grade D (ug, ua, t) and grad; P (%o, w1,
t), wo(?) and v, () are also twice continuously differentiable. Thus we have v,(f) C
Q® for j=0, 1, +--, J. Therefore the mapping defined by (1)a, (2)s, (8)aand (3")a
is completely continuous.

As A=0, ¥,(#)=0 for j=0, 1, ---J.

In order to complete the proof of the existence of solution v; (t) for the nonlinear
finite slice system (1)y, (2)n and (3)n, it is sutlicient to prove the nniform boundedness
of all possible solutions in G for the system i %

4. 4_v
e

v — A

L }"gl‘ﬂ'd F(w,)=}.B(m,, t, 1J3)®;+34f (2?3, #,.1?;, 'éf'j_: ‘*’} ): (i);,
j=l; 4, iy J—1 |

and (2),, (3)a, (8").. By similar method of estimation as used in § 2, no. 4, we can
also obtain . | '

b3 g
gl ’_20 |5 (t) |"h< K,

O<iaT
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el

where K i3 a constant independent of 2 and ¢ € [0, T]. For the constant 4, we have
sup max |9;(f)|<(Kzh™) ¥
Ot T §=0,1, .7
This proves o;(¢) (=0, 1, -+, J) uniformly bounded in G with respect to 0<CA<L,
7 T4 remainsg to establish the uniqueness of the solution. Suppose that there
are two solutions »;(¢) and »,(#) (=0, 1, ---, J) for the nonlinear finite slice system
(1), (2)n and (3)y. Denote wy(#) =v,(8) —v;(¥) (j=0, 1, +-, J). Then w;({) (=0, 1,
eee J) satisfies the system

W — A"'i; Y1 + Fryw,= Bivjw,+ Bow)+ fiws+ f';(b A‘;:’U’ + b’ ‘d'hw’ ) - f

and | i wo = w1 — hDTowo— hDZ,wy,
2wy =wy1— hDFwe — hDT1w;
with homogeneous initial conditions
w;(0) =0, g=1, 2, -+, J—1,
w; (0) =0, §g=0, 1, e, J
and | 2o (0) =21 (0) — ADF6(0) 2o (0) — BT (0)w;(0),
,  wy(0)=wya (0~ h®30(0) e (0) — rD11(0) ws(0),

| R - - 1 = =
where F7,=— Lgmdﬂ F(zv;+(1—7v)v,)dr, Bi= L Bu(z;, t, vv,+ (1—7)v;)dv, B®=B(z,
i o g s s o g 40 e 1

fr, "1?_4) and similar for :, f;, f;, Eﬂ, fu, @E.rj_, @fi, also @Eu(ﬂ) =ju gradﬁ D (T’Uo(ﬂ) -+
(1—1)00(0), 72;(0) + (1—7)»;(0), 0)dz and similar for DI, (0), B3 (0) and D7 (0).
From this homogeneous equations and homogeneous initial conditions, it is easy to
verify that w;(t)=0(§=0, 1, -+, J). Hence the solution v;(¢) (j=0, 1, ==, J) for
the nonlinear finite slice systermn (1)s, (2)n and (3), is unique.

Lemma 8. Under the conditions (1), (1I), (IID), (IV) and (V), for the sufficiently

small h the nonlinear finite slice system (L)n, (2 and (3)n has o undqgue solution
‘v.‘f(t) EO(H}([OJ T]): jﬂol 1.! *"T J. |

§ 4. Existence of Solution

8 TFrom the Lemma 1 and Lemma 2 on the estimations of the finite slice
solution »,;(1){j=0, 1, «--, J) for the nonlinear system (D, (@)n and (3)n, we
have the following lemma by use of the interpolation formulag for the discrete
functions™® 28 and the functions of Sobolev’s spaces. |

Temma 4. Under the conditions (1), (ID), (IID),(IV) and (V), for the sufficiently
small h>0, the solutions v;(£) (=0, 1, -, J) of the nonlinear finite slice system (1),
(2), and (3)n corresponding fo the nonlinear boundary problem (2) and (3) for the
system (1) of nonlinear wave equations have the following estimation relations:

max [ V; (ﬁ) QK‘I, (29)
=01, v, J
max |4,v;(3) | <Ksh, (30)
§=0,1, -1
3
max |4.4_v;(8) | <Kh* (81)

’-11 ﬂr "'rJ"":l-
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# Al

max |v)(8) | <Ks, | | ° (32)
§=0,1, 0,
max | 4,05 | < Kah?, (33)
50,1, 0, 7—1 - |
1
max | v, (34 4t) — 2, (t) | < K g4t2, (84)

j:{}’ 1’_ IH.J

where ¢, 1+ A€ [0, T, 4>0 and K8 are constants independent of h, t and 4i.

Proof. (29) follows directly from the first egtimate of (17). (80) and (83) are
the immediate consequences of (28).

From the third estimate of (27), we have

4,4 0,0 |2 R
S

e S

f=1

- 2
£1+A};:’i(t)\ r<K2, j=1, 2, +*, J i,

Hence (31) is valid. Similarly from the gecond estimate of (29), we get

zs.,.w;(t)_r S 400 haky,  §=0, 1 T
_E h%g - h thﬂJ j 0’ 1, 3 J 1-

This showa (33). -
By the inferpolation formula of the discrete functions, we obtain

|, (54 48) — v () | <| o, (4 4t) — 5.(2) | =
< Oogl| ¥4 (E+ 48) — V3 (F) ngﬂaﬂvi(wdt) — dvn(?) |1§+Oaal| o (t+ 48) — 2 (E) |2

Here we have _
H"Ufh (t + 1’.1'5) aian ‘U,h (t) I' géﬂt max “ 'UE(T") “ q

teTat+dl

and | |30, (1 +4t) — 394 (D) | <2 max |805()]a

t Tt +al

Thus (34) is valid. Then the Jemma is proved.

9. Let us denote 'Mh(m‘, t)="ﬂj(f-) for (ﬂ}_, t) ES;ﬂ {jh%mﬂ(j-l-l)h, O‘QtﬂéT}
(§=0, 1, -, J —1). Then us(e, ?) is 2 m-dimensional vector funciion in slice form
deofined on the rectangular domain Qr={0<z<l, 0<t<T?. By similar way We

e 5 s r o
dofime % (®, &) =:'-1+";;(‘5) (@, 1) =), Talm, ) = 4.7 D ond r(a, £) =2 @)in
8, (j=0, 1, -, J—1) the m—dimensional vector functions on Qy corresponding to
the appropriate digerote finite slice vector funciions respectively. Let us put #s (2, ¥
- d"‘dj‘?';}f(ﬂ in 8, (j=1, 3,-, J —1) and @, (2, ) = ‘d*"d;;l(ﬂ in Y.

I+ follows directly from the Temmsa 1 and Lemma 2 with its corollary for the
estimations of the finite dlice solutions 2;(3) (=0, 1, -5 J) of the system. (Ds, (2
and (3), ibat the above constructed m—dimensional vector functions w(z, ©),
wun(z, 1), uy(z, 1), U, £), ua(z, t) and ity (z, t) have the following estimatos

Runﬂ L_(@r) T [Hf_h“ r.@n T “ahﬂﬂ.{@,} + fﬂf a ﬁhﬁ‘ 3 t) “L:{m;

+ sup |@(s, Dlzao.nt+ SUP 1o, ) I n <K (85)

O<tcT QteT

where K is a constant in&ependent of A. .
We can sSelect a sequence {k;}, such that as 2 —> o, k. —> 0 and u (%, £), ux(z,t)

and u,(x, t) weakly converge o u(z, 1), u(w, 1) and u(w, t) in L,(Qr) respectively.
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Since the norm of the weak limiting functions of the sequence not exceeds the lower
limit of norms of the functions of the sequence, thus the norms of the funcilions
wx(m, ), u(w, t) and w (=, 1) in L,(Qr) are nuniformly bounded with regpect to 2<p<<
oo, Hence they are bounded in L..(@r), i.e., u(z, ¢), w(z, ¢) and u(w, 1) belon.g o

L..(Qr). We can also select {A;} such that as 2, —0, w(w, 1), th(z, t) and (s, t)
weakly converge to u(z, %), u(w, t) and #(ex, t) in L,,(O T. L,(0, 1)) regpectively,
where 2<p<<coc. The norms of #(z, t), u(=z, £) and iz, 1)in L,(0, T; La(0, 1)) are
also uniformly bounded with respect to 2<p<(co. Hence they bhelong to fhe
functional space L.(0, T'; L;(0, I)). So we have

Ju) zon + 1% 2.c0n + [] pon+ sUP [@(s, 1) ]zaos
Dt

+ sup |u(-, #) "L"-’“"J'['{i?,ﬂ [u(e, 2) [ Loy <Ks. (86)

Ot T

Let g(w, ¢) be a smooth function with finite support in rectangular domain
{0<a<l, 0<t<T}. We can write the relation

j:%( (t) A-{-'ﬂj(t) 1 +ﬂé(t) V; l(ﬁ))hdi=j [ gu(ﬁ)*vo(#)+g;(t)w,;(t)]dt—

where g;(f) = g(mj, t), =0, 1, «+, J and ¢o(?) =g¢;(¢) =0. We define gx(z, £) =g;(t)

and g,(2, 1)= "“i’( ) in 8;(j=0, 1, --», J—1). The above equality can be written

in the integral form

”L%(m, Duy (@, t)+g:(w, Dup(z+h, t)]daedi=0.

e : '
Since when k—> 0, ga(=, t)and g,(w, ¢) are convergent uniformly to g(», ¢) and
ge(m, t) Tespectively in @p and us(w, ¥) and ux(z, ¢) converge weakly 1o u(®, t) and
u(z, 1) respectlvely, then passing to limit with %;,~»0, we get the integral equahty

[{tote, D@, ) +9e(a, Hulz, H1do dt=0

tr
for any test function g(=, ¢). This shows that (s, t) is the generalized derivaiive of
u(w, ¥) with respect to z, i.e., u(z, t) =u,(w, ¥).

Similarly we can prove that the above constructed vector functions are
appropriate generalized derivatives of u(s, ?), i.e., u(z, §)=u(=z, t), u(z, 1) =
Uee (@, 1), B2, 1) =un(z, £) and u(®, 1) =uy(s, ). |

From the estimates of Lemma 4, the convergence of w(w, t), uy(®, ) and
uy (2, t)to (e, £), us(z, t)and w(e, ¢)is uniform in @y respectively.

Let us denote again Gh(z, ) =grad F(v,(?)), B (2, 1) =B(x,, t, v;(t)) in §;(j=
0, 1, -, J—1)and also Fa(a, t) =F(ay, 1, 2,(8), 2UL, o, () )in 8(j=1,2,-, 7~ 1)
and F,(z,t) = f(h, i, v:(t), _Aﬂ;a(t) j fu'l(t)) in S,. When the select sequence {4}

tends to zero, By(w, £} =B(z, t, ux(z, t)) uniformly converges to B(z, , ulz, 1))
in Qr; Ga(z, t) =grad F(u,(z, t)) converges to grad F (u(ez,?)) uniformly in @r
and F,(2,0) =f(z, {, wpiz, £), bup(e, £)+bus(e—h, 1), u,(z, 1)) in Qp and is
uniformly convergent to f(z, &, u(e, 1), w.(z, t), w(s, ¢)) in Gr.
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From the vector equation (1)s, we have the equality

T J-1 , . :
L E 9f(t){ vy (E) — A‘*A};:” (1) 4 orad F(v,(£)) — Bl@y, ¢, v ()i ()
s Al
_f(mh t: m!(t): b A+mhj(t) +b 4 ";‘;’( )': Jv{f(t))}h dt#o.
This can be written in the following form
ﬂg:. (@, &) {ﬁn(ﬁ, ) —up(m, 1) 4+ G, ) — B, (=, f,)ﬁ'h(m, £) _Fh@;, t) }da dt=0,

Or

where g(z, ¢) is any smooth function in Qr and gx(z, ¢) is the funciion in slice form
defined as before and is convergent to g(z, &) uniformly in @p. Passing fo limit ag

h,—> 0, we get the integral relation
jjg(m: t) {uﬂ(m: ﬁ) — Ugz (‘.‘B, t) +gl'ﬂd F(ﬁ(ﬁ, t)) _B(m.- t’: u(‘?’r f’))u‘t(m: t)

AL

for any smooth g{(z, ¢). This means that % (o, t) satisfies the system (1) of nonlinear

wave equations In generalized sense.
Since the convergence of the finite glice functions 1s uniform for u(=z, ),

u,(w, ¥) and (=, ), then the nonlinear mutual boundary conditions (2) and the
initial conditions (3) are satisfied by the above obtained limiting vector funciion

u(x, t)in classical gense. |

Theorem 1. Under the conditions (I), (II), (11D}, (IV) and (V), the problem
with the nonlinear mutual boundary condilions (2) and inditial condilions (3) for the
system (1) of nonlinear wave equations has al least one m—dimensional generalized vector
wolution (@, £)°€ Z=L.(0, TH©0, D) NWD(O, T; H©O, N) NW20, T; L(0,1),
which satisfies the system (1) in generalized senso and satisfies the conditions (2) and (3)

0 classical sense.

§ 5. Uniqueness of Solution

10. Suppose that there are swo m—dimensional vector solutions u(z, #) and
v(z, t) EW§#2(Qr) of the nonlinear mutual boundary problem (2) and (3) for the
system (1) of nonlinear wave equations. Then w(z, t) =u{z, t) —v(e, t), We have

([ gt wea—Frwa— (BCa, 1, w)—FOut (Feam Bivi=Fubdodt=0, G0

Gz

where #7,= ’E grad? F (zu+ (1—7)v)d, Br— ﬁBu (zu+{(1—7)v)dr, Fr= ﬁ fu(z, 1, TU

+ (1—1)v, Tue+ (1—7) 2, 7ttt (1—7) ) dv and gimilar for f7and F3and g(z, £) is
any tost function in Ly(Qr). Here the elements of the matrices FZ., B, F:, fs
and 7 are all bounded in Q. In fact, since u(z, t) and v(x, ¢) belong to W (Qr)
" by the interpolation formulas for the functions in Sobolev’s spaces, 1t can be
justified that u, u., u; and v, ve, ¥ are Hélder continuous in rectangular domain

Qr and hence are all bounded in Qr. And satisfies the boundary conditions

satisfies & ¥
linear bou
classical sef§

Wy (.a"'.i t)
0<i<T, wih

by the ek
in QT 01'

Y rkd

g

% :._

(1) of nokl
vl

11. I

finite shm‘i

10 the m-di
boundary
takes place
solution
nonlinear
take place:
means tha

Theo
dimensiond

as h—>0
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w0, 1) =B%w(0, 1) +Bhow(l, £,

38
_ — (1, ) =DFEw(0, ?) +@Lw(l, #) (38)
and the hﬁmdge'neous initial conditions
0)=0
w(z, 0) =0, (39)
Wi (mr 0) =Or
1
where @5 = Lgradﬁ @ (7u(0, ?)+ (1—-2)v (0, t), v, t)+ (1—-)o'({, ), {)dv and

gimilar for &%, @3, and @7;, which are also bounded in [0, 7]. Hence w(z, %)
satigfies a system of linear wave equations in generalized sense and satisties the
linear boundary conditions (38) and ithe homogeneous initial conditions (39) in
‘clagsical sense. |

Replacing the test function g(z, #) by a tesb m~dimensional vector function
w,(w, t) and the integral domain Qr by the rectangular domain. Q, with height
0<t<T, we can verify the following estimates for w(z, t),

Sup “’wr(U f’) HL-(H-I)““ sup H“w#(': t) "L-m.n=0
GicT Ota?

by the analogous way as used in the previous soctions. This shows that w(z, 7)=0
in Qr or u(w, t)=v(z, $)in Q. -

Theorem 2. For the nonlinear mutual boundary problem (2) and (3) of the system
(1) of nonlinear wave equations, the m—dimensional generalized vector solution u(Z, t)
EWE2(Qyr) 48 unique. | |

§6. Convergence of Finite Slice Solution

11. In the previous section the comvergence of the m~dimensional discrete
finite slice solutions v;(1)(§=0, 1, :--, J) of the finite slice scheme (1), (2)rand (3)u
o0 the m—dimensional generalized vector solution w(z, t) of the nonlinear mutual
boundary problem (2) and (3) for the system (1) of nonlinear wave equations
takes place only for certain selected sequence {k;} of steplength h>>0. Since the
solution of the monlinear boundary problem (2) and (8) for the system (1) of
nonlinear wave equations is unique, then the above mentioned convergence will
take place for any sequence {i;} of the steplength A, such as ¢ —> o0, /4 —> 0. This
means that the convergence takes place for & —> 0. .

Theorem 3. Under the. conditions (I), (II), (III), (IV) and (V), the m—
dimensional finite slice vector solution v;($) (j=0, 1, «-, J) of the nonlinear finite slice
scheme (D, (2)n and (3)y converges to the m—dimensicnal vector fumction u(z, ) €2,
as h—0 in the following sense: for any sequence {hY of the steplength, such that

o> 0 as i = o0, {0y(0)}, {420 and {0)(t)} aro uniformly coergent o u(a, 1),

- (z, Dand u; (z, t) respectirely in Qr mﬁd {4*4;:}’ (ﬂ}, {Aﬂ;j (t_)} and {v; (L)} are

weakly convergent 10 Uee (@, 1), Uan (2, 1) and uy (2, 1) respectively in L,(0, T; L (0, 1))
for any 2<p<<oo, Furthermore the limiting vector fumction wu(z, 1) is the umigue
generalized global solution of the nonlinear boundary problem (2) and (3) for the system
(1) of nonlinear wave equations. .. - PETTN TR .
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Hence when & is small, the finite slice solution »,{&) (=0, 1, +, J) of the
Anite slice scheme {1y, (2)s and (3), may be regarded as the approximate solution
of the nonlinear boundary problem (2) and (8) for the system (1) of nonlinear
wave equations. |

§ 7. Mixed Problem

12. In this section we are guing to construch the m——dimeﬁéibnal goneralized
global vector selution u(z, t) of the boundary problem with the nonlinear mutual
mixed boundary conditions |

ul‘-(m} t) =g1'ﬂd ‘Ij(%(o} t’): t).-
fi u't(z: t) =W(H;(L ﬂ)r u([}: t): 'u'(z.'l t), t)
and the initial conditions |

(40)

u(0, 0) =@(2), (3)
uy(w, 0) = ()

for the system |
wep—thep-+grad F(w) =Bz, t, Wi+f (z, t, U, e, Us) (1)

of nonlinear wave eguationg in rectangular domain Qr={0<o<l, 0<i<T Y where
u= (U, ***, Um), T (P, Yo, U1, 0, fle, t, ¥, D, 4, o(w) and ¢ (o) aTe m—dimensional
vector functions, @ (u, ¢) and F (u) are scalar funetions, B(w, t, ) isa mXm matrix,
for independent scalar variables (w, 1) €Qr and vector variables uo, %1, %, P, ¢ CR".

Suppose that the conditions (I), (I1) and (Il1) are satisfied. Assume the
following conditions for the nonlinear boundary conditions (40) and the initial
conditions (3). o

(IVy) @(u, $)=>0 is a non-negative scalar function of t€[0, T] and uER™.
Gy, t), Dy, t) and Py (u, t) are three times, twWice and once continuously
differentiable with respect to the vector variable u €R™. And .

1@, (u, 1) | <A{|u|?+1}, % (41)
where A>>0 is a constant. The Hesgian matrix H (u, t) =grad? &(u, ) with regpect:
to w € R™ ig non—negatively definite. F

(IVy) T (p, o, w1, 3)i8 2 m~dimensional continuously differentiable vector
functions of t& [0, T] and up, w , PER™ The Jacobi derivative matrix ¥, (p, %,
w1, 1) with respect to p€R” is positively definite, i.e., there 18 a positive constant.
o >0, such that - '

(&, Dol p, v, ur, HE)=0|ET o (42)
for any 1€ [0, T] and wu, %1, D, £ €R™. Furthermore there are- -

(D (0, o, ws, 1) | <A{|o| + |ua| +1}, |
@, (p, to, w1, O], | PulP, to, us, 1) | <Bto, u){lpl +1}, - (48)
@, (p, to, U1, £) | <Buo, u) {|p{*+1},

where 4>>0 is a constant, B{ue, #1)>>0 is & cONWNUOUS function. of ue, u1ER™.
(V") The m~dimensional initial vector functions @ (@) CH*(0, 1) andy(z) €
H*(0, 1) satisfy the boundary conditions (40), i.e., S W s
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¢’ (0) =grad @ (p(0), 0), 4
—¢p M =T (@D, ¢(0), (), 0).
Now we consider the finite slice schemse (1), with the finite slice boundary
conditions

-y

.id'*'q;: () =prad D (v (), ¥),

~ v () =!P’( d'i"(ﬂ; vo(t), 05(8), ﬁ) -
and with the finite slice initial conditions
v,(0)=¢;, j=1,2, -, J LN
07 (0) =y, §=0,1, -, J~1
and v, (0) and ¢5(0) are uniquely determined by the gystems
v0(0) =1 —hgrad $(vw(0), 0), (3),

A_
—wfr(ﬂ)-=‘!?( L, 10(0), @5, 0),

where gy=p(z;) and dy=th(2) (j=0, 1, -+, J).

Since the H’eﬂsi an matrix of @(u, {) with respect to uCR™ is non-negatively
definite, them for sufficiently small 2>>0, the first m~dimensional vector equation
of (8V), has a unique solution 2,(0). And 2,(0) is uniquely determined by the
second m~dimensional vector equation of (3" ). |

The existence and unigueness of the finite slice solution #; () (§=0, 1, ++, J)
for the finite slice scheme (1)n, (40)4, (8”')» and (8™), can be proved by gimilar
procedure used in the previous sections,

Temma B. DUnder the conditions (1), (II), (III), (IVy), (IVa)and (V'), for
sufficiently small h, the nonlinear finite slice scheme (1)y, (40)y, (B )nand (3')y has o
unique solution v;(1) € O ([0, T]), j=0, 1, --, I |

13. Now we turn to estimate the finite slice solution v;(¢) (=0, 1, -, J) of the
finite slice scheme (1), (40)n, (8")pand (8™):.

In the equality (10) all terms can be estimated by just the same way as used in
§ 2, no. 4, except the second term of (10). For the terms of (11), we can derive as

follows. At first
r Ao\ /0 d =
(11.;,, > ) (v, grad @(vo, 1)) = 7y D (vo, t) —Dy(o, 1)

From the condition (IVy), we have
| B, (v, t) | <A{{20|?+1}.
From (12), (13) and (14), we get =~
P t)]%(?m-{\}ﬁmﬂé—l—ﬁ(g 1, |3 )dt+1}.
Secondly, we have from the condition (IVy) and from (12), (13) and (14)

(s Aot ) =~ (2, (A2, o, 1))

R i A
S ( k J.: @Il ;&J | w({}: Yo, Yy, t))
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n "Aﬂ.."UJ g_ d_’l}; > :
‘Q: o ] }b ( 2 3 w(o; Vo, Vi, t))

<120, v, 05, DI

Q%{]%JQ’F |vs]?-+1}
goﬂ{ [ 50,24 j:(J: ] h) d’i—&—l},

den

i )dr. Then we can proceed the estimation. following

1
where @"’;’=j %P"(T‘d}f" , Vo, 1,

0
the way as given in § 2, no. 4 to obtain the analogous results of (17).

Temma 6. Dnder the conditions (1), Iy, AII), (IVy), (IV_ﬂ)lmnd (V"), for
sufficiently small A, the solution v,(1) (7=0, 1, -, J ) of the finile slice scheme . (1) y;
(40)n, (3")n and (8'V)n has the estemaies

sup |os(#) |+ sup |valt)[s+ sup |180a (2) e < Ks, (49)

i OtT - 0<t<T
where K, is a constant independent of h and t€ [0, T]. |

duact of —4 “‘1; 1 () h and

-, J'—]_..IWB get the

For the fyrtler estimation, we make the scalar pro

scheme (1), and sum np the resulting products for j=1, 2, -
equality (18). For the second term of (18), we have (19).
Ag to the first term of (18), we have

*"#(dﬂ-@,_ g '__J-l(am; _d+m’;) (Am.';, N (d_ru:, ,,) ]
o e et L e e A h""“)' A et S L

For the term next to the last, we have

| ; _
o ( Af” ; wg) = (grad? Do), vi) + (grad @y, oH

g
= 5 i: {(grad® ®v), vy) + (grad 2, Vo) b

= {((grﬂdﬂ @) o, '1’:?) + ((grad Dp)e, o)}

For the last term of (46), we have

(At ot)= (2, (55 o t))

] /
- (A}:JJ » s A}f'r i ’4’-,.,1:{;.+%me}+wf)

oo ( ‘d‘}:f' , Vo 06+ v+ @P.”t).

#_. A;’!}fr
_"a'é ﬂ'" 3

Then from the condi_tion (1Vg) , We obtain

4. fj’ i . b A | 4 A : i | |
- ( }':? - '1!:;)*5; ’;— }:JJ +039{ lﬂ{]li‘l' I“l.»\"i\‘irl4 | | ;:JJ ! 1} S
ol 4. |2 2 2 / 2 1 11
oty +040{ | 32wa (8) |2+ [ 04 (2) 13+1},

where C are constants independent of i. Hence (46) becomes
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G ﬁ+d-—'ﬂ; # - d ! 2 9 o & ' "
S (Le£52, of Yo — - {1304(8) 13+ (gred® Dui, o6) + (grad &, o)}

A L NOT R LRIOTE S S

In the procedure of estimation of the third term of (18), the contributions of
the boundary conditions at the lateral side #=0 and =1 of the rectangular domain

Qr are

(ﬁﬁ:‘r’ erad F (vo) ) - |(_d_ @(v,, 1), grad F(ﬁu))“§041{||3’tlfﬁ(t> |2+1}, |

h it ™
A2 - crf[ Aoy |2
( 5 gr&d F(’U,r)) = 6 l 7 "'|"O41

respectively. Also in the procedure of estimation of the fourth term of (1_8) , the
contributions of the boundary conditions at the lateral side # =0 and =1 are

(L2, B, 1, wrh)| = |( B, 0, BO, & w)h)
L <Ou{lSo@I3+1, ~  (49)
A_al NPIPE AL 0

( #2, BQ, ¢, w)w)]aa: : 10, {80, () [2+1}

61 A
respectively.
For the last term of (18), the contribution of the boundary condition at =0
I( df“:fi) = l(}% D (v, 1), fi) <Ois {89 (8) [3+ |20 (D) 341} (50)

and the contribution of the boundary condition at z=1{ is
' ; o2 O L
.( A}:}J Ja —:1) ‘| ‘Q%L d}:}"r + O {000 (®) |3+ [ 8°0a(®) |3 +1}. . - . (B1)

Using these thus obtained estimations (47)—(51) and following the argument
similar as in the proof of Lemma 2 (in § 2, no. ), we get the further estimates for
2y(8) (§=0, 1, +-+, J). ' ., &

Lemma 7. Under the conditions (I), (II), (I1I), (IVy), (IVs) and (V"), for
sufficiently samll h, the solution v;(t) (j=0, 1, -, J ) of the finite slice scheme (1),
(40)y, (3" and (B™), has the estimates | '

sap |vi (@) |-+ sup 895 () |a+ sup [3%0a (@) [a< K, (52)
O<t<T O<t<T OgicT _
hence wlso | 5
sap |24(#) et suP {802 (F) o< Ko, - (53)
O<ic® : . 0T

awhere K and K 1o are constants independent of k.

14. By means of the same arguments used in § 4—6, we can obtain the existence
and uniqueness of the generalized global solution u(z, t) € Z of the nonlinear mutual
mixed boundary problem (40) and (3) for the system (1) of nonlinear wave equations.

Theorem &. Under the conditions (I), (IL), (III), (IVy), (AVa) and (V'), ths
problem with the nonlinear mutual mized boundary condiiions (40) and the initiad
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conditions (3) for the system (1) of nonlinear wave equations has & unique m—dimensional
generalized ¢lobal vector solution u(w, t) € Z=L.(0, T H2 00, DYNWE (O, T H (0,
D NWR, T; L0, 1)), which satisfies the sysiem (1) in the generalized sense and
satisfes the boundary conditions (40) and the initial conditions (8) in classical sense.

Similary we have the theorem of convergence of {inite glice scheme {1)p, (40)n,
(8"p and (3" )n. _ r | ay

Theorem 5. Under the conditions (1), (II), (III), (IVy), (IVs) and (VH, for
suffictently small b, the m—dimensional finite skice vector solution v,() (=0, 1, ---, J)
of the nonlinear finite sice scheme (Dn, (40)s, (87 and (8)y converges to the m-—
dimensional vector function u(z, 1) EZ as h—>0 n the following sense: for any sequence

h,—> 0, {w,(t)},{—'d—*'-%ga} and {v,()} drra u.n-ifm'mlg convergent to u(w, ), ug(z, 1)

and w, (@, t) reépactiwly in QT and {‘d"dhff (t)},{‘dﬂ;’(ﬁ} and {v}(t)} are weakly
convergent 10 Ug.(w, 1), g (z, t) and vy (v, 1) respectively in L,(0, T; Ls(0, b)) for
any 2<p<oo. Furthermore the limiting wvector jfunction u(w,t) is the uniqueé
generalized global solution of the nonlinear boundary problem (40) and (3) for the system

(1) of nonlinear wave equattons.
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