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[NFINITE ELEMENT APPROXIMATION TO
 AXIAL SYMMETRIC STOKES FLOW*

Yive ILUN&.—AH (E&%)
(Peling University, Betfing, China)

We considered in [1] the finite element approximation to axial symmetrio.
Stokes flow in & bounded domain.  The problem for the flow passing an. obstacle in
an unbounded domain is also fréquently encountered.’ In this paper, we are going
{0 give approximate solutions for this problem by an approech stated in [2]. An
fterative mothod™5 is used to calculate the combined siiffness matrix. |

§ 1. The Reduction to a System of Finite Algebraic Equations

Let us oonsider a rigid body in a 8-dimensional space, around which there is
incompressible visogus fluid with. steady velocily u. We agsume that the flow a%
infinity is homogeneous with a velocity ..,
and the Reynolds number is so small that the
sssumption of Stokes flow is accepiable. We can
always roplace w with u—u..; therefore it is no
harm to deem u.=0. Now we give the classical
formulation of the axial symmetrio Stokes flow.
Tot o= (24, %a)€ R?, R: ={z€ R?* ,>>0}, and
introduce in R? the polar coordinates (7, 2).
Suppose there is a broken line I° with end points
ot the we—axis and Q ig the exterior of I in R3
(Fig. 1). Oonsider the following problem: to
find u(e) = (u (), ¥a(@)), p(e), satisfying

v (= V(@:Veiy) /@1 +us/oF) +0p/0my =0, €L,
— oV (1Y) /@1 0/ 03 =0, @E L,
2 (o) + o (@) =0, 2€Q,
- u=u,(e), e€l,
g =0, méaﬂﬂ{ﬁz—o}:

Bty

| k0, p=0, fol=eo; \ - e
where 18 a poatbive. constant and ﬁ*(m)- ig a known funcsion. ... ?’3,;’.-,-\?’.711-..?1 v |
.WB; dﬁﬁﬂe . 50N Wﬁighte& BObO].GV' Bpaoeg ; for thg} ﬂb‘{vﬁ‘mmeﬂw:@m 15;, nﬂ,

| ha.i-m in assuming | 'ﬁl*}a}-{[for every point #in Q. (oo fog;gmmimom and.
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norm

[aa]=m

1flmes, n=(§] fla0)

are defined and the mrrespond.lng Hilbert Hpaces are dano’ued by Zm8(02). We also
define the norms as

flaso=( 2 |, oulal*=21D%71" )

|l 1.2, 8,0=( |fl iﬂ.ﬂ"’ { f/21]5,8-1.0)"%,

| Flusiwo= (| fiis o+ f13.6.0)""
The oorresponding Hilbert spaces are denofed by Z+4(Q), and Z%* (ﬂ) ig a set such
that F€ Z%4(Q) f and only if F€ Z14(Q) and [D2f /w10, 4-8,0 18 finite. The above
definitions are equivalent to that in [1] when 2 is bounded.
“ Tt H(Q) = Z’""(ﬂ) X Z4(Q), Ho(a) ={u€ H(Q); | s01c0,=0p=0}. Tongider the
bilinear form

a(y, '”)n"'_"-l’j L @1(Vua Vo Vig: Vos-+usos/ef)de, u, vEH @, @
defined in H(Q) x H(Q), and the bi]inea.r form |
b(ﬂl .p)ﬂ _I { (‘51‘”1) i amﬂ (wiﬂﬂ‘) } ’ JHGH(Q)" FEZ‘U,O(Q)’ _ (2)

defined in H(Q) x Z*°(Q). The definitions for bilinear forms with respect to other
domains are similar. Let H(I") be the trace space of H(Q) on I': then the weak
formulation for the original problem is: to find (v, p) € H(Q) XZ“-“(Q), such that

ﬂ(!&,- 'ﬂ)a-l-b(ﬂ_, P)ﬂmo: VQ’EHO(Q): . (3)
b(v, ¢)o=0, VqEZ%°(Q), ¥ (4)
!-frlp_ﬂ-” .. (5)

where o, G H (I') The solution of this problem exists and is unique.
Let us consider the infinite element a.pprﬁmmatmn to problem (3)—(b). We

construct a broken line I: =7, (9), 1| <2 5 which divides £ into Q, and Q,,

where Q, lies 'betwaen I" and I'y and Q, is the exterior of I'y. We assume that I'y is
star-shaped with respect to the point O, i.e. each ray from the point O intersects I,
at most at one point. Hgpecially, it may happen that I'g=TI"; then £, is empty,
Taking a constant £>>1, we consiruct similar ourves I'y, Iy, +++, Iy, - of I’y
with 0 ag the center and: &, &7, -, £%, -+ ag oonstants of proportionality. Let

Q= {(r, 6); E7re(0)<r<ro(0), 0] <3,

Q,,= {(‘r 9): rﬂ(g)‘(f{fafnﬁg), IEI "C-—*}

Domain 2 is triangulated in such a way that ©,, 0y, £2q, - ﬂonswb exactly of
finite tria.ngular elements, and the triangulation of Qy, Oy, «+; &2, +++ is geometrically
simflar. Iii each element, second order interpolation is nsed for « and p is constant,
just as in [1]. For definiteness, we assume tha.t each subdomain Q, ig divided into
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some quadrilaterals by the rays from point 0; then each quadrilatersl is further
divided into two triangles.

To get the mﬁnite element approximation o (3)—-—(5) , We ehmma.ta variable p
in equation (3).

V(ﬂ) = {uCH(Q); b(y, ¢)o=0, Vg€Z*°()},
Vo()=V (2) N Ho(L2).
Then the solution v of (8)—(B) satisfies: u€V (Q2),
a(u, v) =0, YoEV(82), (6)
and (B) holds

| Gorre&ponding to the above friangulation, let the subspaces of H(Q), Z“-“(Q)
be H,(Q) and P,(Q) respectively. Let

Va(Q) ={u€ Hy\(Q); by, ©o=0, YIEP\(D)},

‘F'nh(g) -Vﬁ,(ﬂ) n Hq (Q) .
Then the infinite element approximation of (6) is: ¢, GV, (Q), and
a(up, v) =0, VoEVu(Q), 9,
tn| p=14i,. (8)

Of course, ¢, is piecewise quadratic here,

To meet the nded of the following disoussion, we should extend formulation (7),
(8). Let Q, be any subdomain of Q which consists exactly of some elements, finife
or infinte, in accordance with the above triangulation. We may define spaced

H(Q), Ho(Q), Z%°(2,) and their subspaces Ha(2s), H (@), Pi(Q,) and so on
in a same way. And
Va(8s) = {u€ Ha(£n); b(u, 9):?..“ 0, Yg& (&)},
Vo (Qn) =Vh(ﬂh) M H o (Qn)
We denote by W (£,) the following problem: io find u, €V (Q,), such that

a(ta, v)=0, Vo EV (),
Un | 20,1 (0, =0) = U

It is obvious that (7), (8) is just problem W (Q).

The solutions of problems W (Q), W(0,) exist and are unique, because we have

Lemma 1. a{w, v)o, is symmetrie and positive definite on Ho(£y).

Proof. By (1),
L - a(u, wo,=v({wll 1, nat uliae).
Using an inequality of Poincaré—Friedrichs type™ we obtain

% 2t G(“H- ‘!.&)pi;Eﬂo- H““H(ﬂ.} .

Here and aflier O is alwa.ys a certain constant not necessarﬂy the same. Q.H.D.

Now .we consider the solution of problem W(Q). The values (v, us) on the
nodes of I'y are arranged 10 be a column vecior 2 in an anti-clockwise direction.
Since u; =0 at the z,—axis, thege two values are excluded. Therefore if there are N
nodes on Iy, then gz is a 2N 9 dimengional vector. 2y is uniquely determined by zo
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due %0, the existence and uniqueness of the solution of probleni W(Q,). Hence there
is a real matrix X such thai S - | ~

by similarity
2;--2'2:-1, b=1: 2; .
Therefore : - | ; '
2= X 0. (9)

As a result of (9), to solve problem W(Q), it suffices to calculate only the values of
uy.on the nodes of L. e B B .

" Now we define the combined stiffness matrix K,. Let u be the solution of
?:'(O,) with a boundary value . Because the dependence of ¥, on 2 is linear, a(ux,
ta)p, cani be expressed as a quadratic form 2TKuz. By (1), K, is a symmetrie
poditive definite matrix. =~ e . |

Regarding the condition b(w, g)=0, Vg E Py(Q,), a8 a restriction in problem
W (&), and introducing & Lagtengian multiplier, we get a new formulation of

problem W () as: to find (1, )€ Hy(£0) X Pa(£o), such that- ._
- ﬂ(ﬂm q’)ﬂ-—lﬁﬂg-ﬁjﬂ*}'b—(‘v‘; H)ﬂ:'*-or V'HEHE(QQ): ”11"“0: (10)

b(t&, g)p.ﬂ{', VQEP}(Q{}), (11)
o er'_"'uu

where 2z, is the value of v on the nodes of I'.
. We will prove in § 8 that (%, ;) i8 an approximation of (1, p) in some sense.
Now we only prove the following - o -.
" Theorem 1. The sohution of problem (10), (11), (8) ewists amd. 48 unigue in the
sonse that p, may differ within a constans. :
Proof. It suffices to prove thai the corresponding homogeneous problem only

possesses null solution if an additional resiriction L_ Xy Pp 0T = jﬂa:lg do =0 is assumed.

Let us, 7 be the solution of such a homogeneous problem. Taking ¢=p in (11), we
obtain |

b(w, 22)=0.
Then taking v=1u, in (10), we obtain |

- : . a(ti, )0, +2 K s20=0. _ |
K, is positive definite, 80.20=0; hence uy—=0. Afterwards, we take such a o thab it
vanishes at every node except one middle point of s gide g of an element. Then by
(2) and Green’s formula we know that p, i¢ the same in the neighboring elements
of s. Bub g is arbitrary, so p is a constant, ‘and we obtain p,=0 from the
regtriction. Q.ED. g "

Therefore, to get an approximate solution of problem (8)—(B), the important
matter 18 to obtain mairices X and K,. T .

' "f_": WE mmider Prf‘ob]ﬂm W(Q;),,if R .--,;',-',i:;:,_'-_.-'.l_.'ij SeRE mal sl B EE R
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j @athy” ndw=0, | S (12)

where n is 8 unit exterior normal vector, then we can ta.ke u‘”’EV;(Qi) such that
U | 10\ @ iy =ty Lot u—u® be a new unknown. By the Lax-Milgram theorem, the
existence and uniqueness of the solution of problem W (&) is proved. |

Let us write down condition (12) again in the form of veclors. We drop the last
oomponent of z; the oblained 2N—3 dimensional vector is denoted by g Then

equaiion (12) can he undersiood ag a formula where 2 is 1:11:114;11.1e13vr determined by %»
and ¢4, i.e. .

 u=Bwu+B, - (8)
where — .

I is the unit matrix. -

Lot 4, be the solution of problem W(Qi) Then the dependence of u, on 2o, # is
linear. Using (18) we may write

Ry -4
* a(, ta)o, = (2, y{l)( A: ;;)(za)

where K, K are symmeiric poeatwe definite matrices. By similarity, let u, be the
solution of preblem W(Q,) for k=1, 2, ---; then. |

s 2 () »
U, &y k—1y Y A], Ki " .
I4 is necessary to restrici the boundary condition for domain £,,, as
' : 04, x ﬂ?ﬂi'ndﬂ}—ﬂ.
Corresponding o eendmen (13) we have
h“Bﬂk‘{'B'#n | (15)
Let us be the solution of problem W(Q,,;). Then we have
' K; — A7 %0 ) X
= (25, Yr ‘ 16
ﬂ(uﬁj uﬁ)ﬂ.,l (zﬂ.r yb‘)( o .A.]‘ E, )( yy ( )

K, is an approximation of K, as k is large enough. To prove this, we prove
Lemma 2.  Each sigenvalue ) of mairiz X sotisfies inequality |A| <&-33,
- Proof.. Let A be an eigenvalue, and g the corresponding eigenvector. 'I'a.king g
as boundary value 2z and solving preblem W(Q,), we obtain soluiion Uae By (9)

2= X %29 = A¥g.

5 G(uﬁ: ul)ﬂ.- E G(!L;., uh)ﬂ:'— Z;E*“h’“"”a(u,, tﬁ.)p'. !
1- ; g HE, JE 4,,-. _,' 3 ol 8
But a(; m)m ~+00, Benos 2] <g-1f= QEDS i g i

By similarity.
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Theorem 2.
lim KI-F’ Kl" |

o=t o= tx2

Proof. “For $he time. being, we denote by u the solution of problem W(Q.) with
boundary value z, by u® the soluiion of problem W(Q,,) with boundary value 2z
and ¢, =0. It is easy fo see from (15) that | | |

e L mi<oE xm " e (17)

" We consider problem W(Q,\B,,) with boundary value z. Let w®™ be the
golution. By similarity |
ﬁ(wm, wm)n,m“#—'szfﬂ' AT
By (17) ke
a (wﬂ%}’ w{k}) 07D, ti 9] E— HF‘
e )
ﬁm}= “ » Qllkf_
wm, Q.\ﬂ.,k-

Owing $0 the minimum property of quadratio funciional, |
a(u, u) g, <a(W™, ﬁm)n.Qﬁ(%{m: um)n.,.'l'af"“- (13)

On the other hand, let
u} Q'r k—1»

- R - '-'.wgkj’ Q.

o | w®, .\, .,
where w{® id a solution of problem W (@s) with a suitable boundary value such that
2% c Hy(Q,). Also owing to the minimum property of guadratio functional,

_ﬁ(“{m: ud})ﬂhuq&(‘am}: E’&})ﬂ.,n
- a(u, u)n,,,_,-i—a'(tbi‘), w?) o,
=a(u, u)o,—a(¥, ¥)0.,,. +a (@, ). @9
By Lemma 2, | g .
| X*zo| <O, <€ %
a(u, %) 0,5, v, SOGT*—0, k—>o0.
- a(w®, wl?)o—0, E—>o0.

hence

By the same reason

By (18), (19) we obtain | o .
 Iima(u®, u®)a,,=a(%, ¥o. (20)

 —

We rewrite it in matrix form, and the oonclusion of this theorem
follows. Q.ED. =~ " &
. Using Theorem 2 we have already got an iterafive scheme for calonlating K,
In fact, if K3, K, Aa are known; thew =~ |

; : .E“ '—-Agk) 20 \ ¥
T T
(501 yﬁ)( "’Am E;k (yﬂ.)

e 7, Ll _F‘Pgo) " | ( . — AT ( En)
= min T, E + T, % ¥
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where 7, satisfies (15). After some calculation we obtain _
Kog= K — 20T A+ OL KOy +E¥( By + Ok YK (Bi+ BOy),
Kb = DI KDy ¥{ DI Bl KB, Dy — 24, By Dy + K}, |
An“DfAk“DE 'O +-€%( Ay — DEBL K y) (Bit B.Ok),

(ékBTK WBut+ KL) *(As—E*BI K BL),
= (§* B KByt Ki) ~1BL 45.
The rate of convergence of the above scheme is very fast, but this scheme is not

gtable. We give a stable iterative scheme™? ag follows: . . .
Lemma 3. Let ua be the solution of problem W(4,). Then ﬂw problmn to ﬁnd
w“" GFI(Q..I); SW}E that wm}lp.?ﬂhlpu m

where

9 - a(w®, 9)=0, VwEVn(ﬂ,.n), 'vlr.=0 (21)
has & undque solution; Moreover - g @ _. § .

ﬁ(‘% uh) p,?ﬁ(w“‘“} wi:m-i)) 0 !m}m(wm} wu;)) ey M (22)

| }gg ﬂ(’wm W™, ,=a(th, U)o, | (28)

Proof. Thanks to the Lax—-Mﬂgram theorem, the solution of problem (21)
exists. And owing t0o the minimum property of quadratic functional, |

b(w"" W g, <a (WD | U+,
<o (WD, w*)g, o ST U !ﬁn)ni,m'ﬁﬁ(ﬁm ﬂa)n,
‘We take a natural number L. AB k=1, |
a(w®, w)g, - <a(w®, .w{k)) -

Hence a(w“" w®)g, , are bounded uniformly. Bub Vi(Q,.1) .is a finite dimensional
gpace. We can take a converging subseries, and then take a diagonal subseries with
respect 1o 1, still denoted by {w®}, Let w be.its limit; then

ﬂ'('w: w)ﬂ. Igm('uil H;)D,

Let l—>c0; we obtain ' |

a(w, ﬂ?)n.'gﬂ (tay ﬂb)n. |

But u, is the unique minimum point; hence w =14, Because the lmut ig uniqua, the
original series {w™} converges 10 t, 1.e. |

lim a(w®, ©®)o,, = a(t, %h)a,

Then (23) follows. Q.E.D.
Theorem 8. Let K be a 2N —2 order symmw mn—negame mtrw, then

the problem: to ﬁn.d v® €V (Q,.1), such that - -
eV, )0, AT E5,=0, Vo€ Va@un)s U0,
v @ o=u,| 7, B v smaw *
Jm aumqw wwhm and T "
hm a(um u“?)n,,.—kg‘zfﬁ’ ‘“}zwa(uu, “i)n.: |

where 2, and: z.m‘e the values ofv"’" :md monthe nodasofi‘.rmmwly
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Proof. The existence and uniquenéss of v are obvious. We denote -
_ Go(v®, ) =21 K (Vz,, -
and define u"" a8 in Theorem 2. Then owing to tha minimam property of quadratio
functional, -
a(u®, u®) g+ ¥ (u™, u)

' >a(o®, oW g, ,4-E*ao(v™, o¥), (24)

By (17) ' .l |

it o 41 Frao(u®, uP) <OE™, o (25)
Define w™ as in Lemma 3. By the same reason - |

a(w®, w*) g,  Ca(v®, o)y  <a(v®, o)y . 4™, 2 *), (26)

The conoclusion of this theorem follows from (20}, (28)—(26). Q.E.D.

. Using Theorem 3, we can also gei an iferative scheme for calculating K,.
Firstly, take any symmelric non-negative mafrix K”; secondly, iterate according
to the following scheme: -

, | | —4,+ Kj
- where z; is determined by (13). After some calculation, we get
K #+D =Ky — 207 A1+ OL K04+ £(OF BT + BY) K (B:Oy+BY),

5 K i"*”ﬂo-rrf:l{(c%': i )( Ky —4 )( ;: )+§z§f K i’”zi},

where
O (K}+EBIK®B;)"(A—EBIEPBY). ©

To combine the high speed and stability of these two schemes, it is suggested
that K% is obtained by Theorem 2 at first, and then revised by Theorem 3. The

‘details are in [5].
- We get from the above mlcula.tmn that

.ﬂi"'orzo
Let k—co; we obtlain

1= (K1+{BiK,B,) (A —£BIK B )z%.
7= {By (K} +£BT-E|B:I.)_1(A £B] 1 K ,B1)+ Bi}zo. -

‘Therefore we obtain |
X = By(K}+£BIK,B,)~*(A—¢BIK,B,) + B,

By (18)

§ 3. Convergence

‘To prove convergence, we make some more hypothm on {riangulatfon.
Suppose max ro(0) /nnn ro(0)<0; and like [1] ; auppom all -angles. of all elements

possess & pos:!tiva lower bound. s @ '

We prove the following lemmas which are parallel to Lemmas 5—7 .of '[1] -
denote by &, ¢=1, 2, 8, the three gides of any element ¢, and. by 2V, =1, ..., 6, its
six nodes; o is a vertex as <3 and a middle point of one gide as ¢>>4.

- Lemma-4. 'If £EZ%2(Q).and f; i a polynomial of dégree <2 om eloment e, such
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that y! T
fi(@a?) =f(a¥), ¥=1,2,3,
| s fdw—0, as N {m=0}=9,
o fi(aP) =f(a9), as s, {m, =0}, €3y,
then |

lf_"fflﬂ-iﬁﬂQOhﬂ-.-*f‘flliinﬂ: m“{}: 1: ' " : (27)
where h is the greatest length of all sides of elements én domains Qg and 1. |
~ Proof. By Lemms 6 of [1], let A, be the greatess length of sides of element 6;
then we have ' b - |
| |f‘f:]m.a'§0h§;“|f‘:.-i m=0, 1.
If—fileo. <O ™|flao.- (28)

Therefore to prove (27), it suffices to esiimate |.f—ftlmun, Noticing thak under the
above additional hypotheses on triangulation, max || /min|z| <U; we have
e -

min o X~ £~ i |3,,<0 max|a[%=~2K"| f L.

By the similarity of tri;ngulation,
» ho<Chmax|z|.

Hence

Hence | . ;B -
min o] %2| f—fi| 5, <OW> max|o| | fl3e

The summation over the elements leads 0

_ _ | lf_—fflmhﬂ.ﬁah’f"fln.i.n.-

Combining it with (28), we obfain (27). Q.E.D.

‘We can prove in the same way ' |

Lemma 6. If f€Zy'(Q), then | |

(f—S)/2s]o,0.0<0R(} £|an1.0+ 8] DOV /210, -, o).

Lemma 8. If fE€Z%%(Q), then there exists @ fo, which is a constant on sach

eloment, such that -
| | £ — folo.0.a<Ch| f1.0.0-

To obtain convergence, we need one more lemma as follows.

Temma'?. The restriction of the solution of problem (7), (8) coimoides with the
solution s of problem (10), (11), (8). o

Proof. The solution u, of (7), (8) satisfies

a(t, t)o=— min a(v, v)g-
v€ Va(d)
vlp=iy

Take a v€ Vi (Q,) such that v|p=u,, and extend v to Q, such that ¢ 15 a solution of
problem W (Q,) and v €¥V,(2). This extension ig unique. Denote by P the set of all
these functions; then the solution of (7), (8), mE€ P. Hence

a(us, ta)o=1miD a(v, v)o-
. ButasvEP
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a(v, v)g=a(v, v)o,+25K 20, ‘ .
where 7, is the value of  on the nodes of Iy, therefore u, in Q, is the solution of the
following problem: w4, €V a(£0),

ﬁ(u;, ﬁn,)n,‘:l'ng,ﬂd‘ min (ﬂ(’!}, U)p."l'EgKgEg).
o€ Fa(ido) | |

We introduce a Lagrangian muliiplier with respeci to regfriction b(us, q)=0,
Vg€ P, (Qy); then we get (10), (11), (8). Q.E.D.. .
Having the above preparation, we finally obtain an error estimate for the
infinite element method. = N _ e |
Theorem 4. Let u, p be the solution of problem (3)—(B), ws, p» be the solution
of problems (1), (8) and (10), (11), (8), and us € 23(Q), W € Z**(R), PEZ-(Q).

Ju— il zoy+ | 2— st Blo. o
'Q(}h('l"ﬂi 1 g.i;b—khlﬂm'ﬂ}’lﬁf'ﬁﬂn.-a.n’*‘ |tta|2,2.0+ | 2| 1.0, 0)s
where B {8 a certain eongtant. ' >
The proof of Theorem 4 is similar o that of Theorem 2 in [1], and so is omifted
here. B appears here because p, may differ within a constans. |

»
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