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Abstract

The paper is devoted to the study and analysis of the mixed stiffness finite element method for the
Navior—Stokes equations, based on 2 formulation of velocity-pressure-stress deviatorics. The method
used low order Liagrange elements, and leads to optimal error order of convergence for velocity,
pressure, and stress deviatorics by means of the mesh-dependent norms defined in this paper. The
main advantage of the MEFEM is that the streamfunction can not only be employed to satisfy the
divergence constraint but stress deviatorics can also be oliminated at the olement level so that it is.
unnecessary to solve a larger algsbraic system containing stress multipliers, or to develop a spacial code:
for computing tho MSFE solutions of the Navier-Stokes equations because we can use the computing
codes used in solving the Navier—Stokes equations with the velocity—pressure formulation, or éven the
computing codes used in solving the problems of solid mechanics.

§ 1. Introduction

Let 2 be a bounded open subset of R*? with a sﬁﬂiﬁiéntly' gsmooth bounda.ry;
I'(=8Q). Then the Navier—Stokes equations governing the flow of the two-dimen-
sional steady incompressible viscous fluid can be written as- follows:

(uViuy—~vdu-+Vp=Ff, inf2, - (1.12)
Vey=0, inf;, ., - (1.1b)
_ (1.1c)

where wu=(u;, u;) are the yelocities of flow, pis pressure, f=(f1, fa) are body
forces, and »(>>0) is the kinematio viscosity coeflioient,

If the nonlinear convection terms in (1.1a) are cut out, then we obiain the
so—called Stokes equations: | | “ |

w=0, onl,

~pu+-Vp=f, in Q, | (1.2a)
 Veu=0, inf, (1..2b)
u=0, onl. (1.2¢)

Tt is well known that considerable efforts have been made by both engineors
and mathematicians concerning the construction of finite element solutions of the.
Stokes problem and the Navier—Stokes problem, ses, e.g., [8, 6—18, 17—18, and
98]. What is worth mentioning is Zhou’s paper, [23], which congiders a new
variational formulation of the MSFEM in [20] and [22] to aveid the trouble
encountered in solving a larger system of equations owing to the additional viscous

stress multiplier variables.
The purpose of this paper is to extend the results about the Stokes problem im

®* Received April 22, 1086.
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ro8] to the case of the Navier—Stokes problem. By treating the nonlinear terms with
the upwind-diffusion scheme pregented in [T], we prove the existence and uniqueness
of the MSFE solutions of the Navier—Stokes problem, and obtain the optimal error
estimates for velooity pressure and siress by virtue of special mesh-dependent
norms. And IAP-estimates of velocity and pressure are also optimal. Moreover,
stress muliipliers can be eliminated at element Jevel. An important step in practical
computation is that velocity is first ealoulated in the divergencefree space, then
pressure is found by the velooity obtained. To the author's knowledge, with the
velocity—pressure—stress deviatorics formulation of the Navier-Stokes equations, the
optimal error estimates in this paper are obtained for the first time.

An ontline of the paper is as follows. The remaining pars of the present section
is to desoribe some definitions and symbols. Section 2 is devoted to the description of’
the MSFEM for the Navier-Stokes equations. In Section 3, we discuss the construction
of the FE subspaces and prove their prﬂpertles Section 4 deals with the abstract
results of the saddle—point problem. We get, in Seotions 5 and 6, the error estimates
of the solutions of the MSFEM for the. NH-VZ[EI‘*’S'I}O]IES prﬂblam in the sense of the.
mesh—dependent norms and I*-norm.

Throughout this paper, we use the Sobolev space
H’"(’Q)={@GLE(9), om0 7300). Ja| —as aﬂ-gm}
orT oxd*
equipped with the following norm and semi-norm:

folma= { > el e}, .

Tee| < me

|| . ﬂ={ E [_3:‘”]0-&}”2

whore m (>>0) i8 an integer. We denﬂte h}r H/2(I™) the trace space which 00]1913133'
of fanoctions defined on thé boundary I'. Moreover, some special spaces will be
defined when they appear. As 1o the details of Sobolev spaces, see [1, 8], and.
[13—14].

For convenience, we do not make distinotion between the vestor—valued function.
and the scalar—valued function. The standard summation convention is empolyed.
We denote by n and ¢ the unit normal and tangeni vector on some boundary
respectively. And ¢ stands for the generic constant unless partioular explanation is.

given.

§ 2. The MSF E Formulation

To facilitate the Iana.lys'is below, we introduce the following relations:
=2,
8 (v) ={8(¥) h1<i, <
8 (0) = (Qw;+0v) /2, 1<, j<2.
Then tha Navwr—ﬁtnkes equations (1.1) can be rewritlen as

0‘=1.os(u), mﬂ (2,1a)

Veu=0, in Q, | f (2.1b):

(u Vu~Veo+Vp=f, in Q, s w - - (2.10)

=4 L
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u=0, onl, (2.1d)
where Vo = (9,015, 0i021). |
Remark 2.1. From equations (2.1a) and (2.1b), obviously, we have
tr (o) =01+ 022=0. ' (2.2)
In order to motivate the MSFE formulation of the Navier-Stokes problem, let
as first recall the MSFE formulation of the Stokes problem presented in [28].

Consider the Stokes problem:
" Find the exaot solution (o, u, p) satisfying

o=ps(u), in &, (2.8a)
Veu=0, in D, (2.8b)
—Vig+Vp=Ff, in 2, (2.30)
u=0, onl, (2.8d)

By using the following generalized Green’s formulas
(7, 8 (‘U)) ='L_. L (‘F‘ﬂ)d&*— (V- v), VvE [Hl(ﬂ)]ﬂ: V7 & ﬁ(div; 2), (2. 4)

(v, Vq):-"[; g(ven)ds— (Vo0, @), YoE€H(div; Q), Vg€ H*(Q), (2.5)

where
H(div; @) ={v€ [I*(Q)]% V-veIA ()},
A (div; Q) ={v€ [L*(@)]% 04 €LX(Q), =1, 2},

we get the weak form of problem (2.8):
(P1) Find solutions (o, %, D) such that

P"_l (O’, T) _B('F: u) =0, Vz € Hy, (2-65)
B(o, v) — (p, Vo) =(f, v), VvEHq, (2.6b)
(g, V+u) =0, Vg€ Hp, (2.60)

where
Hpy={3EC ﬁ';r; tr(r) =0, in Q%
B = {7 =T r<escs, Trs=Taa €ELA(Q), 7|0y € LHNQDI, VA€ T o}y
o, —{oc H(div; Q); ven|p=0, v|o,€ [H* (@)% VQ, €T},
Hy={g€L*(Q); qla,€H*(Q:),VEET u},

B(z, v) =;Ur. ve (z-n)ds— (Ve7, ¥)os], V(z, v) CHrX Hy,

(py ¢ =Lmds, Vo, g€ L*(42),

while F.={Q;} is, in the sense of [b], & regular riangulation corresponding 1o
velocity and .7 ,={Qj} is the so—called dual partition with respect to stress
devistories, which may consist of the interior quadrilaterals and the boundary
triangles generated by connecting the center of gravity of each velocily element
Q, with its vertioces, as shown in Fig. 1. Other forms of the dual element can be

found in [28—24].
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Fig 1
- —— wvelocity partition; —— stress partition

Introducing the divergence—free space |
. ﬁu"‘_{ﬂeﬂlﬂ ?rm—ﬂ,inﬂ}, .
we obtain from problem (P1) another variational problem not containing the

pressure p:
(P2) Find solution (o, u) € Hy X H v, sach that |
- w (o, ¥v)—B(s, w) =0, Vr€Hy, | (2.7a)
B(o, v)=(f, ), Yo € Hy. (2.7b)

Remark 2.2. In problems (P1) and (P2), the velocily solution % does nob
have to satisfy the condifion that (w+f) vanishes on I", where { is the unit tangent
vecror on I', because the relations (2.6a) and (2.7a) imply it.

Define the finite dimensional subspaces VaC Hy, U,CH, and W, Hy, which
will be discussed in Section 3. The approximate problems corresponding to problems
(P1) and (P2) are respectively: | | |

(Pyl) Find approximate solutions (o3, us, ps) satisfying

w o, ) — Bw, up) =0, VeV, (2.8a)
B(ox, v)—(ps, Vou)=(f, v), V€U, (2.8b)
(¢, V'wn) =0, VgeW, (2.8c)
(Py2) Find (o3, u) €V, X ﬁ;. satisfying
oy, ) — Bz, ) =0, V€TV, (2.9a)
Blow, ) =(f, v), Yo €U, (2.9b)

where the subspace In?;. of U, is defined by
Uv={v€U,; (¢, V-v) eo, Yec Wi}
In order to clarify the difference of the property of the MSFEM from general

mixed FEMs, we rewrite the formulations (2.8) and (2.9) into:
(Pul’) Find approximate solutions (us, p) €U, X W, such that

B(wotn, v) — (pn, Vo) =(f, v), V€U, (2.8b")
(¢, Voun) =0, VgEW; (2.8¢0")

(P.2") Find approximate solution u, € U, such that
B(won, @) =(f, ¥) VocU,, (2.95)

where the mapping w,: uy—>0oa(=wm.t) i defined element by element such that
p(on 7)oy =Bz, ua)as, VTEV,(Q)).
It will be seen that the MSFEM makes it possible to generate ff; by using the
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streamfunctions, and, on the other hand, to find the velocity v by solving problem
(P,2) in the same way as the standard FEMs of solid mechanios.

In order to extend equations (2.8) and (2.9) to the oase of the Navier—Stokes
problem, let us first deseribe the “upwmd’ disgipative scheme of ['I]

Given a function »E€U,, distinguish, for each
eloment £2,E.7,, between the part Ij. of the
boundary I, of 2 where the flow is in,

I ={acly ven(a) <0},
and the part I'{, where the flow is out _
v ={z €y v-n(a)>0}. ' - Pig. 2 A pé\.i.r of ﬂ-djﬂa!tl;ﬂeﬁt oloments
Notice that if v €Uy Hy, v+n is continuous across the interelement boundary. For
two adjacent elements Q; and £, with the common side § (see Fig. 2), we have
rﬂ = ) S "F i+ ﬂ S.

The trilinear form generated by the GDHV&G‘IJJ.OH torms can be deﬁned by using the
1dea of the “upwind” dlsmpatwa seheme

S-P.;ﬂf';.

b*(w, u, v) =ZU Ve U 18050 B8 — J‘ (&w;u-fv—l—wmﬁw,)dm] Vu, v, MGHU: (2. 10)"

‘w]r.- {traﬁeof-win on I'%,, (2_11}

w’=trace of w|g, on I'L. NS.

We can now write out the MSFE formul&tlon of the Na.vmr—Stokas equations:
(Mul) Find (o, s, 22) €EVa X_Uh X W, satisfying . ’

:u’_i (G-i'b;r T) =B (T: u’h) o 0} VT E V?u (2 ‘ 12&)

b (s, tny ©) +B(0n, v)— (pr, Vou) = (f, ), VoEU,, (2.12b)

' (g, Veun) =0, YeeWs; (2.120)
(M.,z) Find (o3, u) VaX U, such that | | | o

w(on, 7) — Bz, ) =0, VrE€V», (2.18a)

b* (un, s, v)+ B(os, v) =(f, v), V@EU;,. | (2.18b)

We say that the MSFE scheme (2,12) is strongly consistent, if the exact
solutions (o, 4, p) of the continuous problem (P1) strickly satisfy (2.11). Then ik
is easy to prove that scheme (2.12) is strongly consistent if f € [L2(£)]1%, and so i3
scheme (2.18) if we further assume that U, .H, holds.

Remark 2.8. Because the basic functions of subspace V.(CHy) have a
support limited to one element, the degrees of freedom corresponding to the stress
deviatorics can be eliminated at the element level, so that we can avoid the trouble
encountered in solving a larger system of equations including Lagrange multi plier.
Undoubtedly, the MSFEM is quite atiractive to those engaged in practical
computation. .

" Remark 2.4. Bmﬂa ﬂlﬂ subspace U, can be genara.tad by uslng streamfunc-
tions, approximate velocity us should be nbtmned through solvmg problem (Mn2)
by eliminating o, at the element level. - s Rt ow 8
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. §$3. Finite Element Subspaces

In this section, we disouss the definitions and some properties of the FE

subspaces Vs, Us, and W, introduced in Section 2.
First, we define for each interior element Q.7 and a pair of elemeniis

(G, Q) =7, (see Fig. 8):
H g, “{TE [c®(£25) 1% 711 = —'rﬂ-={

Fr 4 *
011+ C1%l;, in £2; N Qg

T, : *
Ci11 T GHZ},, n Qj N QL,

Ca1+e2l; in Q5 N Qp
TH=T91—{591~-0f’93;, in Q' NGy, Ve, ¢, cﬁER,}
" where 7;(z) is a l_inegr function
a’ satisfying
0, U(x) =0, VYa€Il'zNTI;.
Then, for each boundary element.
Fig. 3 Structure of 1’3; ;" wo define

. H ;= {T & [ﬂu ('Q; )] '.1; T11 = — Tag = €11+ Cialj, Tra=Ta = cﬂl"l_ﬂﬂﬂzh Vﬂﬁ = R} »
where the linésar function l; satisfies
- I(%) =0, YecIiNnT.
We now define the subspaces

Va={r € Hy; 7|0, € Hoy, YR} €T3},

Us={v€ Hy; v|0,€ [P1(Q)]%, VAE T},
~{¢€ Hy; ¢|o,€R, YAETS},
equipped with the following mesh-dependent norms, respectively,
[#lv={izl5.0+2355% |7 |1.05}"/%, hj=diam(2),

Lol = {Sls ) R0 +52 [ | o0y -t]%us]}, mi=diam(2),
[2ho.={]v ”5113“1‘2 | # 1,037,
follo.= {[olo+ 30 K[ 0]5.03%,

B 1/4
|¢ Ilw={2 |1Vg[3.0,— ™ L‘\Plh Q—I”ds]}

where (¢ ., —d_) is the jump value of discontinnous function ¢ aoross the- mterlnr

element boundary, and
b.—p-=¢, on I\NT, VRAET,.
Moreover, we always think that FE Q; and @ have all features of regular FE in
the sense of [5]. Then, we have the following resulis. |
Proposition 3.1. A function »|g (v€U,) is uniquely determined by six
degrees of freedom, i.e., the values of (ven) at two distinet points of each side of
triangle £, € .5 . |
Proof. For any Q,€.7,, and any v€U,, 2|g is a linear function. Since
dim[P,(0,)]?=6, the dimension of the space [P,(2,)]? is equal to the given number
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of degrees of freedom, and we only need o prove that a funetion 2, € [P1(@)]1*
will vanish, if it satisfies the condition that the values of (vy°n) at two distinocd
points on each side of the element Q; are zero, where o, =2] g, _

In fact, from vy°n€ Py(£,), we know thai there are only six unknown paramer-
ters on I';. Therefore, v)+n|(ry,=o, 1< k<8, implies Dy>n|r.-o. Using Green’s formula,
we have -

Jﬂ ghv-ahdmsjr g(ah‘n)ds_fp Eﬁ-'thfﬂ'o; VQ;EWL-

Hence, because V1, € P1(£2), we have
V‘-‘I_Jh’= 0, in Qi.

TFurthermore, there exists a_straamfﬁuction ¢ € P;(Q;), uniquely determined up to
an additional constant, such that

: 5;. - curl ¢ =e (33()5, e 31¢:) .
Note that 7,+n=2;¢p=0, where &, stands for the tangential derivaiive along L.
Thus we may assume that ¢=0 on I'; and ‘

e

q5 = CA1Aahs,
where cfv is a funckion”defined in £ by means of the affine transform for b, A, 16
<8, are area coordiantes, and ¢ is a constant to be determined. Since AsAohs € Ps{(2),
¢ must be zero. Henose $-—=0 and »=0. Returing to the practioal element £;, we have
proved that v,=0. |
Proposition 8.2. We have the following relation

{0, EUy; Vev,=0}={v,=curl ¢; ¢ C D},
where the streamfunction subspace @, consists of piecowise polynomials of degree
< 2. |
Proof. Obviously, we have
{op=ourl ¢y ¢n€ D} C{vy=U,; Ve, =0}
We now prove the inverse result. For any v, €Uy, we have
ByUsy + O3pa =0,

= "”j &3Vpa 01 +A(@3) = — 39” Vna dﬁi“Il(%)dﬁﬂ] >
Considering thai |

Vx1 = @1 %1 T+ Qs+ as,
Upg == D1y -+ ban 1 b3,
and defining
953"' J‘h Vpa iy — rl A (w4 derg
we geb
31‘;61: == Upa,
— Oachy = Up1.
We oan set

(n =012} -+ Ca®1 g -+ Ca3 -+ 0ay -+ Coa+ 00
Then, the corresponding velocities v, are
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Uaa= — (2e101 4+ cs®at+¢y),
Vaa ™= 09y + 203%""{55

Bince v,]e, are nniguely determined by six values of (w;.-um) at the sides of the

element £, we obtain a straamfunnhon ¢, exacily to an additional constant, and
the following relation -

v =curl ¢,.
The proposition is proved.

The proofs of the following Lemmas can be found in [20—22].
Lemma 8.1. There ewists a consian o, independent of h, such that e

[ a<ait ool ot lolos), VOETE@I 0 (8.0)
Lemma 8.2. Thers ewisis a constani o independent of ki such that e
o [v]o,0<olv]y, Vo€ Hyp, 1<4<8. (8.2
Lemma 8.8. There ewist constanis ¢; and ¢y independent of k such that
[olo<ch*|v|g, VvEHy, i=1,2. (3.8)
Lemma 3.4. There evisis a constant o, sndependent of h, such that
% ﬂ?un'cn}m'gﬂllguw“oﬂ iw/n, V¢ € Hy. (3.4)

Lemma. 8.6. From ihe definition of Seotion 2, we have the Jollowing resulls:
(1) the bilinear fumciionals B(-, <) and (g, V+v) are continuous on Hyx Hy,
and Hy X Hy, vespectively, §.e., there exvist different constants o ¢ndependent of h such that

| B(z, v)<olzlv|vls, V(r,v)€EHyx Hy, (3.5)
[ (¢, V-v)<elglwlvlo, V(g v) € Hwx Hy,; (3.6)

(ii) the trilineer form b°(., -, *) continues on [Hy,l®, ¢.6., there exisis a constant
o, endependent of h, such that

Ib'(tﬁ, v, w) chﬂuﬂnaﬂﬂﬂmﬂwuﬂu Vﬁ, v, WEHUl (3'7)
Proof. (i) From the definition, for any (7, v) € Hy X Hy,, we have

Bz, v) =;[Iﬁw(r*n)ds— (Ver, w)ﬂﬁ]
=$[$(q,—, #(9)) gyog -J‘P (vt) (zenet)ds),

where the conditions that (v+n) continues on I'\I" and (v+n) vanishes on I' are
used. Using the Schwarz inequality and Lemma 3.1, we get

B(7, 0) <2 Il 300, 15@ g g0
+ (A L.: | (v, —v_) +7|2 dﬂ)im (hf. L,‘ rsds)'iy‘ﬂ] ;

<e{Sfle@ Ba+i [, 1@—0)tl2as]} " theltot Th 7l 10y 1

<clzlvjole, V(7 v) € Hyx Hy,,
which gives the desired inequality (8.5).
On the other hand, we have
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[(g, V)= {'iEU‘P;\r g(ven)ds— (v, Vg)ﬂ{]l
(5, lasa-120) ([, ) "+ ClolF (S Vali.a
/e - NI

rar

+||‘”Ho,n($ﬂv€||ﬁ-n.)m | N .
gﬂ“?ﬂwiwﬂﬂu \‘?’(Q, m)EH‘FFXHUr | |

This proves (3.6).
(ii) For any u, v, w€ Hy,, %|a, q:],,, and w|p, belong to [Hﬂt(s:a,..)yI Y0,E T

USJIlg Sobolev inequalifies and the trace theorem (see [1]), we oblain
(8% (v, u, w) | ‘QEU J [mw,@;w;—l-u;wﬁ,w,ldm]
7 Ty o,

%aE[ﬂV-u

H‘!ﬁﬂu hn,llv'l‘ﬂﬂ o112 [lo,¢,0,]

2,004 (Dfol0r) (Dl

N +<2nuun ) LB 0) CEI Ve300
Qo) (Rleliaa)*
<o( 3 ¥t )2 (S [o]L.a)¥* (Tl wlt.a)?

‘Q‘?"“"U.“ | vall 2] s ‘v‘-u,, v, w& Hy,,

whmh implies 1nequaht3r (8.7). Therefore, the Lemma I3 prnved
Lemma 8.6. There exist different constants ¢ such that

lﬂl‘lriuwﬂﬂti!rg+ ﬂunﬂnhﬂ.ﬂ.ﬂ “ﬂd-ﬂ."vwﬂﬂ-&

|n,p.|{‘v

=

inf ju—v|g,<cb’fuls0, s=1, 2, Vu€ Ho. N [H*(2)]7%, _. (3.8)
inf fu— 2]y, <ch**|ul,o, s=1, 2, Vu€ Hy, N [H@)]1®, (8.9)
ﬂl;]{ lu— vy <ch™u]s 0, s=1, 2, Yu€ Hy, N [H* ()17, (3.10)
inf Jo—7|r<ch(Xleolie)™, VoCHy, (3.11)
it (3.12)

1ﬂf (“P‘_Q’H L’fﬂ)fﬂ“'fhiEP— gl w) *@hllpll BBy Vp€ H'(Q) /B:

.'w?wfrs C 4S c-ﬁdependeni of k.
Proof. By using Lemma 3.3 and the standard results of approximate theory

in Sobolev spaces (see, e.g., [5]), we can obtain the interpolant error estiinates
(3.8)—(3.12) immediately.

§ 4. Some Abstract Results

Let U, V and W be three real vector spaces, and let .H.U‘={U; [*le), 1<<4<<8,
He={V; |+|v} and Hp= | ' 3 equipped with scala:

produet norms |« |y, |

Hﬂlqﬂﬂlq [Lﬂ('g)]ﬂr =1, 2,
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. | HeGL*(2)/R.

Define that d(-, +), e;(+, +) and e;(-, *) are continuous bilinear forms on Hyx Hy,
Hyx Hy,, and Hy X Hy, respectively, while 5*(s, «, «) a continuous trilinear form
‘on [Hy,]? i.e., there exist constants 8 and ¢, independent of 4, such that

d(o, v)<pcolr|zly, V(o,7)EHyxHy,

e:(7, v)<o|z|v|vls,, V(z, v) € Hyx Hy,

35(9: q;) QGHQFIW I'vﬂ Us» V(Qr "D) E HW X Hﬂu

5*(u, v, w)<c|ulu.|o[olw]o, (u, v, w) € Hy, X Hg,x Hy..

For any given (o, u, p) € Hyx Hy X Hy, we consider the following abstract

approximate saddle-point problem:
| Find (o}, s, 13) EVaX Uy X Wy, where V;, U,, and W, are finite dimensional

subspaces of Hy, H, and Hy respectively, such that

d(ﬂ-‘ﬁ: 7) 3-1(1"': ‘US;) <f1:r T)F: VTEVM'- : : (4'1‘5)
b* (‘Hq,, th, '!J) 61 (a'hr '!J) — €a (Pﬁ: jU) - <fﬂr ’v>ﬂr Vo& Uih | (4 - lb)
6a(q, wp) =0, VgEW,, (4.10)

where £+, +>x is the duality produet on X’'X X, and A4 i¥ an approximating
Pparameter. , | ~

In order to obtain the existence, uniqueness and convergence error estimates
of the solution of problem (4.1), we make the following hypotheses:

(H. 1) there exist constants ¢, (>>0), 1<i<8, independent of 4, such that

EEE —,r—ll—ﬂi(:" :) >oi|vlp, YoEZa, (4.2a)
| EEEP ﬂ::il(g; ':U) ?ﬂﬂﬂ ﬂ VQEWM ; (4 2b)
foln<es|vlp, VOEZam, | (4.20)

where the subspace Z3, of U, is defined by |
- Zay={vEUy; ea(q, v) =0, Vg & Wh}
Inequa.htms (4.2a) and (4.2b) are cslled the Babuska—Brlzz: inequa.htles (for

details of the B-B inequality, see [2, 4, and 22]);
(H. 2) the symmetrio bilinear form d(-, ») is Zy,—elliptie, i.e., there exists a

constant a(>>0) independent of & such that |
| d(a, 0)=a?|U|2, VYo & Zu,  (4.82)

where o | o .
Zpw={r€E Vn;; e:(z, v) =0, VuC Zg}.
And for the trilinear form %*(+, «, +}, we have

| b* (v, », v) =0, YoEZy; (4.3h)

(H. 8) the generalized Allmann-Johnson condition (see [21])
Zﬂ,,czfm{vEHH,; ea(g, v) ===D, Vg€ Hw}

holds.
Denote by l,b;;.(lﬁf:ﬂ‘{:-}) the orthogonal projectors from Hy onto V,, Hy onto

U, and Hy onto W, respeclively. Then we have the first identifying oriterion of
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the Babuska-Brizzi inequality™ . The follnwmg results can be found in [21]

Lemma 4.1. Inequaléiy (4.2a) holds &ff
(i) there ewisis a linear operator mn € 2 (Hy, V) such that

- | Iywlr<celr]r, VeEHy, T (4.48)

61(71 'uh) mﬂl(ﬂihfj 'Uh): VTE HF: Vﬂh'-e Ul; (4-4b)

(i) su e (7, ");?-'aﬂw;[lg,, Yo=U,, (4.5)
TE H"l'r'"rr

where o 48 a positive constant mdependsnt of k, v and V.
Corollary 4.1. The operator I defined in Lemma 4.1 has tha propertjr that

‘there exists a constant ¢ independent of % and ¢ such that -
lo—uoly<oinf lo—sly, Yo€Hy. —  (46)

‘Lemma 4.2. Inequaliiy (4.2b) holds ¢ff
(i) there exisis a linear operator Il & L (Hy,, Us) such that

lﬂmﬂnn.'qi?ﬂ”lvu Vo€ Hg, * (4.7a)
3ﬂ(gr 1’) “'ﬂﬂ(gs Hﬂi‘”); V‘“EHH., VQEW;; (4.7]3)
(ii) there exisis a constant ¢ dndependent of h such that Tl
* g 59(?: ) _ '_ '
4 ui‘éﬁ,—a?;];,_g" lglw, VgEWi.  (4.8)

Corollary 4.2. The operator IIy has the property that there exists a oonstant
¢, independent of A, such that | | S ' " gesm 8
ﬂﬂ—ﬂmunn.'ﬁﬂf&f le—viy, Yu€ Hp,. (4.9)

The proof of the following lemma can also be found in [21].

-~ Lemma 4.83. If ihs FE pariition families are regular én the sense of [B], then
for the saddle—point scheme (4 1), _the relations (4 8) and (4.8) clways hold as h Gs
small enough.

We can now obtain the basio abstraet results.

Theorem 4.1. If conditéions (H. 1)—(H. 8) kold, end &f o én (4.3a) ds
sufficiently large, or | fsl®, the norm of fa in (Hy,)', 8 small enough, then problem.
(4.1) has unéque solutions (o3, s, 2r) EVaXUn X Wy, And we have the following error

esiymates:
lo—on]v+ Hu—u;[lmﬁa{ inf lo—z}vr+ inf [ﬂu—wﬂg,—l— 15® (ua — @) — b3 (ua— 0) |*/7] |

i e sz(ﬂ)l} (4.10)
| p— pu[lwﬁa{qmwg_llp q|w+ o — ”"!",EEIP lelz,
15" (0) —b3(w) | oo
TR Tl | H‘”Hu.} (4.11)

where (o, v, p) € Hy X Hp X Hy are the solutions of the contimuous problem.
corresponding to the approvimate problem (4.1), and
6°(0) =b"(u, w, v); ba(w) = (ua, tn, v)-
Proof. From Theorem 2.6 of Chapter IV, [8], we only discuss the following
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problem without the variable ;. |
Find (ﬂ';, ﬂg) G_V;X Z aa Such that

d(ﬂ'h T) — 61 (T: ) =d(a, T) — 6 (Tr w), Vz¢ Vh; (4 128}
ba(v) +ey (ﬂ'h' v) =" (v) +ei(d, v), Vo&Zny. (4.12b)

We will complete the proof of Theorem 4.1 in five steps.
Step 1. For any 7€V, that condition (H. 1) holds implies that there exists

a constant ¢ independent of 2 and = such that
| = ﬂrﬁn{(1+u *B) sup ﬂiu(fu ) -+~ 1dgl/3 (7, 1:)} (4.13)
vEUa U . |

where & and B are constants defined previously in this section. _
V7 € Vs, there exists a unique orthogonsl decomposition such that

T"'Tf‘l"fg_, :
where g
'rieﬂ-=={-£mTw vE& Zor}, TsE(V)J‘CZu

and (¥3)" is orthogonally complementary of ¥}, while operator I'c Y(Hy, H v) is
defined by _

_ e1(t, )= (7, Tv)y, V(z, ¥) EHyx Hy.
Since | |
61(7, v) = (7, Y, T0)r
implies | | -
(71: 'JJJLT'U)F_ (T: lp:lhTi’) £
we obtain |

I‘F':u Pial v) I(T: PnT'v) | le1 (7, »)
b mal 't % ) i .

Consider

[7]v= ﬂ‘*‘:ﬂv"‘Hfs"vﬁil'riﬂr—!-a"idif”(r Ty, T— 'Fl)

<[wlv+a7 [d*(z, 7) +dV2(3y, 7)) I<(1+a728) [ma]y+a2d2(, 7).

Lnserting |71 into the relation above, we obtain inequality (4.18).

Step 2. There exist unique solutions (o, %) €EV,X Z. satisfying equations
(4.12)

We first prove the uniqueness of the solutions.

Since both V), and U, are finite dimensional subspaces, we only need to prove
that when f; and f; vanish, problem (4.12) has only null solutions.

Taking v=0, and v=wu, in (4.12a) and (4.12b) respectively, we have from
condition (H. 2)

0<o®[aa[|l3<d(0s, o) =e1(0n, ) — b3 (1) =0
i.e., we have o, =0. Using hypothesis (H. 1), we obtain

E A . d(as, =
luslo. <o sup ST mort smp LD 12,0,

||+ evs  |T|v

Therefores we have u,=0.
We now prove the existence of the solntions.
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Without loss of generality, we can take f;=0 in equation (4.1a), and denote
fa in equation (4.1b) by f, i.e., we only consider the following problem:
Find (o3, us) EV X Zay Etlﬂh that L . %
d{oa, 7) —e1(7, ) =0, V-::GV,., (4.14a)
1 () +e1(om, v) =<{f, Wy, VVEZa. - (4.14b)

Evidently, using the coerciveness of the funclional d(-, «), from equaismn (4.14a)
we obtain a solution ¢*. In order to find u,, we consider, Vv & Zj,, -

[.?H('u), w] =b"(v, v, w)+d(cf, of) —< ) WD 1N,

where N is the dimension of the dimensional Sllbﬂpaﬁe Fai and {w;}‘_l are the basi¢

functions of Zg.
In particnlar,

[Px(v), v]=0"(v, v,.0) +d (o}, o}) —<f, V.
If we denote by § f|*= sup iﬁ u:> the norm of fin (HU,)’ then condition (H. 2)
implies that 1

[Py(v), 0] }a’ﬂaﬁll“— FiGEIE®
Using inequality (4. ga), we have

e(m, 0) _ oo (0% 7) g
'h[l’”"l.';?'ng EHR "T"V EE 4 "'FH QB Hﬂ' ﬂ"ﬁ

Therefore, we obtain .
[Py (v), v]= (1872 v]o,— [ FI™) [2]0n

Henoce, we choose &> ”{g_ and for v € Za such that [v]y, =&, we have

. [Py(v), ©]1>0. | (4.15)
Moreover, Py is continuous in Zg by virtue of the properties of B'( +, », ») and
d(+,+). We can, therefore, make use of the classioal Brouwer's fixed point theorem
(see, ©.g., [8]). Hence, there exists an element u, of Za that sakisfies problem
(4.12). i
Step 8. For the sa,ddle—pﬁmt scheme satm'l"ymg the strongly eonmstant
ﬂundwmn and (H. 1), we have the following inequality:

d*3 (o — oy, o—0) Qﬂ{ inf |o—~7|y+ inf Ju—2|r

TEF, vEL,

- 1&? | 8" (un— ) Er;,(u,,-—q;”ifﬂ_l_ SBPJB (wﬁ "b (.v)l}
. (4.16}

In fﬂﬂ‘b using the consistent condition, from (4. 12) we have
e1(0— 0%, U—1tp) — 0" (up — ) +b; (un— v) =81(0— 0y u—9), VWEZE,,, (4 17a)
d(c—0oy, 0d—03) =d{a—04, 0—7) tei(o—0n u—tn) —€1(0—7T, u—1w), VICVs.
| (4.17b)
Adding (4. 175.) to (4.17b), and taking =10, we obtain
d{a — 0o, 0—0y) =8(0— 03, 0—113,0) 6, (0 —0, U —2)
+ 0%y —0) —bi(in—v), VvE Ly, '- (4.18)
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where Il is the interpolation operator defined by Lemma 4.1.
Sinoce the following relation

0=e,(c— 0, w)=31(a'—a'h, ) +31(a';, Hﬂ.o', w), Vo U,
holds, we have -
| - |e(on—I e, v) | =]0"(v) — bh(v)l YoE€Za, . (4.19)
while | - .
|61 (a— o, u—v) | <ol or— o |v|u—2| 0,
-Qcﬂu vﬂg,{(1+u= 18) sup |e1(on~Tno, v) |

vEW, H'unﬂ':

B T, 00 o)}

- wLofu— 'vﬂg,{(l—l—n:‘lﬁ) sup [3(v) — E’"(”)I |

vels ||'””m
+ﬂ-1difﬂ(ﬂ';—“ﬂ-ﬁﬂ', ﬂ'l—'ﬂnﬂ')}-

where the result of Step 1 is used. By considering (4.18) and using Young's
inequality, we obtain estimate (4.16) by simple operations.

Step 4. If scheme (4.12) is strongly consistent, and if condition (H.1) holds,
then there exists a constant ¢ 1ndependﬂnt of % such that estimate (4.10) holds,
Oonsidering that
| 6r(7, v—ws) =6.(7, v—w)+d(c—on 7), Y(z, v) EVAXU,,
and using condition (H. 1) and the result of Step 8, we have
a1 "m‘gc{ inf |o—z|y-+ inf [u=ovjs,+ inf |* () — B3 (s —0) | ¥2

TEV, CvEl,

+ sup [67(») — b4 (w)|} | | (4.20)

vE, " v " o

Using the triangle inequality and the result of Step 1, we get (4.10).
Step . Returning to problem (4 1), we now achieve the statement about

pressure p.
For the unigqueness of p, we only need to prove that when f, and fy vanish, o,,

us, and p, are zeros. Using the equivalence of problems (4.1) and (4.12), the proof
of which i8 & standard technique (cf. e.g., [8]), and using the result of Step 2, we
only have to prove p,=0. From (H. 1) we obtfain

ex (o, V) =it Sup{ 1 (v) +e1(as, "’)}=o.
4 E:2 vl iv o

Since HxGSIA(Q) /R, we get p,=0, up to an additional constant. -

The equivalence of problems (4.1) and (4.12) implies that there exists an
element p, € Hy such that (o, us, £1) are the solutions hf problem (4.1).

Finally, we prove estimate (4.11). Considering that

62 (—pr, ¥) =01(0— 0, ©) -5 (2) ~b3(v), VuEDH,
using (H. 1) and the triangle inequality, we have

| o8| w<ez® EEP
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s W T

lp— ol <lp—daplw+ [Pnr—plw
<1 dphw-+ost sup (2= bup D) —es(p=n )

vEDy . Hq;" Us.

<ec{ inf fp—glw+lo—aalv},

gGEW,
where s is the orthogonal projector defined above. This gives (4.11). The proof’
of Theorem 4.1 is completed.

§ 5. Convergence of the MSFEM

Under the framework of the abstract theory in Section 4, and from Remark:
2.4, and Proposition 3.2, we first have o find the MSFE solutions (o), %) in the
divergence—f ree space, i.e., solve problem (My2) of Seotion 2.

To begin with, we have the following relations corresponding %o the abstract.

framework: |

.(3(0', ) ='j.b(§l'_, %), Vo, v € Hy,

e:(z, v) =B (v, v), V(z, v)€EHyxHy,

& ﬁﬂ‘(gr {') ’(Q: v'”):ﬂ Y{(g, -‘U) € Hy X Hy,,

| Z.‘Ji""’Uh. ZH-HE:

and other symbols remain the same. |
In order to employ the results of the abstract theory, we have to check all’
hypotheses made. Obviously, from Lemmas 3.2—38.5, B(-, D), (g, V+v), and
* (., +, +) are continuous on theif defined spaces respectively, and the following
inclusions - ;
HyGHyGIL(Q)]? é=1,2,

HyGL7(Q)/R
hold. Considering the following inequalities:

(gn, Voun) ,

BTl Tt YaER, o
B, V 2

mp St alnla, veel, il
|V s v<es| | o Vo, €EUp, (6.3)
b* (v, v, )0, Vo, €U, (5.4)

we have the propositions below.
Proposition §.1. There exists a constant ¢ independent of A such thak.

inequality (5.1) holds.
Proof. By using Lemma 4.2, we only need to prove that for any v€ Hyl)

[H1(Q)]3, there exists an element vy & Us and a constant ¢ independent of A such.
that

(gh F"’Jn) =i ('Ei‘h: V), VQhEWm (5.55)
Ivﬂﬂﬂugcl ‘uuﬂr (5 .5b)

For any @,€ .7, denote by F; the affine transform from £, to 0, the conference:
element in £—1 planet see Fig. 4.
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Ng. 3
‘Then we have ;
Q= Fy (ﬁ )s l
E-F#;-Bé"l'b;, i....

-where the meanings of B; and b £,
are the same as in [5]. : | 2~
Lot 3 7 E £
émJiBrlﬂlﬂ,ﬂF{, I's
where J,=det(B,), the Jacobian. | Fig. 4 | Priaﬂtical eloment 0,; conference element g
90 € [P1(2)]° satisfying

From Proposition 3.1, there exists an element

jﬁf(s,-ﬁ)déﬂ’?&(ﬁ'ﬁ)d;, V{ER. (5.6)
If wo define | | -
vo=JiBwoe Fi'
then from Lemma 2 of [15]_, i.e., for any vE [HH(D)]3,
(i@md={ o, vierd), 5.7)
we can write (5.6) into |
L., i L‘ g(v-n)ds, VgER. (5.8)
And by means of Green’s formuh, (D 8) Eecemes
(b.9)

L g'i?fw.;. dw=L gqVevdz, YgC R,

Since F, is an affine transform, we have v, & Us- Summing (5.9) about ¢, we obtain

ihe relation (b.ba). . - & # _
Similarly, if v € H N [H*(2)]?, then there exist Vo E 6',. such that (B.5a) holds.
In order to prove (6.5b), we only require the following relation
{2]o.850] 21,8 | (5.10)
In faoh, using the result of Theorem 3.1.2 of [B], i.e.,
(6.11a)

|5 ma<el Bij™|det(B) | V2| 0]mo. VeEH™(Q),
19| w0, <0l Bri]®|2et(B) [ V2] 0| m8, VOEH(Q), ~ (5.11b)
and | B/ <h/8, [B:l <h/p, where p; and p are diameters of internally tangent
ciroles of £, and @ respectively, and k; and % are diameters of externally tangent
ciroles of 9, and O respectively, relation (& .10) implies that

ﬂq’ﬂo.mﬁﬂhil"-’lifﬂ;

By empolying the standard inverse inequality, we obtain
0ol 2 o0 = | Vo] 2.0, B2 | vol f.0,<0 ol 3.0, <okl | v | .0 <c|®]Twcan- (5.12)
Summing the above inequslity with respect to 0, we have proved that (B .bb)

holds.
We now prove the relation (5.10).
By eliminating the constant ¢ oOn both sides of (5.6) and wusing Green’s

formula, we get
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“ﬁ”"'“’da =Ha

. 3 .
Setting I = gf'kf (see Fig. 4), we can write out the following relation
R - ; :

(6.13)

From Propesition 3.1, we have

- " L
[‘Uni:l [ﬁn iy 3::] f
Voa . Bo Jé:t- Bs T
B 8
and . | B g o
e — o~ - oy . -_‘1 A A
[ & Ni1 f %1y ﬂi’ﬂn gy E:mﬂ e (‘Fn' '"’)1 -|
A o, o~ o, Fal A ) P
0y a1 afay Talar  Pas _fﬂﬂﬂg Nafaa (vo°n)4
& s . » | L ] | | ] L] | b | l- | J ’
A " WL A . A & A -~ : LA A :
31 T51 f 5751 TI5Tis1  Tiga f sMpa  TsNoa | (‘I-"a 'ﬂ)n
i Eﬂ__. _.'ﬁﬁi gﬂ‘ﬁﬂi '3?6';;51 Tga §ﬂ_ﬁiﬂﬂ - NaTlag - (’” "ﬁ')u i

where = (fis, N2}, Tv= (&3, 7), 1<6<6.
Considering that

jﬁ Yo dm%(maas(ﬁ))”ﬂqﬁ ]-vd“dm)%ﬂ

where ¢;, 1<<¢<6, only depend upon the coordinate values of the six nodes of the
element Q2. On the other hand, using the theorem of integral mean value, we have

Ioolo.a<0| 3 4 j (o dd|.

Inserting the result into (5 13), we obtain (5. 10) Therefore,; - tha pmpomtmn ig
proved. '

Proposition 6.2. There axists a oconstant ¢ independent of h sauch that
inequality (5.2) holds.
Proof. From the idea in [21], it Sufﬁﬁeﬂ to prove that for each QjC.7;, the
. relation |

B(z, 9)a -5 V(-.-,-, u)_eizh.xﬁh (5.148)

A e
Yo

implies _ L
I ("-’) || oeas,t 18 (‘”) 13, ., | ;
T j (v, —0v)-z]2ds=0, (5.14b)

Pig. 5 The structure of
subregions 4g; and Ay, where

-—-anﬂﬂﬂ 7. anﬂpj, ﬂj—ﬂgfu .d[,_’, §= FR,nI'L,, |

while the pmr nf elements (Qg, Q5,) =T, are two adjacent velocity elements whioh.
generate £j; see Fig. 5.
| In fact, we get, by using Green’s formula (2. 4) and from (b. 14&),

L (vy—2-) «(zem)ds— (z, (V) g, =0, Y(%, v) EVaX U;;,,.'I | (6.15)
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i B T il i

Without losy of generality, we may assume that
008 2(n, )40, on S,
Recall the structure of the set H oy in Section 8, and set

(5.16)

P g 0. 7 -'1:' {691'1‘0?2;3; in Aﬂ.u
11 =g =V, v1gT T = .
: : = 5 aﬂi—{rc‘ﬂnﬂaﬂ'r -ln AIJJI

where

d 031-—-2130052(“ aa)] I (i?+~w Yot ds,
- mﬁa.s(dﬂ,) [68: (v) -y / j L.

| 0£2= mﬂﬂﬂ(ﬁﬂj) [521 (‘1?) o 051] /Jd; l_; A

g(v)=¢ (v) — (V-0)8/2,
-' g®(v) =8(v) |Aﬂ: el(v) =&(w) |.-.1.-._,?
The relation (5.156) implies that

[E(u+;u_).zds"=o, 61D

feax (0 13, 40,00, +
F

becanse we have -
_to(7, n) =c118in2(n, 21) —0a1c082(n, @), on S, . A
(T 3(*’))4.,::4;,"2[(711; Bu(ﬂ))d.,uz;,'i'(fm Em(”))d.,ud;,]
In the same way, we have g O -

- e “Bn(ﬂ) Hn.a.,ud;,=Hﬂﬂﬂ(”)ﬁu.d.,u&,—ﬂ (518)
Using (5.17) and (5.18), and sinoe, wEU;, we nbt&m |

Oﬁis(w)II.:.,,,,JUJHQl]a(ﬂ)ﬂo,d_jud,u+H-—-V 08| -0, - (8.19)

ﬂ'l- d:_;ll d;j

which means that v is a rigid body dmplaeement in ea.ch triangle Az, or /.1;, W 7S
in 4g, or 4y,; v can bB wntten info

[2-[2em] =

Vs C2 + 72
[m] [f—h%' :
W n A_th
Vq 32 "'I"I‘rLﬂ?I J N

Using the continuity of (*u-n) on §, we have K .
- [ef—ef— (tp—tr)zslcoa(n, o)+ [oF — o+ (3z—tr)@]cos(n, 23) =0, on 8. (5.20)
On the other hand, since § is & straight line segment perpendicular to n, Wwe get

| [ %y ]=[m:m +1t cos(n, @)
| | T3 @ao+1 cos(m, Ay)
where (30, ®s0) Batisties the relation (5. 20) and 7 is & parameter. Then (5.20) and.
(5.21) 1mp1y that

] t1<£< ta, (5.21)

. _ | _ tﬂ' t,[}=0 Bk | ; o (5.22)’
Put’omg (5 22) mt»o (5 20) and the second term of (B. 17') we obtain
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L [(ef —ei)cos(m, xy) — (02”02)005('7& :vﬁ]ds 0,

(af_o‘}')ﬁoﬂ(n, z;) + (cf — ) cos(n, 25) =0,
which imply that
elf=0f, %=1, 2. ) (6.23)
Thus the relations (5.7), (5.8), (5.22) and (5.28) give

18(9) 3.0 0, 557 | (01— 0.)-1

Therefore, the second criterion of the B-B inequ ality of [21] is checked. The
proposition is proved.

Proposition §.8. There exists a constant o mdependent of 4 such that (5.3)
holds.

Proof. From the definition of norms §+lo, =1, 2, and using Lemma 3.2,
we only have to prove

’ds=0

Slolio<clolt, VocTUs. (5.24)
Since we have, from the definition, |
EI |1rﬂ¢ E[Hv' “iﬂi ﬂ&(ﬂ)!ﬁ,p,] |

and .

>

Veo=0, YocU,

the inequality is obtained immediately. The prop051t10n is prl:wed
Proposition §.4. Inequality (5.4) holds.
Proof. Bee the proof in [12].

Proposition §.85. For the finite dimensional subspa.ce U; deﬁned in the paper,
we bhave

U.cHy.
- Proof. For any ﬂ;CUn';, we have by the definition
_ (ga, Vouy) =0, V@ EW,.
Since ¢, is a constant in each element € .9, and V-2,]4, is also a constant, V.vlg,

equals zero. Furthermore, summing all £, €.7,, we have Veu,=0,
On the other hand, we have

nelUclU.cHy,

(g: ?-w,,) =0: VQEHW;
which implies that v, belongs to Hy. The proof is completed.
'We now derive the main result. |
Theorem 8.1. For the approvimation problem (My2), 4f the viscous cosfficient »
ss sufficiently large, or, | f|*, norm of the body force, is small enough, there exist unigque
MSFE solutions (o, us) EVaxU,, and there evisis a constant ¢ independent of h such
that

and

lo—oalv+ fu—wlo, <ohlulss, (5.26)
where we assume that the ewact solution of welocity u belongs to the space [H*(Q)N
o (@)]1.
Proof. First, we ﬁhack the hypotheses (H. 1)—(H. 8) required by Theorem
4.1.
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( 1) Propositions 5.1—5.3 imply that (H. 1) holds.
(ii) By using the standard inverse inequality, i.e.; .-

|%|1,05 <chi|z|o, 0, V=€ Hy, Vﬁjeﬁrm L

we have

(T, 7) = p w3, 0= u ] 7| 3,
where constant ¢, only depends upon the region £2,

And considering Proposition 5.4, we have that (HA 2) holds.
(iii) Proposition 5.6 implies that (H. 3) is true.

Using Lemma 3.5, we can now employ Theorem 4.1 directly. Therefﬂre
problem (M,2) has mnique solutions (o3, u;) and we obtain the following estlmate

lo—oulv+lu—ulo,

<o{ 1nf lo—zly + inf [Ju—olot |5"a—0) ~Bi(ta—) |17

TEFp
ap @B} .20
vEU, "'IJ" Ua ._
It is easy fo obtain, from Lemma 3.6,
5 1;3];.::‘ ||a'---r[|;r<ch||uﬂ3,n, (5.27)
inf Ju—o]o,<ch|uls,o. (5.28)

vEls

Evidently, if we have the following relation
B =B+ = sup L0 =80 1 ynf 1374y —0) - 63 ua =) |

vED, l v “ vET,
- <oh|us,a | (5.29)
then the theorem is proved. |
We now prove (5.29). Using Lemma 5.1, to be established below, i.e.,

uﬂ'h—ﬂnﬂ'”vgﬂhuuﬂﬂ.m | (5.30)

where Il,, is defined in I.omma 4.1, we obtain (56.29). In faet, from (4.19), (5.30),
and the continuity of the bilinear form B ( *), We have

Eigch”uuﬁiﬂl
Ey<ch’*ju|za( inf |uy—oa{dy).
vaEla ) '

Since (H. 1) gives

Hun wall'ﬁmiﬂﬂp B(T’uh *u,,) ﬁﬂ(uﬂ‘ Hnnﬁ‘ﬂv-l-l]ﬂ'r-ﬂ:mﬂ'nr[‘ﬂ*w‘"‘vnﬂm

which implies, from (5.80), and Lemmas 3.6 and 4.1, that

Ho<ehlula,g, B
the estimate (5.29) is obtained. Gombmmg (B. 27)—-—(5 29), the relation (5.25) is
proved.
. Lemma 6.1. Under the conditions of Theorem 5 1, dnequality (b5.30) holds,
where o and oy are the exact solution and the approvimate solulion of stress deviatories

respeclively.
Proof. From (H. 1) and Proposition 5.4, we have
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o, < (o1e) 2 loado. o
0,8~ Pf[P"' l(a-hr "-Th)] "‘P"[(f: u’h) bh(ﬂh)] {.’;f-"nfﬂ Hufn“m-

Joal3
Henoce, we get

[unfo<or*m | 1" (5.81)
Considering that - 7
B(o, v)+5"(2) = (f, ), Vv€Hy,
Bloi. 6+ 80 =(F, v), Vaels,
we have | | | | | '. |
B(o—a3, w;) +8* () —br(m) =0, Vo, & ﬁ;.

Taking v=I 4, %~ u,, where I, is an interpolation operator defined in Lemms. 4.2,
we have

d(ﬂnﬂ;*"ﬂ'h) +i;|R¢=0: | (5.52)
= .

where |
.Ri=B(ﬂ"—Huﬂ', Hﬂnu‘—uh);
Ry = B(IIpo — oy, Hau—u),

. R3=ti(ﬂ'—ﬂmﬂ'.; Hnﬂ'—ﬂ'n):

Ry=b" (M au—us) — b (Mot — ).

Using (H. 2), we have from (5.82)

_ 4
m;b“iﬂﬂna'_—ﬂ'iﬁ‘§0§|ﬁ|, (5.33)

where ¢, is a constant in the inverse inequa]ity.
Since we have from condition (H. 1)

U1€GI13HP B(T Hﬂhu '!.5;,,) Q{:‘“I(p; luﬂ' ﬂ';ﬂr""ﬂlﬂnﬂ' a'hﬂr
reV

|7 v
<ch|uls 0+ (erp)” Hﬂlhﬂ'—ﬂ“n"ﬁ
we obtain by means of Young’s inequality |
I-Ri [ gﬂnﬂ'_Hihﬂ'"T""Hﬂhu_u’i‘lHU:;Qﬂhllullﬂ.ﬂHHﬂh““uh“U:
<cei'A|u|z,0+e1u™ [T o ~aal7,
| Bs| <o Hino — on] v | Hasti—vs| o, <0h || 2, 0| H1no — 0] v
<owpsz | ulz, o+ eau™ | Huno — oyl 7,
R <p o — Hpolv| duo — o3|y <ecuwls5h%jul3, o+ eaus | Hino — a7,
I-R4 Qﬂ{ﬂﬂf‘"ﬂmﬂ"m“ ﬂn.“ﬂﬂh‘u ua”m Hl_lfm{!{llu-._ll'w-—ﬂmuﬂn.liﬂsn““%ﬂﬂ-
ﬂﬂﬂh"mﬂﬂmu nf st ] o | L snte — | 50
<<ch?|u|3, o0+ (Bﬁ_l_gﬂ)f-" “Hmﬂ"-ﬂ'i”v i,
+or?u *(Julvat lualo) H Ino—anl},

where g, 1<<¢<(6, are constants which appeared in Young’s inequality. Insertmg
the above results inte (5.88), we obtain | |
8

P_1(04—‘§ 3{) ” Hihﬂ""ﬂ'nﬁf‘gﬂhﬂ"“”ff-n‘i‘ (ﬁiﬂ)_ﬂ(ﬂu"mﬂj‘; uﬂh"h‘m)lﬂﬂlﬂ“é}u%*|(5-34)

| 2T apts— up |
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Sinoce: for the continuous problem, velocity solution w satisfies (see [17])

luls,0<2] 1"/ 8,
and using the relation (5.81), (5.34) can be written into

wYoa—3) e ?m_(z-m-ﬂ)ﬂfu'wﬂ,a—a,n%-gchﬂuunﬂ,.,. (5.85)

Partioularly, taking E &i<cs/2, and using the condition that u is sufficiently large,

$=l

or | f]* is samll enough, we have

0{%‘ cs— (eap)~2(2+07%) | F1" - (5*36j

Therefore, putiing (5.86) into (5.85), we get

| a0 — aa [ v <ch]u]a,e-

which is (5.80). The lemma is proved. -
Remark 6.1. In the procedure of the proof of Lemma. 6.1, we require thab
(6.86) hold, i.e.,

n’?2(2+0&'“) | £1°/eect
Since we have , |
| ‘ | p=2y, Reocy™,
where v i the kinematic viscosity parameter of fluid, and Re is the Reynolds

number, hence we only disouss the case of small Re number, such as problems in
hydrodynamies.

§ 6. L2—Error Estimates

Weo have previously discussed the MSFE solution of problem (M,2). In order
to find pressure p, we now return to problem (My1).

Problems (Myl) and (M,2) are equivalent, which can be proved by standard
techniques (ef. for example [8], Chep. IV). Therefore, problem (M1) has unique
solutions (o, us, 1) EVax Uy X W,.

We now begin to disouss the convergence for the disorete pressure. It is not
difficult to see that if the exact solution p of pressure belongs to H*(2)/R, the error
estimate can not be obtained by using (4.11). But we have the following result.

Theorem 8.1. Assume that p€ HY(Q)/R. If the conditions of Theorem b.1 are
satisfied, then there exists a constent ¢ independent of h such that

| — ] vy r<eh(|ufs,0t 2] 2v0)/8) s (6.1)
where u is the exact solution of weloocity.
Proof. ILet iy be the orthogonal projector from 1 (£2) /R onto W,. Then, there
exists a function u € Hy | [Hs(Q)]? such that (see, e.g., [6] and [16]):

Vetlo=yYnp—my— 0o, in Q, (6.2a)
=0, onl, (6.2b)
where ¢=[meas(2)]" L (fap—p,) de,
Moreover, we have |
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T ||ﬂo|1.n‘<\i'ﬂ||¢h£?—ﬁ?r"ﬂulu_+ﬁ=ﬂ|\kan—Pn[|L'-:num . - (6.8)

where ¢ is a congtant independent of h.
From Lemma 4.2, there exists a function I o320 € Uy satisfying

(?*Hﬂhﬂo—v'ﬂo, Q)=0, VQEW}, (5.43)
) FT ot —tio v, <0 int lo—v]gs (6.4b)

Since we have i ,
“V'ﬂﬂhﬂoﬂo.nﬁﬁv'uﬂﬂu.n (65)

6.4b), we obtain I

using Lemma 3.3, Lemma 3.6, and the relaiion (
U;'chwnimﬁﬂﬂv'uoﬂu.n-

| I]Hmuo—uallu,éch"‘llHmtfo—-ua\{u.ﬁﬂh"inf o — 2]

vl

On the other hand, we have |
o (dap—pr—0o, Vetio)
4z ?h coloo _ “v‘%ﬂu.n "

'Qup lfJn_'P Gu;:.pn "?‘%“u.n ’ VGIGR_. . (ﬁ.ﬁ)

which implies that , . ,

HP‘%WL’(H}!BQ ﬂp—lﬁ'ﬁ?“mmm"“ﬂ%? P ﬂnﬂu.n
< inf ﬂP-—-"Q’“L‘(ﬂ}m‘!'Eﬁ IP'%P“G“u.n‘i'R(P: Pas Uo)

5 R qgwdﬂ
i, _"‘;ﬂhllfii'“ﬂ‘m)mf?‘ﬂ(i?r D, Yo), '. (6.7)
where
R(p, pr, t0) = | (p— 21, VoTantio) | /|V-tolouo
We now prove that there exigis a sonstant o independent of & such thab
o s o R{p, 7 t4o) ‘Qﬂh(ﬂuhﬂ.n‘l”npuﬂwpm)- (6.8)
Considering |
Ko VeTawe) | < |0 (T o) By aue) |+ | Blo—0n, Hawo)|,  (6.9)
gnd using (6.6) and the condition we & [Hs(2)1*, we get ,
(6.10)

; : IB({T“T“’ 5o | %Ghlluﬂs.n\l‘?-wllo.n,
where we have :utilized the fact that if ue€ [H*(£2))%, o o,
0o & [0 ()] (see [5]). |

On the other hand, we have |
|5 (W antio) — b (T awtio) | <X Bal (6.11)

c [C°(2)73, the_n‘

where -
_R1= Bt (ﬂ,—- thﬂ:, Y, Hﬂhu'ﬂ) ’

R="0b"(L s, u—tns I ),
o R=b" (I asts—p, thn, Mantio) -
, In the same way ag in proﬁing (5.33), we can geb
“ | Ri| <chluls.ol V-ulo0, 103, . (6.12)
ependent on the exaot solution u of velooity. Therefore,
8) is obtained by combining (6.9)—(6.12).. The proof is

where constant ¢ is only d
the degired inequality (6.
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oompleted by considering the relations (6.7) and (6.8).
Ag the final result, we give the L~error estimate of approximate velooity u,.
Theorem 6.2. There ewists a constant ¢ independent of b such that
f * fe—unlo, 0 <ok ula, o | (6.13)
Proof. Let us congider an guxiliary linear problem: for any gwan function
gE [ZA(2)]% find (o, &) € Hy x.Hg, satisfying
d(v, 0)—B(x, ) =0, VYv€Hy, (6.14a)
b* (v, v, w) +b*(u, v, ) +B(o, v) = (w, q), VﬂEHu, (6.14h)
where the definitions of d(+, +), B(+, +) and b"(-, », +) are the same as before, and

they satisfy all conditions of Theorem 4.1. From the results of the Stokes problem

(see [28]), we know that there exist unique solutions for the auxiliary problem
(6.14), and

l3ﬂ1m+ﬂﬁﬂa.n'€cﬂgﬂo.n. (6.15)

Denoting by (o, #) €V, x U, the MSFE solutions. corresponding to (6.14),
and taking v=w,—u in (6. 14b), we obtain B

(up—u, ¢)=0"(up—u, u, %) —l—b'(u, uy—u, &) +B(o, uy—u). (6.16)
Considering that | - -

| 5" (ta, wa, ty) — 8" (u, u, %) + B0 —0, @) =0,
we can write (6.16) as

(‘lﬁn — U, g) o é- -Rh (6 ’ 17)

where -
| Ri=b"(up—u, us, t—1),
Ra=b(u, up~—u, i—ty),
- Ry=—b"(up—u, wx—u, ),
R4=B(E'—;n, U—us),
RE=B(0'_G'.M En—ﬁ):
Re=d(oc—o0y, ;;,——E). |
We can prove from the continuities of d(+, =), B(+, ») and B*(+, », +), and tha
result of Theorem 5.1, |
' | R <oh|uls0lgloa, 1<i<<6, | (6.18)

where constant ¢ only depends upon w. Therefore, frem the definition of dual norm
and (6.17)—(6.18), we obtain

lu—tao,o— sup J{a ’g)L-ﬁcﬁ, %] 9, 0

gE(L{)] |9' 0.0

This proves Theorem 6.2.

We shall conelude this paper with the following remark.

Remark 6.1. All results obtained in the paper ean be extended to the case of
three dimensions. A main difficulty is in two B-B inequalities. Fortunately,
[24—25] seem to have provided a strong means for the MSFEM. Moreover, we think
it possible to introduec quadrilateral element in the MSFEM for the Navier-Stokes
problem.
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