INFINITE ELEMENT APPROXIMATION TO AXIAL SYMMETRIC STOKES FLOW*

YING LUNG-AN (应隆安) (Peking University, Beijing, China)

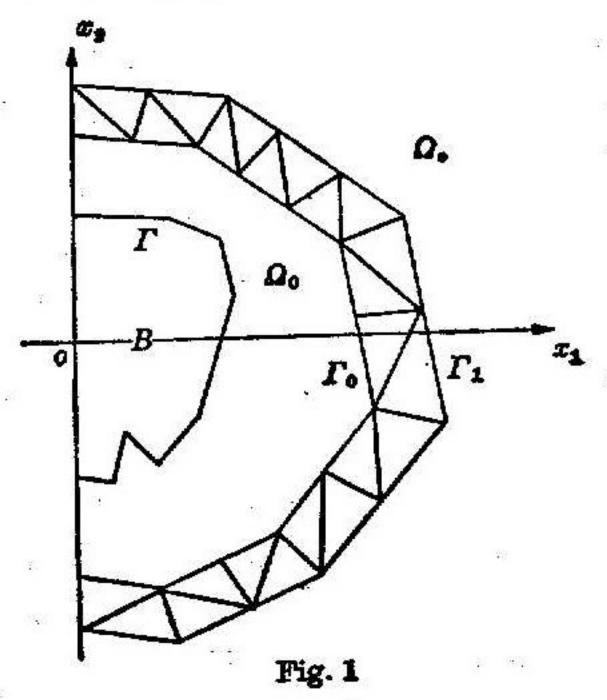
We considered in [1] the finite element approximation to axial symmetric. Stokes flow in a bounded domain. The problem for the flow passing an obstacle in an unbounded domain is also frequently encountered. In this paper, we are going to give approximate solutions for this problem by an approach stated in [2]. An iterative method [8-5] is used to calculate the combined stiffness matrix.

§ 1. The Reduction to a System of Finite Algebraic Equations

Let us consider a rigid body in a 3-dimensional space, around which there is incompressible viscous fluid with steady velocity u. We assume that the flow at

infinity is homogeneous with a velocity u., and the Reynolds number is so small that the assumption of Stokes flow is acceptable. We can always replace u with u-u., therefore it is no harm to deem u = 0. Now we give the classical formulation of the axial symmetric Stokes flow. Let $x=(x_1, x_2) \in \mathbb{R}^2$, $\mathbb{R}^2_+ = \{x \in \mathbb{R}^2; x_1 > 0\}$, and introduce in R^2 the polar coordinates (r, θ) . Suppose there is a broken line Γ with end points at the x_2 -axis and Q is the exterior of Γ in R_+^2 (Fig. 1). Consider the following problem: to find $u(x) = (u_1(x), u_2(x)), p(x)$, satisfying

$$\nu(-\nabla(x_1\nabla u_1)/x_1+u_1/x_1^2)+\partial p/\partial x_1=0, \quad x\in\Omega, \\
-\nu\nabla(x_1\nabla u_2)/x_1+\partial p/\partial x_2=0, \quad x\in\Omega,$$



$$\frac{\partial}{\partial x_1}(x_1u_1) + \frac{\partial}{\partial x_2}(x_1u_2) = 0, \quad x \in \Omega,$$

$$u = u_*(x), \quad x \in \Gamma,$$

$$u_1 = 0, \quad x \in \partial \Omega \cap \{x_1 = 0\},$$

$$u = 0, \quad p = 0, \quad |x| = \infty,$$

where v is a positive constant and u, (x) is a known function. We define some weighted Sobolev spaces for the above problem. There is no harm in assuming $|x| > \delta > 0$ for every point x in Ω . The following semi-norm and * Received September 8, 1984.

norm

$$|f|_{m,\beta,\Omega} = \left(\sum_{|\alpha|=m} \int_{\Omega} x_1 |x|^{2(m-\beta)} |D^{\alpha}f|^2 dx\right)^{1/2},$$

$$|f|_{m,\beta,\Omega} = \left(\sum_{i=0}^m |f|_{i,\beta,\Omega}^2\right)^{1/2}$$

are defined and the corresponding Hilbert spaces are denoted by $Z^{m,\beta}(\Omega)$. We also define the norms as

$$|f|_{1,\beta,\bullet,o} = (|f|_{1,\beta,o}^2 + |f/x_1|_{0,\beta-1,o}^2)^{1/2},$$

$$|f|_{1,\beta,\bullet,o} = (|f|_{1,\beta,\bullet,o}^2 + |f|_{0,\beta,o}^2)^{1/2}.$$

The corresponding Hilbert spaces are denoted by $Z_{\bullet}^{1,\beta}(\Omega)$, and $Z_{+}^{2,\beta}(\Omega)$ is a set such that $f \in Z_{+}^{2,\beta}(\Omega)$ if and only if $f \in Z_{\bullet}^{1,\beta}(\Omega)$ and $\|D^{(0,2)}f/x_1\|_{0,\beta=3,\Omega}$ is finite. The above definitions are equivalent to that in [1] when Ω is bounded.

Let $H(\Omega) = Z_*^{1,1}(\Omega) \times Z^{1,1}(\Omega)$, $H_0(\Omega) = \{u \in H(\Omega); u |_{\partial \Omega \setminus \{x_1=0\}} = 0\}$. Consider the bilinear form

$$a(u, v)_{\Omega} = \nu \int_{\Omega} x_1 (\nabla u_1 \cdot \nabla v_1 + \nabla u_2 \cdot \nabla v_2 + u_1 v_1 / x_1^2) dx, \quad u, v \in H(\Omega), \tag{1}$$

defined in $H(\Omega) \times H(\Omega)$, and the bilinear form

$$b(v, p)_{\Omega} = -\int_{\Omega} p \left\{ \frac{\partial}{\partial x_1}(x_1v_1) + \frac{\partial}{\partial x_2}(x_1v_2) \right\} dx, \quad v \in H(\Omega), \ p \in Z^{0,0}(\Omega), \quad (2)$$

defined in $H(\Omega) \times Z^{0,0}(\Omega)$. The definitions for bilinear forms with respect to other domains are similar. Let $H(\Gamma)$ be the trace space of $H(\Omega)$ on Γ ; then the weak formulation for the original problem is: to find $(u, p) \in H(\Omega) \times Z^{0,0}(\Omega)$, such that

$$a(u, v)_{\Omega} + b(v, p)_{\Omega} = 0, \quad \forall v \in H_0(\Omega),$$
 (3)

$$b(u,q)_{\varrho}=0, \quad \forall q\in Z^{0,0}(\Omega), \tag{4}$$

$$u|_{\Gamma}=u_{\bullet}, \tag{5}$$

where $u \in H(\Gamma)$. The solution of this problem exists and is unique.

Let us consider the infinite element approximation to problem (3)—(5). We construct a broken line Γ_0 : $r=r_0(\theta)$, $|\theta|<\frac{\pi}{2}$, which divides Ω into Ω_* and Ω_0 , where Ω_0 lies between Γ and Γ_0 and Ω_* is the exterior of Γ_0 . We assume that Γ_0 is star-shaped with respect to the point 0, i.e. each ray from the point 0 intersects Γ_0 at most at one point. Especially, it may happen that $\Gamma_0=\Gamma$; then Ω_0 is empty.

Taking a constant $\xi > 1$, we construct similar curves Γ_1 , Γ_2 , ..., Γ_k , ... of Γ_0 with 0 as the center and ξ , ξ^2 , ..., ξ^k , ... as constants of proportionality. Let

$$\Omega_{n} = \left\{ (r, \theta); \, \xi^{k-1} r_{0}(\theta) < r < \xi^{k} r_{0}(\theta), \, |\theta| < \frac{\pi}{2} \right\}, \\
\Omega_{n,k} = \left\{ (r, \theta); \, r_{0}(\theta) < r < \xi^{k} r_{0}(\theta), \, |\theta| < \frac{\pi}{2} \right\}.$$

Domain Ω is triangulated in such a way that Ω_0 , Ω_1 , Ω_2 , ... consist exactly of finite triangular elements, and the triangulation of Ω_1 , Ω_2 , ..., Ω_k , ... is geometrically similar. In each element, second order interpolation is used for u and p is constant, just as in [1]. For definiteness, we assume that each subdomain Ω_k is divided into

some quadrilaterals by the rays from point 0; then each quadrilateral is further divided into two triangles.

To get the infinite element approximation to (3)—(5), we eliminate variable p in equation (3). Let

$$V(\Omega) = \{u \in H(\Omega); b(u, q)_{\Omega} = 0, \forall q \in Z^{0,0}(\Omega)\},$$
$$V_0(\Omega) = V(\Omega) \cap H_0(\Omega).$$

Then the solution u of (3)—(5) satisfies: $u \in V(\Omega)$,

$$a(u, v) = 0, \quad \forall v \in V_0(\Omega),$$
 (6)

and (5) holds.

Corresponding to the above triangulation, let the subspaces of $H(\Omega)$, $Z^{0,0}(\Omega)$ be $H_{\lambda}(\Omega)$ and $P_{\lambda}(\Omega)$ respectively. Let

$$V_{h}(\Omega) = \{u \in H_{h}(\Omega); b(u, q)_{\Omega} = 0, \forall q \in P_{h}(\Omega)\},$$
$$V_{0h}(\Omega) = V_{h}(\Omega) \cap H_{0}(\Omega).$$

Then the infinite element approximation of (6) is: $u_* \in V_*(\Omega)$, and

$$a(u_h, v) = 0, \quad \forall v \in V_{0h}(\Omega),$$
 (7)

$$u_h|_{\Gamma}=u_*. \tag{8}$$

Of course, u, is piecewise quadratic here.

To meet the need of the following discussion, we should extend formulation (7), (8). Let Ω_h be any subdomain of Ω which consists exactly of some elements, finite or infinte, in accordance with the above triangulation. We may define spaces $H(\Omega_h)$, $H_0(\Omega_h)$, $Z^{0,0}(\Omega_h)$ and their subspaces $H_h(\Omega_h)$, $H_{oh}(\Omega_h)$, $P_h(\Omega_h)$ and so on in a same way. And

$$V_h(\Omega_h) = \{ u \in H_h(\Omega_h); \ b(u, q)_{\Omega_h} = 0, \quad \forall q \in P_h(\Omega_h) \},$$
$$V_{0h}(\Omega_h) = V_h(\Omega_h) \cap H_{0h}(\Omega_h).$$

We denote by $W(\Omega_k)$ the following problem: to find $u_k \in V_k(\Omega_k)$, such that

$$a(u_h, v) = 0, \quad \forall v \in V_{0h}(\Omega_h),$$

$$u_h|_{\partial \Omega_h \setminus (\sigma_1 = 0)} = u_s.$$

It is obvious that (7), (8) is just problem $W(\Omega)$.

The solutions of problems $W(\Omega)$, $W(\Omega_*)$ exist and are unique, because we have Lemma 1. $a(u, v)_{\Omega_*}$ is symmetric and positive definite on $H_0(\Omega_*)$.

Proof. By (1),

$$a(u, u)_{\Omega_k} = \nu(|u_1|_{1,1,\ldots,\Omega_k}^2 + |u_2|_{1,1,\Omega_k}^2).$$

Using an inequality of Poincaré-Friedrichs type^[6] we obtain

$$a(u, u)_{\Omega_k} \geqslant C^{-1} \|u\|_{H(\Omega_k)}^2$$

Here and after O is always a certain constant not necessarily the same. Q.E.D.

Now we consider the solution of problem $W(\Omega)$. The values (u_1, u_2) on the nodes of Γ_k are arranged to be a column vector z_k in an anti-clockwise direction. Since $u_1=0$ at the x_2 -axis, these two values are excluded. Therefore if there are N nodes on Γ_k , then z_k is a 2N-2 dimensional vector. z_1 is uniquely determined by z_2

due to the existence and uniqueness of the solution of problem $W(\Omega_*)$. Hence there is a real matrix X such that

 $z_1 - X z_0$;

by similarity

 $z_k = X z_{k-1}, \quad k = 1, 2, \cdots$

Therefore

$$z_k = X^k z_0. (9)$$

As a result of (9), to solve problem W(Q), it suffices to calculate only the values of

us on the nodes of Ω_0 . Now we define the combined stiffness matrix K_s . Let u_s be the solution of $W(Q_{\bullet})$ with a boundary value z_0 . Because the dependence of u_{\bullet} on z_0 is linear, $a(u_{\bullet})$, u_{λ}) o. can be expressed as a quadratic form $z_0^T K_s z_0$. By (1), K_s is a symmetric positive definite matrix.

Regarding the condition $b(u_k, q) = 0$, $\forall q \in P_k(\Omega_0)$, as a restriction in problem $W(\Omega)$, and introducing a Lagrangian multiplier, we get a new formulation of problem $W(\Omega)$ as: to find $(u_h, p_h) \in H_h(\Omega_0) \times P_h(\Omega_0)$, such that

$$a(u_h, v)_{\Omega_h} + z_0^T K_s \bar{z}_0 + b(v, p_h)_{\Omega_h} = 0, \quad \forall v \in H_h(\Omega_0), \quad v|_{r} = 0,$$
 (10)

$$b(u_{\lambda}, q)_{\Omega_{\bullet}} = 0, \quad \forall q \in P_{\lambda}(\Omega_{0}),$$
 (11)

 $u_h|_{\Gamma}=u_{\bullet}$

where \bar{z}_0 is the value of v on the nodes of Γ_0 .

We will prove in § 3 that (u_k, p_k) is an approximation of (u, p) in some sense. Now we only prove the following

Theorem 1. The solution of problem (10), (11), (8) exists and is unique in the

sense that p, may differ within a constant.

Proof. It suffices to prove that the corresponding homogeneous problem only possesses null solution if an additional restriction $\int_{\Omega} x_1 p_h dx = \int_{\Omega} x_1 q dx = 0$ is assumed. Let u_h , p_h be the solution of such a homogeneous problem. Taking $q = p_h$ in (11), we obtain

 $b(u_k, p_k) = 0.$

Then taking $v=u_k$ in (10), we obtain

$$a(u_k, u_k)_{\Omega_0} + z_0^T K_s z_0 = 0.$$

 K_s is positive definite, so $z_0=0$; hence $u_k=0$. Afterwards, we take such a v that it vanishes at every node except one middle point of a side s of an element. Then by (2) and Green's formula we know that p_k is the same in the neighboring elements of s. But s is arbitrary, so p_s is a constant, and we obtain $p_b=0$ from the restriction. Q.E.D.

Therefore, to get an approximate solution of problem (3)—(5), the important

matter is to obtain matrices X and K_s .

§ 2. The Calculation of Kz and X

We consider problem $W(Q_1)$, if

$$\int_{so_1} x_1 u_* \cdot n \, dx = 0, \tag{12}$$

where n is a unit exterior normal vector, then we can take $u^{(0)} \in V_{\lambda}(\Omega_1)$ such that $u^{(0)}|_{\mathcal{D}_1\setminus (e_1=0)}=u_{\bullet}$. Let $u-u^{(0)}$ be a new unknown. By the Lax-Milgram theorem, the existence and uniqueness of the solution of problem $W(\Omega_1)$ is proved.

Let us write down condition (12) again in the form of vectors. We drop the last component of z_k ; the obtained 2N-3 dimensional vector is denoted by y_k . Then equation (12) can be understood as a formula where z₁ is uniquely determined by z₆ and y_1 , i.e.

$$z_1 = B_1 y_1 + B_1' z_0, (13)$$

where

$$B_1 = \begin{pmatrix} I \\ * \cdots * \end{pmatrix}, \quad B'_1 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} (* \cdots *),$$

I is the unit matrix.

Let u_1 be the solution of problem $W(\Omega_1)$. Then the dependence of u_2 on z_0 , z_1 is linear. Using (13) we may write

$$a(u_h, u_h)_{Q_1} = (z_0^T, y_1^T) \begin{pmatrix} K_1 & -A_1^T \\ -A_1 & K_1' \end{pmatrix} \begin{pmatrix} z_0 \\ y_1 \end{pmatrix},$$

where K_1 , K'_1 are symmetric positive definite matrices. By similarity, let u_n be the solution of problem $W(\Omega_k)$ for $k-1, 2, \dots$; then

$$a(u_k, u_k)_{\mathcal{O}_k} = \xi^{k-1}(z_{k-1}^T, y_k^T) \begin{pmatrix} K_1 & -A_1^T \\ -A_1 & K_1' \end{pmatrix} \begin{pmatrix} z_{k-1} \\ y_k \end{pmatrix}. \tag{14}$$

It is necessary to restrict the boundary condition for domain $\Omega_{\bullet,k}$ as

$$\int_{\partial \Omega_{*,k}} x_1 u_* \cdot n \, dx = 0.$$

Corresponding to condition (13) we have

$$z_k = B_k y_k + B_k' z_0. \tag{15}$$

Let u_k be the solution of problem $W(\Omega_{\bullet,k})$. Then we have

$$a(u_{k}, u_{k})_{D_{k,k}} = (z_{0}^{T}, y_{k}^{T}) \begin{pmatrix} K_{k} & -A_{k}^{T} \\ -A_{k} & K_{k}' \end{pmatrix} \begin{pmatrix} z_{0} \\ y_{k} \end{pmatrix}. \tag{16}$$

 K_k is an approximation of K_s as k is large enough. To prove this, we prove

Lemma 2. Each eigenvalue λ of matrix X satisfies inequality $|\lambda| < \xi^{-1/2}$.

Proof. Let λ be an eigenvalue, and g the corresponding eigenvector. Taking g as boundary value z_0 and solving problem $W(\Omega_*)$, we obtain solution u_* . By (9)

$$z_k = X^k z_0 - \lambda^k g.$$

By similarity

$$a(u_h, u_h)_{\Omega_h} = \sum_{k=1}^{\infty} a(u_h, u_h)_{\Omega_h} = \sum_{k=1}^{\infty} \xi^{k-1} \lambda^{2(k-1)} a(u_h, u_h)_{\Omega_h}.$$
But $a(u_h, u_h)_{\Omega_h} < +\infty$, hence $|\lambda| < \xi^{-1/2}$. Q.E.D.

Theorem 2.

$$\lim_{k\to+\infty} K_k = K_s.$$

Proof. For the time being, we denote by u the solution of problem $W(\Omega_{\bullet})$ with boundary value z_0 , by $u^{(k)}$ the solution of problem $W(\Omega_{\bullet,k})$ with boundary value z_0 and $y_k = 0$. It is easy to see from (15) that

$$|z_k| \leqslant C\xi^{-2k}. \tag{17}$$

We consider problem $W(\Omega_* \backslash \overline{\Omega}_{*,*})$ with boundary value z_* . Let $w^{(k)}$ be the solution. By similarity

$$a(w^{(k)}, w^{(k)})a_{k} = \xi^{k} z_{k}^{T} K_{s} z_{k}.$$

By (17)

$$a(w^{(k)}, w^{(k)})_{\Omega_* \backslash \overline{\Omega}_{\bullet, k}} \leq C \xi^{-8k}.$$

Let

$$\widetilde{w}^{(k)} = \left\{egin{array}{ll} u^{(k)}, & \Omega_{*,k}, \ w^{(k)}, & \Omega_{*} ackslash \overline{\Omega}_{*,k}. \end{array}
ight.$$

Owing to the minimum property of quadratic functional,

$$a(u, u)_{\Omega_{\bullet}} \leq a(\widetilde{w}^{(k)}, \widetilde{w}^{(k)})_{\Omega_{\bullet}} \leq a(u^{(k)}, u^{(k)})_{\Omega_{\bullet,k}} + O\xi^{-8k}.$$
 (18)

On the other hand, let

$$\overline{w}^{(k)} = egin{cases} u, & \Omega_*, & \Omega_*, \ w_1^{(k)}, & \Omega_k, \ w^{(k)}, & \Omega_* ackslash \overline{\Omega}_*, k, \end{cases}$$

where $w_1^{(k)}$ is a solution of problem $W(Q_k)$ with a suitable boundary value such that $\overline{w}^{(0)} \in H_{\lambda}(\Omega_{\bullet})$. Also owing to the minimum property of quadratic functional,

$$a(u^{(k)}, u^{(k)})_{\Omega_{\bullet,k}} \leq a(\overline{w}^{(k)}, \overline{w}^{(k)})_{\Omega_{\bullet,k}}$$

$$= a(u, u)_{\Omega_{\bullet,k-1}} + a(w_1^{(k)}, w_1^{(k)})_{\Omega_k}$$

$$= a(u, u)_{\Omega_{\bullet}} - a(u, u)_{\Omega_{\bullet} \setminus \overline{\Omega}_{\bullet,k-1}} + a(w_1^{(k)}, w_1^{(k)})_{\Omega_k}.$$
(19)

By Lemma 2,

$$|X^k z_0| \leq C\eta^k, \quad \eta < \xi^{-\frac{1}{2}};$$

hence

$$a(u, u)_{\Omega_{\bullet} \setminus \overline{\Omega}_{\bullet, k-1}} \leq C \xi^{k} \eta^{2k} \to 0, \quad k \to \infty.$$

$$a(w_{1}^{(k)}, w_{1}^{(k)})_{\Omega_{\bullet}} \to 0, \quad k \to \infty.$$

By the same reason

$$a(w_1^{(k)}, w_1^{(k)}) o_k \rightarrow 0, k \rightarrow \infty.$$

By (18), (19) we obtain

$$\lim_{k\to\infty} a(u^{(k)}, u^{(k)})_{\varrho_{\bullet, \bullet}} = a(u, u)_{\varrho_{\bullet}}. \tag{20}$$

We rewrite it in matrix form, and the conclusion of this theorem follows. Q.E.D.

Using Theorem 2 we have already got an iterative scheme for calculating K_{*} . In fact, if K_k , K'_k , A_k are known, then

$$\begin{aligned} &(z_0^T, y_{2k}^T) \binom{K_{2k} - A_{2k}^T}{-A_{2k}} \binom{z_0}{y_{2k}} \\ &= \min \left\{ (z_0^T, y_k^T) \binom{K_k - A_k^T}{-A_k - K_k'} \binom{z_0}{y_k} + \xi^k (z_k^T, y_{2k}^T) \binom{K_k - A_k^T}{-A_k - K_k'} \binom{z_k}{y_{2k}} \right\}, \end{aligned}$$

where z_k satisfies (15). After some calculation we obtain

$$K_{2k} - K_k - 2C_k^T A_k + C_k^T K_k' C_k + \xi^k (B_k'^T + C_k^T B_k^T) K_k (B_k' + B_k C_k),$$

$$K'_{2k} = D_k^T K'_k D_k + \xi^k \{ D_k^T B_k^T K_k B_k D_k - 2A_k B_k D_k + K'_k \},$$

$$A_{2k} = D_k^T A_k - D_k^T K_k' C_k + \xi^k (A_k - D_k^T B_k^T K_k) (B_k' + B_k C_k),$$

where

$$G_{k} = (\xi^{k} B_{k}^{T} K_{k} B_{k} + K_{k}')^{-1} (A_{k} - \xi^{k} B_{k}^{T} K_{k} B_{k}'),$$

$$D_{k} = \xi^{k} (\xi^{k} B_{k}^{T} K_{k} B_{k} + K_{k}')^{-1} B_{k}^{T} A_{k}^{T}.$$

The rate of convergence of the above scheme is very fast, but this scheme is not stable. We give a stable iterative scheme^[5] as follows:

Lemma 3. Let u_k be the solution of problem $W(\Omega_{\bullet})$. Then the problem: to find $w^{(k)} \in V_k(\Omega_{\bullet,k})$, such that $w^{(k)}|_{\Gamma_{\bullet}} = u_k|_{\Gamma_{\bullet}}$, and

$$a(w^{(k)}, v) = 0, \forall v \in V_h(\Omega_{k,k}), v|_{\Gamma_0} = 0$$
 (21)

has a unique solution; moreover

$$a(u_k, u_k)_{\Omega_*} \geqslant a(w^{(k+1)}, w^{(k+1)})_{\Omega_{*,k+1}} \geqslant a(w^{(k)}, w^{(k)})_{\Omega_{*,k}},$$
 (22)

$$\lim_{k\to\infty} a(w^{(k)}, w^{(k)})_{\rho_{*,k}} = a(u_{k}, u_{k})_{\rho_{*}}.$$
 (23)

Proof. Thanks to the Lax-Milgram theorem, the solution of problem (21) exists. And owing to the minimum property of quadratic functional,

$$a(w^{(k)}, w^{(k)})_{\Omega_{\bullet,k}} \leqslant a(w^{(k+1)}, w^{(k+1)})_{\Omega_{\bullet,k}}$$

$$\leqslant a(w^{(k+1)}, w^{(k+1)})_{\Omega_{\bullet,k+1}} \leqslant a(u_h, u_h)_{\Omega_{\bullet,k+1}} \leqslant a(u_h, u_h)_{\Omega_{\bullet,k+1}}$$

We take a natural number l. As $k \ge l$,

$$a(w^{(k)}, w^{(k)})_{\mathcal{Q}_{\bullet, 1}} \leqslant a(w^{(k)}, w^{(k)})_{\mathcal{Q}_{\bullet, k}}.$$

Hence $a(w^{(k)}, w^{(k)})_{\Omega_{\bullet,i}}$ are bounded uniformly. But $V_k(\Omega_{\bullet,i})$ is a finite dimensional space. We can take a converging subseries, and then take a diagonal subseries with respect to l, still denoted by $\{w^{(k)}\}$. Let w be its limit; then

$$a(w, w)_{\Omega_{\bullet,i}} \leq a(u_{\bullet}, u_{\bullet})_{\Omega_{\bullet}}$$

Let →∞; we obtain

$$a(w, w)_{\Omega} \leq a(u_{\lambda}, u_{\lambda})_{\Omega}$$
.

But u_k is the unique minimum point; hence $w=u_k$. Because the limit is unique, the original series $\{w^{(k)}\}$ converges to u_k , i.e.

$$\lim_{k\to\infty} a(w^{(k)}, w^{(k)})_{\rho_{*,1}} = a(u_k, u_k)_{\rho_{*,1}}.$$

Then (23) follows. Q.E.D.

Theorem 3. Let $K_*^{(0)}$ be a 2N-2 order symmetric non-negative matrix; then the problem: to find $v^{(k)} \in V_*(\Omega_{*,k})$, such that

$$a(v^{(k)},v)_{\Omega_{\bullet,k}} + \xi^k z_k^T K_{\bullet}^{(0)} \bar{z}_k = 0, \quad \forall v \in V_{\lambda}(\Omega_{\bullet,k}), \quad v \mid_{\Gamma_{\bullet}} = 0,$$

$$v^{(k)} \mid_{\Gamma_{\bullet}} = u_{\lambda} \mid_{\Gamma_{\bullet}}$$

has a unique solution, and

$$\lim_{k\to\infty} a(v^{(k)},v^{(k)})_{\mathcal{Q}_{*,k}} + \xi^k z_k^T K_z^{(0)} z_k = a(u_k,u_k)_{\mathcal{Q}_{*,k}},$$

where z_n and z_n are the values of $v^{(k)}$ and v on the nodes of Γ_n respectively.

Proof. The existence and uniqueness of $v^{(k)}$ are obvious. We denote

$$a_0(v^{(k)}, v) = z_k^T K_z^{(0)} \bar{z}_k,$$

and define $u^{(k)}$ as in Theorem 2. Then owing to the minimum property of quadratic functional,

$$a(u^{(k)}, u^{(k)})_{\rho_{*,k}} + \xi^{k} a_{0}(u^{(k)}, u^{(k)})$$

$$> a(v^{(k)}, v^{(k)})_{\rho_{*,k}} + \xi^{k} a_{0}(v^{(k)}, v^{(k)}). \tag{24}$$

By (17)
$$\xi^{k}a_{0}(u^{(k)}, u^{(k)}) \leq C\xi^{-3k}. \tag{25}$$

Define w^(k) as in Lemma 3. By the same reason

$$a(w^{(k)}, w^{(k)})_{\Omega_{k,k}} \leq a(v^{(k)}, v^{(k)})_{\Omega_{k,k}} \leq a(v^{(k)}, v^{(k)})_{\Omega_{k,k}} + \xi^k a_0(v^{(k)}, v^{(k)}). \tag{26}$$

The conclusion of this theorem follows from (20), (23)—(26). Q.E.D.

Using Theorem 3, we can also get an iterative scheme for calculating K_s . Firstly, take any symmetric non-negative matrix $K_s^{(0)}$; secondly, iterate according to the following scheme:

$$z_0^T K_s^{(k+1)} z_0 = \min_{y_1} \left\{ (z_0^T, y_1^T) \begin{pmatrix} K_1 & -A_1^T \\ -A_1' & K_1' \end{pmatrix} \begin{pmatrix} z_0 \\ y_1 \end{pmatrix} + \xi z_1^T K_s^{(k)} z_1 \right\},$$

where z_1 is determined by (13). After some calculation, we get

$$K_{\bullet}^{(k+1)} = K_{1}^{T} - 2O_{k}^{T}A_{1} + O_{k}^{T}K_{1}^{T}O_{k} + \xi(O_{k}^{T}B_{1}^{T} + B_{1}^{T})K_{\bullet}^{(k)}(B_{1}O_{k} + B_{1}^{T}),$$

wnere

$$C_{b} = (K'_{1} + \xi B_{1}^{T} K_{s}^{(k)} B_{1})^{-1} (A - \xi B_{1}^{T} K_{s}^{(k)} B_{1}').$$

To combine the high speed and stability of these two schemes, it is suggested that $K_{\bullet}^{(0)}$ is obtained by Theorem 2 at first, and then revised by Theorem 3. The details are in [5].

We get from the above calculation that

$$y_1 - C_1 z_0.$$

Let $k \to \infty$; we obtain

$$y_1 = (K_1' + \xi B_1^T K_* B_1)^{-1} (A - \xi B_1^T K_* B_1') z_0.$$
By (13)
$$z_1 = \{B_1(K_1' + \xi B_1^T K_* B_1)^{-1} (A - \xi B_1^T K_* B_1') + B_1'\} z_0.$$

Therefore we obtain

$$X = B_1(K_1' + \xi B_1^T K_s B_1)^{-1} (A - \xi B_1^T K_s B_1') + B_1'$$

§ 3. Convergence

To prove convergence, we make some more hypotheses on triangulation. Suppose $\max_{t} r_0(\theta) / \min_{t} r_0(\theta) \leqslant C$, and like [1], suppose all angles of all elements possess a positive lower bound.

We prove the following lemmas which are parallel to Lemmas 5—7 of [1]. We denote by i, i-1, 2, 3, the three sides of any element c, and by $x^{(i)}$, i-1, ..., 6, its six nodes; $x^{(i)}$ is a vertex as $i \le 3$ and a middle point of one side as $i \ge 4$.

Lemma 4. If $f \in \mathbb{Z}^{2,1}(\Omega)$ and f_I is a polynomial of degree ≤ 2 on element e, such

that .

$$f_{I}(x^{(i)}) = f(x^{(i)}), \quad i = 1, 2, 3,$$

$$\int_{s_{i}} x_{1}(f - f_{I}) dx = 0, \quad as \quad s_{i} \cap \{x_{1} = 0\} = \emptyset,$$

$$f_{I}(x^{(j)}) = f(x^{(j)}), \quad as \quad s_{i} \subset \{x_{1} = 0\}, \quad x^{(j)} \in s_{i},$$

$$|f - f_{I}|_{s_{i}, 1, 0} \leqslant Ch^{2-\frac{m}{s_{i}}} |f|_{s_{i}, 1, 0}, \quad m = 0, 1,$$

$$(27)$$

then

where h is the greatest length of all sides of elements in domains Ω_0 and Ω_1 .

Proof. By Lemma 5 of [1], let h, be the greatest length of sides of element θ ; then we have

 $|f-f_I|_{m,c} \le Ch_c^{2-m}|f|_{2,c}, \quad m=0, 1.$

Hence

(28) $|f-f_I|_{\infty,D_\bullet} \leqslant Oh^{2-m}|f|_{2,D_\bullet}$

Therefore to prove (27), it suffices to estimate $|f-f_I|$ m.1.0. Noticing that under the above additional hypotheses on triangulation, $\max |x|/\min |x| \le 0$; we have

$$\min |x|^{2(m-1)}|f-f_I|_{m,s}^2 \leqslant C \max_{\epsilon} |x|^{2(m-1)}h_{\epsilon}^{4-2m}|f|_{2,s}^2.$$

By the similarity of triangulation,

 $h_{\bullet} \leq Ch \max |\mathfrak{D}|$.

Hence

$$\min |x|^{2(m-1)} |f-f_I|_{m,s}^2 \le Ch^{4-2m} \max_s |x|^{2} \cdot |f|_{2,s}^2$$

The summation over the elements leads to

Combining it with (28), we obtain (27). Q.E.D.

We can prove in the same way

Lemma 5. If $f \in \mathbb{Z}^{2,1}_+(\Omega)$, then

$$\|(f-f_I)/x_1\|_{0,0,0} \leqslant Ch(\|f\|_{2,1,0} + h\|D^{(0,2)}f/x_1\|_{0,-2,0}).$$

Lemma 6. If $f \in \mathbb{Z}^{1,0}(\Omega)$, then there exists a f_0 , which is a constant on each element, such that

$$||f-f_0||_{0.0,\Omega} \le Ch ||f||_{1.0,\Omega}.$$

To obtain convergence, we need one more lemma as follows.

Lemma 7. The restriction of the solution of problem (7), (8) coincides with the solution u, of problem (10), (11), (8).

Proof. The solution u, of (7), (8) satisfies

$$a(u_h, u_h)_{\Omega} = \min_{\substack{v \in V_h(\Omega) \\ v|_{T} = u_h}} a(v, v)_{\Omega}.$$

Take a $v \in V_{\bullet}(\Omega_0)$ such that $v|_{\Gamma} = u_{\bullet}$, and extend v to Ω_{\bullet} such that v is a solution of problem $W(\Omega_{\bullet})$ and $v \in V_{\lambda}(\Omega)$. This extension is unique. Denote by P the set of all these functions; then the solution of (7), (8), $u \in P$. Hence

$$a(u_h, u_h)_0 = \min_{v \in P} a(v, v)_0.$$

. But as $v \in P$

$$a(v, v)_{\varrho} = a(v, v)_{\varrho} + \bar{z}_{0}^{T} K_{s} \bar{z}_{0},$$

where \bar{z}_0 is the value of v on the nodes of Γ_0 , therefore u_k in Ω_0 is the solution of the following problem: $u_k \in V_k(\Omega_0)$,

$$a(u_h, u_h)_{\Omega_0} + z_0^T K_s z_0 = \min_{v \in V_h(\Omega_0)} (a(v, v)_{\Omega_0} + \overline{z_0}^T K_s \overline{z_0}).$$

We introduce a Lagrangian multiplier with respect to restriction $b(u_h, q) = 0$, $\forall q \in P_h(\Omega_0)$; then we get (10), (11), (8). Q.E.D.

Having the above preparation, we finally obtain an error estimate for the

infinite element method.

Theorem 4. Let u, p be the solution of problem (3)—(5), u_h , p_h be the solution of problems (7), (8) and (10), (11), (8), and $u_1 \in \mathbb{Z}^{2,1}_+(\Omega)$, $u_2 \in \mathbb{Z}^{2,1}(\Omega)$, $p \in \mathbb{Z}^{1,0}(\Omega)$. Then

$$||u-u_h||_{H(\Omega)} + ||p-p_h+\beta||_{0,\Omega},$$

$$\leq Ch(|u_1|_{2,1;\Omega} + h||D^{(0,2)}u_1/x_1||_{0,-2,\Omega} + |u_2|_{2,1,\Omega} + |p|_{1,0,\Omega}),$$

where β is a certain constant.

The proof of Theorem 4 is similar to that of Theorem 2 in [1], and so is omitted here. β appears here because p_{λ} may differ within a constant.

References

- [1] L. A. Ying, Finite element approximation to axial symmetric Stokes flow, JCM, 4: 1(1986), 38-49.
- [2] L. A. Ying, The infinite similar element method for calculating stress intensity factors, Scientia Sinica, 21: 1 (1978), 19-43.
- [8] H. Han, L. A. Ying, An iterative method in the infinite element, Math. Numer. Sinica, 1: 1 (1979), 91-99 (in Chinese).
- [4] L. A. Ying, The infinite element method, Proceedings of the China-France Symposium on FEM, Science Press, Beijing, 1983, 487—541.
- [5] J. C. Xu, L. A. Ying, The analysis and improvement on infinite element algorithm (to appear, in Chinese).
- [6] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Beach, New York, English translation, 2nd ed., 1969.