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NUMERICAL SOLUTION FOR THE STEFAN
PROBLEM WITH CERTAIN SINGULARITIES™

Waneg YI (i ° £) Zuvu You-LAN (R &%)
(Computing Center, Academia Sinfca, Beijing, China) |

§ 1. Introduction

In this paper the Stefan problem refers tdithe heat flow problem of the materials
which undergo phase change. Ag i3 well-known, 1518 an importani example of ihe
" free boundary problem. In recent years, there have been a greai number of
numerical methods for the Stefan problem: difference methods in which one
establishes difference schemes for the given original problem; enthalpy methods in
which one gots rid of the free boundary through introducing enthalpy, a function of
temperature; variafional methods, finite element methods, ete. For the survey of
thess methods, we refer the readers to [1], [2].

However, most of these numerical methods do not deal with the discontinuity of
the temperature at the origin (0, 0) or at some point (&, 0 (6>0).

Due to the discontinuity, the derivatives of tempéra’ﬁnre with respeot to { and »
must be very large in the neighbourhood of the poiné of discontinuity. R. Bonnet
and P. Jamet™ suggested a third-order method which permits the discontinuity in
the # direction. They computed the Stefan problem with initial discontinuity. Later,
according to the idea of [8], Chin Hsien Li'*! suggested another method which is
applicable to the problem whose free boundary is in an implicit form. The result
given in [3] is good if ¢ 18 not very small, but near the point of disecontinuity, the
error is not very small. Thig is shown by our computation given in § 7.

One of the authors has developed the singularity-separating difference method,
by which very acourate numerical results on. discontinuous solutions of quasilinear
hyperbolic systems have been obtained™. Moreover, based on the analytical property
of solution of flow in the region where a shock wave pasges through a “gtrong
explosion” center, & quite effectual method for this problem has been proposed in (6]
and very good results have been achieved. These experiences show that it is possible
to establish & numerical method with high acouracy for the problems with cerfain
singularities by considering the properties of solutions.

A sgimilar jdea was proposed by L. Fox in [1]. He pointed out that ihe
combination of numerical and analytical methods is the best way 10 solve the
problem. Especially for the problem with singularity, thig kind of method not only
avoids the disorder caused by the singularity, but also can clearly deseribe the state

“of solution n~sr the singularity.

#* Receivel March 27, 1983.
1) This work was parily supported by the Science Fund of the Chinese Academy of Sciences.
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Apcording to these experiences and ideas, we suggest a new method whmh could
give very accurate results everywhere. The feature of this difference method is that
by using the analytical solution given in [7], we iniroduce a new coordinate
gystem under which the derivatives are not large before the schemes are established.
In thig paper we give the method and some numerical resulfs, and compare it with

6ther two methods., Error comparison shows that our method is better than the
method in [3] and the Galerkin method™. .,

§ 2. Formulation of the Problem

Oonsider the ice—water syatem

e ( | Uy ;
o kyi(w, t) o ), in Qi : (2.1)
b 1y 2 a(zg e, ) 3“2) inQ, (2.2)
| - ot oo\ @ Vg ) '
with boundary conditions |
w®D-g®, - (2.3)
» o ue(Q, ) =h(2), o (2.4)
free boundary conditions on the phasechange line a=3-4¢ (¢) _
vy (B +£(t) t)=ua{b+£(E), 1) =0, (2.5)
2 €
i i) o=b+4(t) P 0w | e=vesty’ (2.8,
and initial condition - I
{1&1(113, 0)=wp(z), O0<z<b, ‘ (2.7)
ua(m, 0) =f(2), b<a<qQ, | (2.8)

where
R Q1 ={(z, t): 0<<w<<b4+£($), t>>0} 18 the solid state region;
(2a={(z, t): b+£&() <o<@, >0} is the liquid siate. region;

and A is the latent heat of phasechange. Mnreuver we make the following assumptions:

Assumption A, ¢z, ), ks, t) (=1, 2), g(t), k), p(x), f(z) are all
continuous functions.

Assumption B. u(d) -<0-<if(b) (1f b =0, we assume g(ﬂ) in{if(ﬁ) 1nstead)
We refor to (2.1)—(2.8) as System (SI); when b=0, we refer to (2, 1)——(2 6),
(2.8) as System (8). |

" For the sake of later reference, we list some notation hers.
Gi—ﬂi(b 0); fﬂ;—'k;(b 0), i=1, 2
- g=g(0), p= ﬂ»(b) f=f(b)

§ 3. Systems (CSI) and (CS)
Suppose we have the following equations and conditions: -

|
3;‘;» yz;l.aég? it Oy, (3.1)

&1
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e =2

Ca 3;:0 = ks a;mugo , in L2, (3.2)

2510(0: t)=g:r (3.3)

t10 (b +£0(2), £) =ua (5+£6(3), ¥) =0, (3.4)
dgﬂ 4 3‘!&20 " :

A di ks Or | e=b3£ulty M0 | a=vteuy’ (8 .B)

uiﬂ(m: 0) ll £/ (3 +6)

U (@, 0) = f, | (8.7)

where Q0 ={(z, 1): —co<w<b+£s(t), >0} (if b=0, Q1={(z, £): 0<a<&o(t), 1>
0}), Qa0={(a, t): b+& (1) <w<o0, 1>>0}.

In what follows, (3.1), (3.2), (8.4)—(8.7) are called System (CSI), and (8.1)—
(3.B), (3.7) with 5=0 are called System (0S).

Noticing that System (8I) has the same parameters £ (=, 1), ez, t) (4=1, 2),
(@), f(@) as System (OSI) has as (=, ¢) tend to (b, 0), we can desoribe the state of
solution of System (SI) in the neighbourhood of (4, 0) with the help of the analytical
solution of System (CS8I). Obviously, there exists & gimilar relation between System
(S) and System (@8). This fact makes it possible to overcome the diffioultied
caused by the singularity. |

Now we seek the analytical solutions of Systems (CSI) and (08).

§ 4. Solutions of Systems (CSI) and (éS)

W shall desceribe in detail the procedure of looking for the analytical solution
of System (CS).
Weo consider the heat flow equation

ou _ _a U
ral . (4.1)
¢ being a constant. Under the similarity transformation
@' =k
’ 4.2
{ t' =}, G

k being a eonsgtant, the form of the equation is unchanged. Therefore

u(z, t) =ulks, k),
k being any constant.

x |
In other words, along the curve 7 = oonstant u(z, ) is a constant. Thiy means
| o

vt

that u(w, 1) is a function of the variable 2= ¢ being any constant. Let c=1/2a

and put u(z, t)=yi(z) into (4.1). We have
’ — & ﬂ-ﬂ '’
'1!7 (ﬂ) za_gtﬂfﬂ 4',35# lp (Z).
This is an ODE, whose.general solution is
(&) =A+B£s—-f' dg, (4.8)
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Ty,

A, B being constants.
The solution of the problem with initial and koundary conditions which are

unchanged under (4.2) also has the form (4.3).
We turn back to System (CS). Let
ai=ki/01, @3=rka/cq
and assume ity solution is of the form

| Uro(e, ¢) =Ay-+ Bidi( 2{3;:.7),
oo [, 3 =AH—I—BEG‘3< Qd;/.t_),

| S
where 4,, B; (=1, 2) are constants and &(z) "-ﬁju e~ df.

!
Firstly, we determine the form of phasechange line x=¢§,(%). p(t) = %(—2

and put ¢(#) into (3.4). We obtain
P (D) _ (ﬁ)
Aj_"!".Bj_@( T ) Ag+ ,_Bg@(

232
Then differentiating both sides with respen‘n to ¢, we have
B o a (™ 2
o' () (Bre (&) _ B~ )

ﬂg ?

which means either

1 Blﬂﬂ 11/3
= Bﬂﬂi)

T ¥ | &
( ﬁﬂi ) ( 2@9 ) y
In any case, n;p(t) =¢q (constant) follows, i.e.,

£o(2) =n:~./_

Secondly, we determine the consfants A;, By (¢=1, 2) in wye{s, ¢), ug.;(m ).
Using (3.3), (3.4), (3.7) and noticing ®(co) =1, we got

o' (H)=0 or @(i)=1

Ay=g, By= ¢( gﬂ )!
N 2a4
- L ‘;‘:ﬂ), Bom—L
L= ¢(;wa) - 1~ @(2{15)

Finally, the constant a can be determined in the following way. From (3.5), we
get the identity:

kigaﬁﬁ kaofe i 55 T

.‘--_l-

“1‘15(2&1) “ﬂjll i’(zaﬂ)}r-_ 4

or equivalently, « is a root of equation # (a) =0, whero
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?ﬂig — 3 /443 k fg‘“'f""“i

”1@( zai)l {1 dj( S )} -

The function # («) has the properties: :
1. When & changes from 0 0 oo, F («) changes from — oo to co;
2. F(a) is a strictly increasing fllﬂﬁtlﬂn
Property 1 is easy to get from the definition of F (a). Le’s

Pla)= —\;E

g«

fi(‘m)__- @({I)j

_ml

fﬂ(ﬂ:) e @(EI)

Clearly, if fi(a), fa(a) are strmt]y 1r1(3rc;a.5111g functmns Df a, thﬁn F(a) also ig
an increagsing Iunction. - |
Diflerentiating fi(a&), fala), we ha.ve

gy 2 zwﬂm'Jzﬂ'*'d§+(a*“')?‘
P POETT e T

7 2 (3‘“'—20;{: o " dg)‘.-—m -
A (e 1)

o 3 il _L bl
~ (1-P(a))”

By using these two relations, Property 2 can be proved easily.

According to these two properties, we know that #(a) =0 has a unique root in
the interval (0, o0). In practical mmpu’ua.tmn it can be defermined by a certain
numerical method.

We can use the same procedure to seek the analymal solutmn of System (OSI)
The results are listed below: :

Uto{(®, £) = ﬁ(;__){é( 2?»1") | 5(2:1:/%)}’

=0,

Dt {2k )
_ 2&2 -
mhere D (2) = r e ' d& and the phasechange line ig
' ~ ) e : RS g .
o=b-+E&o(t).
Here Eo(t) =an/ ¢ a.nd « 18 the unlque 1'0013 of F (o:) 0, where

o )ﬂ ' ()
F () = 5"-\/_ 9% G- ’Li’u’ 20 . kaf 6 .
al"' 5(%? T 1_ @<2{In):
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§ 5. Analysm on Systems (S) and (SD)

Wl’uh the help of the snlutmns of Systems (USI} and (C8), we can deseribe the
state of the solution of Systems (SI), (8) in the neighbourhood of (5, 0).

The methods. for Systems (SI) and (S) are essentially the same, though formally
different. For clearness and simplicity, we shall only desarlbe in detail the method
for System (S), i.e., for the cagse b=0.

We begin with System (OS) The family of curves {Bf.;.(t) 0<<B<1} has the
JPpropertieg:

1. Tt covers Q.

2. All curves intersect at and only at t=0 and =0

3. Along each ourve, uy 15 equal to a consta.nt 5. When B c¢hanges from 0 to 1,
Up changes from g to 0.

For System (8), the famﬂy of curves {B£($): 0<B {1} has the properties
1 (L4, must be replaced by £4) and 2, but genﬁrally 115 does not have property 3.
Now we agsume

S O " .
, .« .3 Ignj:t 0 1IJ. | = (6.1)
and )
fim 4 BE@, & _y | (5.2)

t— 0 u;{u (.B{.Ju(?l:) 3")
Therefore, - -~

11'131%1(35 (1), t) =1i13ﬂ w10 (BEo(2), t) =0p.

This means that System (8) has the property:

3. Along every ourve a:—Bf (t), the limit of ui(m t) at =0 is equal to
uo{BEe(t), 1) =Up. - |

The properties 1, 2, 8’ show ug the fact: Because the lmnta of uy at {=0 a.lcmg
different curves are different and these curves knot together at the origin, the
‘temperature must ﬂhange violently in a smiall region near the origin. In order to
overcome the difficulty in computation caused by this phenomenon, we make a
coordinate transformation such that the curves will not go fogether as ¢ tends 0. This
can be realized in the following way. -

We choose a coordinate transformation A1 (z, 1)—> (y,t) such that the family of
curves {B¢ (¢): 0<B<1} iy transformed into that of parallel lines {y=B: 0<<B<1}.
Let v1(y, t) =w(x(y, 1), £). Olea.rly, the value of o; (y, 0) may be computed by using
the formula

v1(B, 0) = lgrun wy (BE (ﬁ) ,'1) 5=1¢ir5 thso (BE.;, (t) 1) =5,

We have analysed the problem in Q,. Now we turn 10 Q..

The family of ourves {B& (¢): 1<<B< oo} has the properties:

1. It covers £2; and the region {(z, #): Q<o <oo, t}{}}

2. All curves intersect at'and only at ¢ =0 and &=0.

3. Along each curve z= Bf (t) the limit of wa(z, ) at t=0 is equal to
oo (BEg(8), 1) =Cp. S |
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Now some problems ocour. Becanse the limits of 4, at =0 along different curves
are different and these eurves have a knot at =0 and #=0, the gradient of wy (2, 1)
must be very large mear the origin., If we deal with £, as we do with £, i.e.,
transform {BE(£): 1<B< o} to {y=B: 1<B<oco} in a new coordinate system, we
ghall face two problems:

1. Because the length of the interval in the y direction is infinite, it is unfeasible
for practical computation.

9  The line on which the initial values should be given becomes the line y=oco.

Wo suggest a method to cope with these two problems.

Take a positive number M such that |Ox—f(0) | is sufficiently small. This means
that |ua (ME(0), 0) —f(0) | is sufficiently small. From the definition of Oy, the
number M which satisfies the condition above does exist. We introduce such a
soordinate transformation A.: (z, £)—(y, t) that the family of curves {B£(?): 1< B
<M} is transformed into the family of parallel lines {y=2B: 1<B< M}, and the
complementary set of {B{(t): 1<B<M} in Q; into the set {({y, ¥): M<y<M+1,
>0%}. Lot va(y, 1) =us(@(y, £), t). Clearly, the value of v, (y, 0) may be compuied by
using the formula -

: 1{9(3: 0) =1—E’JI us (B (1), 1) =z (Béo(f), ¥), if 1<B‘<M:
 0a(B, 0) ~p(B), if M<B<M+1,

where @ (y) =f(z(y, 0)).
Now we formulate the procedure that we have desoribed.

Define the transformation:

oK 0<a<< ME(D),

g
w—ME(E)
(#) Q—M&(tj”"_M’ ME(t) <2<Q,

i=1.

Olearly, between the functions in two cocordinate systems there are the following
relations:

vz, t) =v(y, ¥), ua(m, t) =v(y, %),
f@) =@y, g)=g@), h({)=h(I),

ou _ o 33_,(__'_3@
oL oy ot o’

u _ o dy , I di _ ov oy
oz oy ov ot v Oy Oz’
2 () 2u), 0y B (3 By b
ox

o/ oz oy\ ox oy/’
where e '
A

ﬁ?/_,___ . -5(!‘-) Y, 0":@{-&{&(”:
ot ME @) (y—M—-1) -
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s,

O<a<<ME(D),

8 2l
oy (L)
o 1
- QML)
And under the new coordinate system, the phage change line is y=1. Therefore,
under the new coordinate system the problem related o System (B) can be deseribed
as System (8), which congisgts of the equations

31__ 1 0 (ki(y,3), 091, &' ., O
sy, ) =0 g LRk ral, ) 2y SR, 0<y<t, 1>,

ey, )22 3‘”9— P (laly, 8. 0% ) 4oy, ) S0 3’*’2 1<y<M, 1>,

MEQ) <az<Q.

ot  £() oy\ &) oy £
3'113 sy 1 kg(y, It-) a'ﬂg
R VI TET 6 ay(Q ME (%) 3y)
—ca(y, t) Mg’gl(gfgfg_l) 331; , M<y<M-+1, >0,

the initial value

v1(y, 0) =uw(yé&o(t), §) “Ow 0<y<1,
s vy, 0) =uxn(ye(t), ) =0,, 1<y<M,
L va(y, 0) =p(y), MQ@/{M'I'L

the boundary conditions

(0, t) =g(t), >0,
v (M1, t)=h(t), t>0,
and the free boundary conditions

'1’1(11 t) g (11 t) =0,
dé _ 1 o A,
A 3T E D {ici(y, il L y:i}'

W hat is left is to esfabligh difference schemes for System (8’) and to get numerical
solution. We shall discuss these problems in the next section.

A similar prooedure can be applied o analyse System (8I). In this case, ingtead
of using the solution of System (C8), we use the solution of System (0SI) to “‘connect’”
two parts of the disecontinuous initial value of System (8I).

We take a number M such that [%10(b—MEe (), 1) —u(®)] and [F(B) —tao (B4
ME,(t), t) | are sufficiently small. And we try to find a coordinate transformation,
which.

1. Turns the family of curves {b+B1£(3): — M <<B;<<1} into that of parallel

2. Turns the complementary set of {b+B1£(¢): — M < B;<1} in £, into the strip
region {(y, 1): 0<y<<M, t>0};

3. Turns the family of curves {b+ B£(t): 1< By<< M} into that of rarallel lines
{y=2M+ By: 1<<By<M}; and

4, Turns the complementary set of {6+ B£(¢): 1< By;<M} in &, into the strip
region {(y, 1): 8M <y<4M, t>>0}.

This is the transformation we want:
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. Mo
b—MEe (%)’

l@/——** z—b LoM, b—MEQR) <z<bi-ME(D),

0<o<<b—ME(D),

& ()

g 8 (HMEG@))
| M ey T3, b MEW) <w<g,
t=t |

(I*)

Through the transformation the phase change line x=»5-+&(f) becomes the
straight line y=2M -1, and the curved lines o=>b— M{(E) and o=b-+-ME(E) are
turned info y=M and y=8M. Obviously, the analytical solution of System (OSI)
can be used to provide a part of fthe initial value for the problem under the mew
coordinate system. Letting

v1(y, 1) = (2(y, 1), 1),
va(y, 1) =us(z(y, §), 1),
and noticing
o(y)=f(z(y, 0)),
# P (y) =u(z(y, 0)),

we ¢an rewrite Systenj (8I) a9 System (SI"), which consists of the equations
Sy M O (Miily, t) 3@1)

1y, V)——=5_ ME(R) Dy \b—ME(D) oy
"'Ci<y: t) bmiétgt) ﬂ

¢1(y, tja—%- 1 (-‘T“:t (y, %) 3‘2»"1)

O<y<M, t>0,

o &@) oy\ £() oy
 te D fgf(%) (y—2) 9% 3"”1 M<y<2M+1, £>0,
3*!15 o 1 b7, kg(y, t) 3’?)9
SR T 16 é‘y( @) @y>
il ?E;? (y—2M)-2% 3’?;* oM +1<y<3M, >0,

Ova _ M @ Mk (y, t) 9,
ca(y, )5, ot Q— (b+ME(D)) '33(( Q—-(6+M§(t)) oy )

| ME'(4) O3 .
~a(; ) =gty V4D G, BM<y<4M, >0;

the initial value |
o1 (y, 0) =Y (y), O<y<M,
91(y, 0) =uso(b+ (¥ —2M) & (1), 1), M<y<2M-+1,
vy (y, 0) =ugo (b+ (y—2M) & (2), 8), 2M+1<y<3M,
Lva(y, 0) =p(y), 3M<y<4M; |

the boundary value conditions

U1 (0: t) #g (t): t:}o:
’Ug(wj f') =h(t), 3>0



No. 4 NUMERICAL SOLUTION FOR THE STEFAN PROBLEM WITH... 307

L ]

and the free boundary conditions
"1?1(2M+1_, t) == g (2M+1, t}=0_,

dg e 1. ., { 3'1?1 | _ 3*119 }
_r.ﬂ_ﬁ' £ (%) k1 (y; #) Oy |y=ami1 ka(ys 3) Oy |y=2m+1)

It is eagy 10 establish difference schemes for Systom (SI') and solve this problem.

§ 6. Difference Schemes

We only establish difference schemes for System (8). Those for System (ST")
are similar.

In this and the next sections, we use the following notation. 4#: time step; dy:

n+é—_

Space step; v;: ¢dy; FT: approximate value of funﬂtmn F(y, t) at (édy, ndt); &
_(§n+§n+1)

System (8" is disoretized in the following way. The equations are approximated

by
g *”ifl“‘”l*' ( ){A (BG4, +A_ (k2 (1—0) A_v3) }
n-ll §ﬂ+1_§ﬂ 1
+e1; * ) y; (B20v3 + (1—8) o)
£ A
'.Z.’="—*1, st Nj_—l, .Nrj_/:!y:l,- ' (6.1)
n+1
o 7 M=t (L Y04 0a,ont) + a0 (g (1-0) 4,03 )
LH: g“"‘f
fi _1_ n+l__ £n
+on® £ =6 1 ) {04+ (1 —8) dovl },
£ 4
g1, svs, Ng—1, Npdy=M—1, (6.2)
et o L ){A (K504, 05) + A (B (1—6) 4,23}
ﬂt Q M§n+
i il n
ol _MAT g 3 (1+gs— M — 1) (Bt + (1~ 8) Aoy,
AH(Q— ME™T)
g e, we, Nyl s—A1, Nady=1, . (6.8)

where 0<#<1. The boundary conditions and the initiai value are rewritien as
follows:

Wi e g ($7H1) (6.4)

B T T (6.5)

00 =iy (il (®), 1), §=0,1, ., Ny,  ° (6.6)
vy, =Ua,o((I-+2dy)Ee(t), £), +=0, 1, -, Ny, (6.7)
?J2£=¢:(1-I—'Erdy), i=Ny+1, -"'Ng-{-Ng (6.8)

And the continuity condition on the phase ﬂhange line i unchanged:

il Wl | M (6.9)



308 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 4

=

.

If &7% and +5, of the previous lovel are known, then (6.1), (6.4), (6.9)
cann be solved independently. However, (6.2), (6.3), (6.5), (6.9) still form an
underdetermined system whieh cannot be solved uniquely. One additional condition

should be added. This condition should show the confinuity of 332;9 on the curve ==

Mg (3) in the (=, t) plane, i.e., the continuity of a;; : SZ on the gtraight line y=M
1 S (M_, ) 1 ova(M,, t)

£(t) oy Q-MEQ) dy
Tts digerete form is

+1 J+1 +1 n+1
1 "!}E't'ﬂ_@g, '1'!_1 — 1 WEI:A'T!'I']-“‘IJB!:HIITE = (6.10)

§n+l ﬂy Q-M§“+1 _ ﬁy
Now we desoribe the method of simultaneously golving £, @1k, 3%l
Suppose @7, ¥4, £ are known. The method we use here is the same as that in
[9]. It is a predictor-corrector method which is of second order accuracy.
Define |

" 25 1 i vg.N:—ﬂ“4wg,Nl-1+3@g-N: A mErNI+2q4inﬂl+1+3wgiﬂl}
R(t 3 dﬁ) '—‘_gm { 1,5, ) gdy- ' kﬂ.Nl 244?} )

and
rl=Er+ ALR (t", Af).

We replace £7*! in difference schemes (6.1)—(6.8) by &%4,'. Then solve the

problem and get approximate solution o3, v3/'. For distinetion, they are denoted

n+1 n+1
b}' V1,500 V2,604

Then we define

1 +1 +1
RO (g™, §) = 1 { fotd W20 — 40T -1 8V w0y
? §H+1}4 pi¥ 1 zﬁy

(0)

+1 +1 +1
gkl VRN a0 403 % 1100 T 3V8 v (o }
2,N1 ¥

24y
and

§"+l=§"+% MR, A + RO, 461

Finally, solving the above system of linear algebraic equations onoce again, we obtain

ntl n+1
Vi sy V2,0 »

Remark 1. In (6.1)—(6.3), ingtead of the same spatial step Jdy, one can use
different spatial steps, say dys, dys, dys in (6.1), (6.2), (6.8).

Remark 2. Though £(1) <@ is always frue, ME(¢) is perhaps greater than @.
Therefore at a certain time t=1{, the transformation (*) should be replaced by
transformation (sms):

@
- 1 g o,

t=1,
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and taking the difference solution at {=#, as initial wvalue, we continue the
computation with the method in [9].

Yy 7. Numerical Results

This section ineludes: 1. numerical examples; 2. error comparisons among our
method, the method in [3] and the Galerkin method™’.

1. Numerical Examples

For simpliecity, § (@, 1), ¢s(o, 1) (¢=1, 2) are taken as constants.

Problem 1. For this problem, =0, %;=3.88, k,=1.85, ¢;=500.0, ¢,=730.0,
2 =384000, and the length of the interval in the # direction @=3.0.

The initial value condition is f(x) ==+ 10, the left boundary condition is g(3) =
~§{—10, and the right boundary conddtion is A (%) =4+ Q + 10.

In computation we take M =41, @=0.5, dy;=0.026, dyya=1.0, dys=0.05, di=
0.05.

We give three temperature curves for {=0.05, 0.5, 1.0 respectively in Fig. 1,
which shows that the temperature changes rapidly near the phase change point. The
ourve z=¢§ (¢) is given in Fig. 2. The fact that the ecurve looks like a curve of function
z=a~/t at theheighbourhood of t=0 coincides with our assumption (5.1).

Problem 2. In this problem b=1, and @, A, %, ¢; (§=1, 2) are the same as in
Problem 1.

The initial value is pu(z) =2—11.0 and f(v) =2+ 9, the left boundary condition
ig ¢(3) = —t—11.0, and the right boundary condition is 4 (¢) =t +Q+9.

In our computation, we take M =300, §=0.5, dy;=6.0, dy,=38.01, dy;=2.99,
Ayy=0.05, 4:=0.05.

The phage change curve s=1-+£ (%) is shown in Fig. 8. The temperaturs curves
for $=0.05 and ¢=1 are shown in Fig. 4, and the parts near the phase change point

are amplified in Fig. B.

2. Error Comparisons
Problem 8. In this problem b, @, A, %, ¢; (=1, 2) are the same as in Problem

1, but the initial value and boundary conditions are different. Here the initial value
is f(z) =10, the left boundary ocondition is g(f)=—10 and the right boundary

condition is

10 Q &

Mk = 1_@( o )(@(2!13\/?) _@( 244 ))’
: 2&9

where @a= (kg/c2)/? and the definitions of @ () and « are the same ag in § 4.
This problem possesses an analytical solution

uy (z, t) @(i)(di(zl) @(2:1::/7))’

204
ta (@, 8) =—— ;(U_ﬂ_)(@(gm;iz—?) ~# (?i“ ))
209

where a; = (k1/cy) /2.
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In Figs. 6 and 7, the dot-and-dash lines represent the analytioal solution.

We take M =41, §=0.5, 4y, —0.025, dy.=1.0, dy;=0.05, 4¢=0.05.

When our method is used, 120 net points in the y direction are taken. At =
0.05, the maximum error which ocours near 8°C is 0.07320 and at t=0.2 the
maximum error which oecurs near 5°C ig 0.07186. These points, almost all with
maximuam errors, are denoted by “.”” in Figs. 6 and 7. The CPU fime spent from i =0
10 0.2 is only 9.96 sec, a part of which (about 5.5 see.) is spent in computing the

initial value.
For the method in [8], we take 20 net points on the left-hand side of the phase

ohange point and 100 net points on the right-hand side. The maximum error Is
0.48054 when $=0.5, and 0.80772 when ¢=0.2. Both occur near 10°C and these

points, almost all with maximum errors, are denoted by “X” in Figs. 6 and 7. The
OPU time spent from ¢=0 t0 0.2 is 58.5 seo. In the other seotion of the curve, both
.7 and “x” are t00 close to the true solution to denote. -

Problem 4. For this problem b=1 and @, A, &, ¢ (¢=1, 2) are the same ad in

Problem 1.
The initial conditions are ,w(a:) = —10, f(x) =10, the left boundary condition is
’

' g(@) = 5( x )( ( 20 ) 5(2&,,3"?))

and the right boundary condltmn is

h(t) =— ﬁ( ] )( (gﬂwf 7 ( 222 ))

Thig problem also has an analytical solution:

wy (@, t) = P (i)( 6( 2; ) 5(2:1_j7))’

2&1

. ( o )(é(zzj—) de)

In Figs. 8 and 9, the dot—and—dash lines represent the analytical solution.

In computation, we take M =800, 8=0.5, d4y;=6.0, dy,=3.01, dyz=2.99, dy, =
0.05, 4t=0.0062b.

When our method is msed, 270 net points are taken in the y direetion. The
maximum error is 0.08095 when £=0.00626 and 0.07622 when $¢=0.025, Both
ocour near — 10°C. The points, almost all with maximum errors, are denoted by “-”
in Figs. 8 and 9. The OPU time spent from ¢=0 t0 0.2 is 11.41 seo., a part of which
(about 5.84 sec.) ig spent in computing the initial value.

When the method in [8] is used, on each side of the phase change point 140 net
points are taken. The short—dash lines in Figs. 8 and 9 represent approximate solution
computed by the method in [3]. When #=0.00625, the maximum error is 0.70643
and when £=0.025, it i3 0.55357. Both oceur near 10°C. The CPU fime spent from
t=0 10 0.2 is 2 min. 18.18 seec.




No. 4 NUMERICAL SOLUTION FOR THE STEFAN PROBLEM WITH... 311

Tabhle 1
M
k
7
24 i | 0.0505 I 60 0.0307
28 0.0485 64 0.0389
32 0.0470 68 0.0382
36 | 0.0459 “ 79 0.0376
40 0.0449 78 0.0370
44 0.0435 80 0.0364
48 0.0424 84 0.0360
52 ! 0.0414 ’ =13 0.0355
56 0.0402 l 02 (.0351
Table 2
4 I I I11
k \
1 - 0.0810 0.7957 1.983
4 = 0.0762 . 0.6291 | 0,657
g - 0.0660 0.2772 0,390
12 0.0604 0.1448 0.299
16 0.0585 (.0864 0.268
20 0.0531 0.0568 0.245

M =0.00625, t=kit,
E——maximum error, k-——number of steps, M ——methods,
I——our method, IIT———(Galsrkin method.

When the Galerkin method™ is used, on each side of the phase change point, 180
net points are taken. The long—dash lines in Figs. 8 and 9 represent approxzimate
solution computed by the Galerkin method. The maximum error is 1. 98252 when
{=0.0062b and 0.65687 when {=0,025, Both oocur near 10°C.

Table 1 lists the maximum errors of our method at several time levels.

Table 2 shows the maximum error aompa.rlson among our method, the method
in [3] and the (alerkin method.

We algo make error comparison between our method and the method of [3]

I sense in a certain interval when #=0.00625. Taking the net points which are
nearest to b— ME(4) and £(2) as the left and the right end points of the interval, and
the other net poinfs as the knot points, we make a oubic 51311119 function 8% (2).
Comparing §§”(») with the true solution in L sense, we got the error B, Similarly,
taking the net poinis which are nearest to £(¢) and b+M¢(¢) as the left and the right
end points of the interval, we get spline 8% (&) and error E®.

For our method BV +E®=3,0X 10" 3, and for the, methc-d of [3] E{”—{—E‘“’
3.8x1072,

From these figures and tables, we can see that for the pmblems here, the accuracy
of the method in [3] is higher than that of the Galerkin method and our method is
much more aceurate than both the method in [8] and the Galerkin method. Moreover,
much less OPU time is needed for our method than for the method in [8].
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