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Abstract

An explanatory modsl class belonging to the family of Space-Time Transfer Function-Noisa
(STTEN) processes is presented, The paper develops a three-stage iterative procedurs for building
STTHFN models of the rainfall-runoff process. Four precipitation and runoff stations located in a
watershed in southern Ontario, Canada, sampled at 15-day intervals are used for the numerical
analysis, Thres 8TTF models are identified. The model paramefers are estimated by the polytope
technique, a nonlinear optimization algorithm., Two of the developed space-time models proved
adequate in describing the spatio-temporal characteristics of preeipitation and runoff time seriss.

§ 1. Introduction

~ Iu recent years a large number of stochastic  models have been adapted to
represent different agpects of the rainfall-runoff process. The most extensively used
approach has been the Box-Jenkins (Box and Jenkins, 1976) transfer function-
noige (TFN) modeling of hydrologic time series. In particular, linear input—-output
models are developed with a stochastic part (Strupczewski and Budzianowski, 1984).
In this way an increase in accuracy can be achieved within the class of linear
models. This modeling procedure relates the output (runoff) of a hydrologic system
to the inpul{ (rainfall) of the system by adding a noise series. These empirical models
have proven very useful in hydrologic analysis and modeling (Salas et al., 1980)
and can be used in long—term, as well as short—term hydrologic forecasting.

Besides gingle-input systems, this class of TFN models has also been used in
multi-input systems ( Tiao and Box, 1979; Ohow ot al., 1983). For example, TFN
models have been developed relating river flow to precipitation, groundwater levels
and temperature. Similarly, the transformation of precipitation series 0 modified
processes has been examined based on cross—correlations of the original and the
modified sories and by accounting for evaporation and soil moisture storage. Chang
ot al. (1982) have also developed a TFN model of daily rainfall-runoff process and
applied it to five Indiana watersheds. Moreover, a TFN model was developed
(Adamowski and Hamory, 1988) relating groundwater levels (output) to streamflow

(input).
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There is an increasing interest in hydrology to develop empirical spatio—
temporal models of rainfall-runoff in the context of regional hydrologic analysis.
Since rainfall and runoff Beries are correlated in 8pace and time, the Box-Jenking
TFN modeling procedure is extended to = multivariate input-output hydrologig
systom (Cooper and Wood, 1982; Mohamed, 1985). This results in s general model
class of gpace—time transfer function—noise (STTFN ) models. The STTFN model is
extended into the spatial domain by using a hierarchical ordering of the spatial
neighbors of each rainfall and runoff gage site. The purpose of thig study is to
develop space-time models of the rainfall-runcf process from the general elass of
Space—time iransfer function-nojse (STTFN) processes suitable for regional
hydrologic analysis and forecasting. In Section 2 the three-stage iterative procedure
of idantiﬁca,tion, Parameter estimation and diagnostic checking of the STTFN models

§ 2. Space~-Time TFN Modael Development

In STTEFN ~modeling, the output Yo from 4=1, 2, **, N zZones over f=1,
2, +-+, T time periods is agsumed +o be linearly dependent upon the input series
Xy, X, +++, otc. in time and space, The STTHEFN mode] may take the form

(1

where [ and m are the Spaiial orders, p and ¢ are the temporal orders, & and j define
an initial period of pure delay or dead time before the response to a given inpui
change beging to take effect, gy is the output noise series independent of v, B is the
backward ghift operator in time defined as B*YV =¥ it-%, Ly is the spatial lag
Operator and w,, and §,, are parameters,

The spatial lag operator L, ig defined such that

N‘
Ly, “E Wiy, for s> 0, (2)

where w,, are a set of weights scaled so that

gwﬁ,ai _ (3)

for all ¢ and w,;, nonzero only for 4 and j sites being sth order neighbors. For =0,
equation (2) becomes LoY y=y,. The weights follow s hierarchical ordering of
spatial neighbors based on distances between the observation sites in the watershed
and may reflect physical characteristics of the observed time series.

2.1. ldentification of the STTFN Model

The space-time cross—correlation function (S8TOCF') between v, and z, series
8t spatial lag s and fime lag % ig given by |
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where vy=1s— g and zy=zs—2z with g and x being regpectively estimutes of the
space-time grand means given by

(4)

and | - | . (5)

The identification of STTFN models is bassd on the estimation of the STCCF
between the rainfall series w; and the runoff sories %,. From the physical
anderstanding of the hydrologic cycle there should be at least one value of the
STCCF gignificantly different from zero. These values can explain the lagging of
runoff with respect to rainfall referred to as the delay parameter.

The estimated STCCF could lead to spurious correlations due to autocorrelations
which are preséht in the rainfall and runoff series. The STCCK can algo have high
variance and at different time lags can be highly correlated with one another. To .
minimize these errors and to develop white noige sories a model from the general
family of space-time autoregressive moving average (STARMA) models (Martin
and Qeppen, 1975; Cliff and Ord, 1975; Pfeifer and Deutsch, 1980; Mohamed, 1985)
can be identified for the input rainfall series .. This model may be uged to
transform the correlated input series z; to +he nncorrelated or prewhitened z; series.
The same model or another one can be used to transform the output ¥ series to the
9, series. The STCCF is then computed between the new 2z and oy series. -

The general family of STARMA models is given by

1 D m ]
?;fit _=ﬂi.t+ E;ﬂ: R;: ﬁi_’skLayi{t-k) T 32; l‘.gl stLsﬂi(t—H}: (6}

where p is the autoregressive (AR) order, ¢ is the moving average (MA) order, ¥
and m are the spatial orders of AR and MA, respectively and ¢q and Oy are
parameters to be estimated. The identification of STARMA model for the rainfall
cories z is based on the inspection of the spaco-time autocorrelation function
(STAOF) given at spatial lag s and time lag & by
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and the spac'e—timﬂ partial autocorrelation function (STPACF) given for the Eaxt{a
gpatial and time lags by ' -
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B ——r T

where v=max(g, k). __
Following the prewhitening of z; to z, series and transforming %, to v, series

by using the identified STARMA model for the rainfall series w,;, the ST'TFN model
(!, , m, ¢, b, n, ) may be written as

i b1
2 m‘kBkLa
g = g=() kg ' -BthZﬁ-l' .N#, . (g)

-3 Fer)

where Ny ig the transformed noise sories defined by
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&
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The STCCF is estimated from equation (4). The impulse response weights vy (the
coetlicients of (B)) are given by |

N W= it» | (10)

Vo = Ta% ('IJ, z)%f: Y (11')

where 8§D, and S4D, are the standard deviations of the 2, and 2 series, respectively.

The STCCF T2, 2) and the coefficients are uged to identify the orders of I, p,
m, ¢ and the pure delay parameters b and j using the following rules (Martin and
Oeppen, 1975): zero or near zero correlation values up to spatial lag j—m and time
lag & — 9 followed by irregular or riging values up to spatial lag j-+1—m and time
lag b+ p— g and correlation ra(o, 2), $>j+1—m~+1, k>b+p—g+1, which decay
exponentially in time and space. It should bhe mentioned that no such rising
correlation values ocour if I<<m and b<p. Once the values of these parameters are
determined the initial values of the coeflicients w,; and &, can then be estimated.,
In this way the STTF model is identified for the input-~output system.

2.2. Estimation of the ST'TFN Model -
Estimates of the parameters @y and 8, of the tentative S8TTF model can be

obtained by minimizing the residual sum of squares: | |
- N T . L
3(&’: 3, ¢, 0) ng ;. - (12)
$=l i= Y - -

Given any initial values for the parameters Wy and 8, the errors Ng CAN- he
estimated from

o . kU o
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and the transformed noise gories ny i8 then defined by
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- Equation (18) is a modified version of the following equation:

2 o
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where n and r are orders to be determined.

The adopted Box-Jenkins modeling procedure requires that the errors as
ghould be pure white noige. Since the STTFN model is nonlinear in form the
polytope method (Nelder and Mead, 1965) is employed for the estimation of the
parameters. This method is one of several nonlinear optimization techniques
inoluded in a nonlinear optimization package (Birta, 1983). The polytope method
is found to offer the advantage of not requiring gradient information about the
objective function to be minimized and not having a dependence on & linear search
subproblem. In addition, this method ig considered an appropriate technique when
the objective funoction 1o be minimized is subject to random errors. The computations
gtart by setting up a regular gimplex in n—dimengional space and evaluating the
objective function at the vertices. The simplex then prooeeds by reflecting the
magimum vertex in the centroid of the other vertices. If at any sftage the new
vertex has the largest value then it proceeds by reflecting the next largest value and
80 On.

2.8. Diagposfic Checking of the STTFN Model

Diagnostic checking is performed to examine whether there is any inadequacy
in the selected ST'TT model. The residuals STACF and the Port Maniean tests are
ased 1o examine the whiteness of the regiduals. The cumulative periodogram test 1s
also tged 10 investigate the presence of any periodicities in the residuals. A pattern
of nonzero STCCOFs between the residuals of the STTEN model and the prewhitened
series 2 would indicate any inadequacy in the fentative model.

Port Manteau Test: The whiteness of the ostimated residuals of the fitted model

is tested nsing the equation:
i A
Q=N 23 r:(a), (16)

where r2(2) are the ACF of the residuals a;, N is the sample size and k is the
maximum time lag. The gtatigtic Q is approximately chi-square distributed with
k —p— ¢ degrees of freedom, where p and g are the AR and M A orders, respectively.
The adequacy of the selected space—timo model may be checked by comparing the
statistic @ with the chi-square value X?(k—p—q) of a given significance level. If
Q< X*(k-p—¢q), Gu i8 an independent series and the model ig adequnate, otherwise
the model is inadequate.

Anderson’s Test: The ACF of the regiduals are used to test the whiteness of the
noise series. If the residuals are approximately white noise the ACFs should all be
approximately equal to oI y. If any of the residuals AQF is significanily different
from zero another model is selected. | |

Cummnlative Periodogram Test: If the residuals contain any periodicities, the
camulative periodogram would show significant deviation from the lines of the
confidence limits at the specified level of significance, otherwise the residuals
ghounld lie within the confidence limits and should be congidered whife noise.

Space—Time Cross Correlation Test: The residual STCCF could indicate

inadequacy of the selected STTFN model. This test is performed by obtaining the
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S8TCOF between the prewhitened input series z, and the esgtimated regiduals from
the fitted model. The standard errors associted with the STOCF are estimated from

1 | |
HER= ~ T (17)
where N is the sample size and % ig the number of lags in fime. The pattern of the
nonzero STCOFs would indicate inadequacy of the selected space—time model.

If any of the above diagnostic checks reveal inadequacy in the selected space—
time model, the model-building procedure is repeated and a new model is selected.
Alternatively, a STARMA model could be identified for the noise series, which
could be then combined with the original gpace-time model to form a STTFEFN

model,

§ 3. Space-Time TFN Model of the Rainfall-Runoff Process

The data used in this study consist of precipitation and runoff time series from
four gaging stations located within the Grand River basin in southern Ontario,
Canada (Fig. 1). Data is available for the period of July 1966 to June 1980. A
time step of 162day precipitation totals is used in thig study, which allows the time
sories t0 preserve the characteristics of the storm events. Similarly, the runoff
series are sampled every 15 days. A portion of the data, i.e., 192 values, is used in
the model-building procedure and the remaining 144 values are available for the
evaluation and forecasting phase. There were a fow migsing valueg in the
precipifation time sories and the normal-ratio method (Linsley et al., 1982) was
used o estimate these data points. The watershed is divided into four polygonal
subareas uging the Thiessen method. The four runoff gage gtations correspond to the
same subareas where the four raingage stations are located (Fig. 1). Equal weights
are pelected for thig hierarchical weighting socheme of the space system with a
maximum spatial order of 2 (Table 1). |

The STACF and STPACF of the original precipitation series show a lack of
structure, which suggests that the space-fime gystem is nonstationary. First
temporal differencing is applied to the precipitation system 10 achieve stationarity.
Initial identification of the differenced precipitation series resulis in an 8TMA (1,)
model of order one in time and two in space. The parameters of the STMA (1)
precipitation model are estimated using the polytope algorithm. Diagnostic checking
of the tentative model indicates that the STMA (13) model adequately describes the
observed precipitation series. The STMA. (1;) model is expressed by the following
form:

g == mm»_;l;.-i- g — 0. 9448@;(;-_1) + 0. 0’672 Wiﬁ;(g_l; —0.004 Wﬂﬂ;{r-l)- | (18)

This model is used in the ST THEFN model-bnilding procedure of the rainfall-runoff
process 10 determine the prewhitened series z, and the iransformed geries v;.

The STACFs of the original and deseasonalized runoff series are shown in
Tables 2 and 3, respectively. The original data are nonstationary in time since the
STAOF fails to tail off quickly at all gpatial lags. The deseasonalized runoff series
indicate stationarity in time and the decay with spatial lag is much steeper than
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that with time lag. The STCCF between the z, and v series given in Table 4 shows
that there are relatively significant correlations at time lag one (5=1) for all the
spatial lags 3=0, 1, 2. Similarly, the estimated impulse response function wug of
equation (11) given in Table b indicaties that there are values gignificantly different
from zero only at time lag one (k=1) for all the spatial lags =0, 1, 2. In other
words, Tunoff is lagged 15 days or one time step behind precipitation, which suggestd
that the memory of the rainfall-runoff process b is 15 days or one time lag.

Preliminary identification of the STTF(m, ¢, I, p, b, n, ) model of equation
(18) or (15) based on the Box—Jenkins procedure suggests three tentative models.
The first model ig an STTF(0, 0, 2, 0, 1, 0, 0) given by

2
Yir = gﬁ wosW sZice—1y+ Bat. (19)
The second meodel is an STTF(1, 2, 2, 0, 1, 0, 0) expressed by

o
Z ﬂ}mwa |
Yy = = Tict—1y) + G - ' (20)

o i} SEHBMWE

»

and the third is an STTE (0, 0,2,1,1, 1, 0) model given by
B i |
By= §§ (0305 — w1 B)W . X yp -1yt s | (21)

The parameters of the STTF(0, 0, 2, 0, 1, 0, 0) model of equation (19) are
estimated by using the polytope algorithm and the resulis are summarized in Table
6. In the diagnostic checking stage, the residnals STACFs are computed to check the
adequacy or not of the identified model and the results are presented in Table 7.
The residuals are generated by incorporating the parameter estimates of the
developed STTF(0, 0, 2, 0, 1, 0, 0) model into the appropriate form of equation
(19) for the model-building period. The Anderson’s test of Table T shows a lack of
srtucture among the STACKs, which suggests that the generated residuals are
uncorrelated and consequently white noise. Similarly, the Port Mantean test of
Table 8 indicates that the generated residuals are uncorrelated at the 0. 05 level of
gignificance. Finally, the cumulative periodograms of the generated residuals at the
0.05 confidence level suggest that the residuals contain no periodicities. These fests
summarize that the STTF(0, 0, 2, 0, 1, 0, 0) model is considered adequate.

Estimation of the STTF(1, 2, 2, 0, 1, 0, 0) model parameters ( equation (20))
using the polytope method results in the following estimates: wp=0.05725, wg1=
0.01699, weo=—0.02182, 8¢3=0.06290, 8:3==0.02156 and O3a=0.00602 with the
residual sum of squares being §—=0.234x10°, The Anderson’s and Port Manteau
tests indicate that the generated residuals are white noise. However, the cumulative
periodograms show a marked departure from linearity, since they fall outside. the
confidence limits at the 0.05 level of significance. As a result the residuals contain
periodicities and the STTF(d, 2, 2, 0, 1, 0, 0) model is rejected. In the case of the
STTF(0, 0, 2, 1, 1, 1, 0) model, the parameters are again estimated by ihe polytope
method and the model hag the following form:
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e

Ey=—0.0568VX,.1—0.0046 VX, ;_ o+ 0.0180 WOV X, ,_,
+0.0005 WHVX,,, 4—0.0112WVX,, ;+0.0282WSVX,, o+ay (22)

with the residunals sum of squares being §—=0.235%10° The Anderson’s, the Port
Manteau and the cumulative periodogram tests indicate that the generated residuals
are uncorrelated without periodicities, which suggests the residuals are white noise.
Based on the above findings the STTF(0, 0, 2, 1, 1, 1, 0) model is considered
adequate. Since one of the objectives of the Box-Jenkins procedure remains the
development of a parsimonious space—time model with the smallest number of
parameters, the STTF(0, 0, 2, 0, 1, 0, 0) model is adopted to represent the
rainfall-runofl process.

Finally, the forecasting performance of the adopted STTF (0, 0, 2, 0, 1, 0, 0)
model is examined for the evaluation period of the remaining 144 values. For this
purpose the mean and variance of the generated residuals are esfimated for the
model-building period of 192 data points. These statistical parameters are used to-
randomly generate normally distributed residuals for the evaluwation or
forecasting period. These regiduals have been tested for whiteness and presence of
periodicities nsing the cumulative periodograms (Fig. 2), the Port Mantean and
the Anderson’s fests and have shown to be uncorrelated and white noise. The new
gonerated residuals are then subtracted from the observed series and the computed
gories are produced for the rainfall-runoff system. Fig. 8 shows plots of the
observed and computed runoff series for the model development as well as the
evaluation period for the Galt station. The plots indicate sa,tlsfactﬁry performance for
the developed space—time rainfall-runoff system,

§ 4. Summary and Conclusions

The comprehensive procedure presented in this paper for building a space-time
transfer function noise model is useful in detecting dynamic relationships between
hydrologic time series. It can be used as a forecasfing tool in the field of water
resources engineering. The STTF modeling technique is applied to the rainfall-
runoff process of a system of four rainfall and four runoff series spatially located in
the Grand River watershed in southern Ontario, Canada (Fig. 1). |

The choice of a spatial lag structure to reflect the influence of one zone on
another can deeply affect the form of the space-time autocorrelation and partial
antocorrelation functions. This could lower the adequacy of the identified space—time
model and produce spurious results and might also eliminate useful models from
consideration. The runoff series have shown seasonality in the means. The seasonal
components were removed. The characteristics of the theoretical STCOF model are
gimilar to the one of the Box-Jenkins transfer function noise model. The generated
noise components presented in the STTF models are found to possess the
.characteristics of a white noise. The performance of the generated series from the

. -STTF models are fonnd to compare well with the corresponding observed rainfall

and runoff data. For the selected watershed, the output (runoff) lags behind the
input (rainfall) and the delay parameter ig 15 days or 1 lag in time.
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Table 2 STACF of the original Tunoff series

Spatial lag () |

Time lag (%) 0 L 2
1 0.5236 -0,0228 —0.3168
2 0.4367 —{.0533 —0.2203
3 (,3805 —0.0588 —0.2163
4 0,4055 —0.0554 —(,2143
b 0,3760 —0.0585 —-0,2113
6 0,3845 —Q.0587 —0.2096

_— T A

Table 8 STACP of descasonalized runoff series
;
Spatial lag (s)
Time lag (%) 0 1

2
1 0.0643 0.0088 (.0003
21 —0.,0505 —0.0309 -0,0033
3 —{,0297 —0.0087 —0.0012
4 00,0724 0.0115 (.0023
i ¢.0504 0.0126 0.0016
6 0.1115 0.0303 0.0039

* Table 4 STCOCE between the 2y and the Uy sgTies

Spatial lag (s)

Time lag (%) 0 1 2
e S S S i s
0 —0.0186 —.0236 . =—0.,0076
1 0.1357 ¢. 1000 0.1312
2 0.0275 0.0030 0,0237
3 0.0220 ; 0.0078 ¢.0490
4 0.0015 —0.,0073 0.0029
b —0.0044 0.0041 —0.0058
6 0.0522 0.0421 0.0857

e ——

Table 5 TImpulse response functions

e

Spatial lag (s)

Time lag (k) 0 _ L - 2
0 —0.014 . © =0.016 - . - =—0.005
1 0.085 - 0.070 ' 0.092
2 0.019 ¢.002 5 0.016
3 0.015 0.005 ' 0.034
4 0.001 . =0,005 0.002
b -0.003 0.003 . —0,004
6 0.036 _ (0,029 0.060

Table 8 Parameter ostimates of the ETTF{U, 0,2, 0,1, 0, 0) model
______—_—+—_——__.____.—___

Parameter . Guess | Estimate . Initial 8 - PFinal 8
0.00 —0.0457
0.00 - 0.0157
0,00 0 —0.0248  0.238x10° ~0.235%108

S 18 the residual sum of squares

M
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Table 7 STACF of the generated residuals of the STTF (9, 0, 2, 0, 1, 0, 0) model

Bpatial lag (s)

Time :Jag (k) - 0 1 2
1 0.0646 - 0.0088 —0,0040
2 —0.0553 —0,0286 —0,0014
3 —0.0277 —0.0058 0.0026
4 0,0778 - 0.0134 0,0083
3] 0.0512 - 0.0120 0.,0009
6 0.1057 0.0214 —-(.0074

W

Table 8 Results of Port Manteau test on generated residuals
e e —————— e e

Chi-square
Port Manteau statistics
Spatial lag (s) test ==0,05 Decision
0 , 11.59 27.6 accepted
1 8.97 27.6 accepted
2 6.68 a7 .6 accepted
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Fig.1 The walershed and key map.
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