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SIMPLICIAL METHODS AND APPROXIMATION
OF SEVERAL SOLUTIONS®
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(Jilin University of Technology, Changchisn, Ching) (Jilin Untversity, Changchun, China)

Since Soarf gave in [1] his consbructive proof of Brouwer’s fixed—point
theorem, simplicial methods for solving nonlinear equations have developed
rapidly. In 1972, Eaves™® and Merrill®™ made a substantial improvement on
Searf’s algorithm. They approximated zeros of a continuous mapping f by solving
a series of piecewise linear approximations of f(z)=0. Their work made simplicial
methods practical and efficient. Simplicial methods and homotopy continnation
methods are closely related. But the former only require that the involved
mapping is contingous and need no caleulation of derivatives. Asa constructive
implementation of degree arguments, simplicial methods have a wider range of
application than olassical iterative methods which are based on the contraction
mapping principle. For the survey of simplicial methods and their application, see
[4]. -
There are a lot of discussions on the properties of simplicial methods. 1t is
known that simplicial methods are closely related to the Brouwer degree theory. In
this paper we intend to use the properties of piecewise linear approximations of
continnous mappings and the Brouwer degree theory 1o analyze Baves and Saigal’s
doformation method (see [2], [6]) and apply our results in diseussing the problem
of approximating several solutions.

§ 1. Definitions, Notations and Preliminaries

Let T be a triangulation of R" (for definition, see [4]). For O0<<m=<n we denote
by T™ the collection of all m—faces (i.e. convex olosures of m--1 vertices of a
simplex in 7). Hspeocially T =T T is composed of all vertices of elements of TL.
Define

T = | o, 0<m<n,

e

T = {v €T"%; there is only one o C T such that 7o},
jor| | =

yeeT

For ¢ €T, define

diam (¢) =max |z —y|,
T, YEC

8(c) =p/diam(c),

# Received Angust 24, 1985.
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where |+ | is a given norm and p is the radius of the maximum sphere contained in
o. Define
mesh () = sup diam (o),

gl

G(T) =inf 8(cv).

oeT

For >0 we define e7'={s5; 6 €T}, It ig obvious that mesh (e7) =¢ mesh(T) and
0(e)=6(T).

We oall continuous mapping f: |7 | —>R" a labeling. There exists a unique fr:
|7'{->R" such that

(D) fol@) =f(2), if €T,

(2) fris affine on every o € 7.

Heonoce for every o &7, there are a unigue n X n matrix A_ and a unique h, & R such
that fr(2) = A,x+b, for z€ 0.

Let ¢ €T. We say that o ig Jf-oompletely labeled if there is an &,>0 such that
(8, &%, -, 87 C fr(o) if 0<a< s,

The following lemma is easy to prove by a compact argument.

Lemma 1. Lei f: B*>R" be a4 continuous mapping and CC R a bounded closed
set suech that O€ f(C). Then there exists an no>>0 such that of mesh(T)<Cny, fr has no
zero—point on any o €T if o 1 O+ 0.

Lot 7 be a triangulation of R" and f: R*~>R" a continuous mapping. Define
mapping I, T—-{—1, 1, 0} by

sign dot 4,, if o is J—eompletely labeled,
Iy(0) =

(, otherwise,
Now we consider triangulations of B"x l@, &]. If T ig such a triangulation, it is
obvious that |87 | = R*x {a} | R* % {6}. We call a mapping A: R"x @, 6]>R" a
labeling on [T'], and define A, by

M(@)= Az, ), €R" IC [a, b].
If 7€ 7" and there exists an ,>0, such that (g, &% «, &™) EAp() if O<a<s,,
we call 7 a A—oompletely labeled n~face. For a given o €T, o contains either two or

no A-completely labeled n—faces (see [4]). We call o €T an almost A-completely
labeled n+1-simplex if it has two A—oompletely labeled n—faces.

Let a A—completely labeled n—face %, be given. Then 7, decides a unique chain
of A~completely labeled n—foces {z,}¥1y,, Where — cos N <0< N o< -+co and N+ N,.
If both N, and N; are finite, we say that this A~completely labeled chain is finite.
If Ny (resp. N,) is finite, we say that vy, (resp. zx,) is an end face of 1T,

Lemma 2. Let T be 6 triangulation of B> [a, b], let A: [T|—>R" be given and
wssume that tx,, Ty, ore end faces of a finéte A-ccmpletely labeled chain {72y, in T
If both vy, and vy, are in R*x {a} (resp. B" X {b}), we have

I:a.,. (‘F’N;) = —I;ma (’F'N.) ('?'332?- Ia;.(""m) i "'“Iaa (TN;)) 2
If 7w, C B % {a} and vy, CR"x {b}, we have
| Iiﬂ (TN:) '"__'-I?La (T.Nt) .

Lemma 8. Let f: B*—>R" be continucus and Q— E* a bounded open set such that
0 f(02). Then there is an ny>0 such that
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deg(f, B, 0)= >, I;(0)

oci, ceT
holds if T, @ triangulaiion of R, satisfies mosh (T') <no.
For proofs of Lemma 2 and Lemma 3 see [4], [B].
Now we state briefly the deformation algorithm of Kaves and Saigal.
Let >0, and let T be a triangulation. of B"X 1-27% 1—27%7] such that

| P
mesh (T,) <3 (b=0, 1, e}, T=\|_|Tyis a triangulation of Bx [0, 1) and
k=1 ¢ b

lim mesh (T;'D =0.

K-l
Weo call T a refining triangulation of kX [0, 1); see [7], [8], for examples.
Define labeling A: B" X [0, 1)—->R" by

\(a, t)ﬁ{A(ﬂ}—ﬂ?g), t%D, |
- | flz), 0<i<l,
where f: R"—R" is a continuous mapping, A is an nXn nongingular matrix and
ﬂFﬂER- '

, Algorithm 1 (Peformation Algorithm)., Under T, a given refining triangunla-
tion of R*%[0,1), and the labeling A defined by (1), there 18 =2 unique
a—completely labeled n—face 7o & OT. Starting from. ve, the algorithm generates &
sequence of A—completely labeled n—faces and related n-+1-simplices

(1)

Toy To, Ty, U1y, *°% Ty Oy """

The algorithm will not end because there is only one a—completely labeled n—face
on o1'. - | |
- It is well known that if {7} remains bounded, and a sequence { (o, tu)) 18
chogsen such that (@, ty) € 74, then any limit point of {zz; is a zero—point of f. In
the following discussion, we also use the term “limit points of {1}’ because the
limit points we have just mentioned do not depend on the choice of {(zy, tu)}+

For conditions under which {7} is bounded, see [4].

§ 2. Completely Labeled Semichain and
Index of Isolated Zero Point

| Aggume that 2" is an isolated zero-point of f: B~—>R", a continuous mapping.
Then we can choose a neighborhood of #*, N(z), such that £7(0) NN (z") ={a"}.
Hence deg(f, & (2"), 0) is well defined and does notb depend on the choice of
N («*). We call it the index of «", an isolated zero-point of f, and denote i by
index (f, «*). Given T’, a refining triangulation of £"X [0, 1), and the labeling
defined by (1), we oall {1}, a A-completely labeled semichain, if = (i=0, 1, ==
NY(N<+o0), are a~completely labeled n—faces, 7,7 v; when ¢% 4, Ti-1 and 7; are two
nfaces of the game n+1 simplex in T for >0, and vy €8T when N ig finite. If
vo o1, then 7o can decide two completely labeled semichains. We gay the union of
+he two A—completed labeled semichain 18 a a—completed labeled ohain. If 7,€T, we
_algo call the only A-completely labeled semichain defined by 7o @ A-completely
labeled chain. | |
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It is easy to see the following relation.
{ Two A—-ocompletely labeled semichains containing a common 2)
n~face i an egquivalence relation. |
In the following discussion, by “a A—completely labeled semichain” we always

mean an equivalence elass.
Theorem 1. Let f: R">R" be continuous, and z* an iésolated zero-point of f. Let

1" be a vefining triangulation of B*x [0, 1) and A be defined by (1). Then the number
of A—completely labeled semichains converging to «* is
| lindex ( f, =) | +2»,
where v is @ nmﬂegﬂtéwa wnteger depending on T,
Proof. Because 2" iz an isolated zero—point of f, there is an N(z*), a
neighborhood of ¥, such that ¥ (2*) N f~1(0) = {2"}. Define P: R"x [0, 1)>R" by
Pz, t)=a, mER" t&< [0, 1). By the refining property of 7', thero is a positive

integer k¢, such that

3 L(P@)=index(f, o)

TN (@)K (1 —2-%)

for k>=Fk,, and ,there is no almost A-completely labeled n--1 simplex intersecting
ON (2") X [1—27%,1). Assume that in R"X {1-27%} there are I, A-completely labeled
n—faces 7y, -, i, Satmfymg I(P(%))=+1 (4=1, .-, I;), and ly A-completely
labeled ‘n-faces 7y, -, 7, satisfying I,(P(T;))==-—1 (4=1, «--  13). Then any
A—completely labeled semichain in 7| pgaxri_2-%.1y Which ﬂontmns some %; Or 7y
remains in N (") X [1—27%, 1), and such semichain hag limit point z* if and only

it it has only one end face in R"X {1 - 27%}, Assume tha,t A—completely labeled
semichaing in P | puxri_g+,1; decided by 74, »++, %, 1, ***, Tm, have limit point 2"
Then by Lemma 2, I;—m,=1I3— ms. Henos
index(f, @) =li—la=my—ma
and there is a nonnegative integer » (depending on 7') such that
mi-t+mg=|index(f, 2*) | +2». |}

If f is ﬁontmuously differentiable and Df(z*) is nonsingular, then the » in
Theorem 1 is zero. This result can be proved by using algebraic topology, but we
will use another method to prove it to obtain a useful intermedium result.

Lemma 4. Lot f: R"—>R" be continuously differentiable, T be & iriangulation of

B, and o € T. Then for any 2€ 0, |
| A4, ~ Df(a) | <4 (Df, dlﬂm (c))/8(c), (3)

where o (Df, 8) = max | Df (%) —Df (y)|.

Ha'—#lfﬂd

Proof. TFirst, by formula
() —f (@)~ Df (a) (y—=) = f(ﬂf(m+t(y—m)) ~Df @) (y—2)it, =, yERr

we have |
|f (@) = f(2) - Df (@) (y—o) | <w(Df, |z—y|) |z~ y]- (4)

From | : | '

A, (mi-mﬂ) =f(ml) _f(ﬂ?u), 'i'=0: 1: ety W
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we know that for any €0,
(A, — D (@) (&i— o) = f (@) — F (&) — Df (&) (&y— @) — (f (@)

By (4) we obfain - - B (eeeally 8 b

| (Ao — Df (@) ) (2:— o) | <20 {(Df, diam(c)) +diam (o).
It follows that for any @, %, ¥ Eo

| (4e— Df (z)) (u—2) | <4w(Df, diam (o)) -diam (o). (b)
Denote by p the radius of the maximum sphere contained in o. From () we know
that

{ A,— Df ()| = sup | (A~ Df(a))wl/|w|<4o(Df, diam(c))/6(c), @€o-

] =g
Temma 4 gives an estimate of |Ae— Df(a)|. In Saigal™® there is a similar

result, but he assumed that Df (#) is Lipschitz continuous. For convenience, in
Lemmsa 4 we assume that f is continuously differentiable in R*, and w(Df, ») is also
considered in R*. For practical application, we only need 0 consider a convex open
sot which contains the involved set.

Lemma b. - Lét Q—>R* be a bounded open set. Assume that f:8—>R" is continuously
diflerentiable, z* € f~(0), and Df (2") 48 mensingular. Let D be an open neighborhood
of o" such that D@ and £~(0)ND={2"}. Let T be a triangulation of B°, 8(T)>0.
Then there exésts an €o>>0 such that, if 0<e<go, under triangulation T',= T there is a
undque f—completely labeled n—simplex o intersecting D, and o).

Proof. There is an open oconvex neighborhood D'CD such that Df(x) 1is
nonsingular for s €D’. By Lemma 1 we know that there exists an 8;>>0 such that,
if 0< e<<eq, D\D’ does not intersect any f~completely labeled simplex in 7,. And
by Lemma 4 we know that there exists an &,>>0, such that, if 0<g=<{&s, then
det A, det Df(a*)>0 for ¢ €T, and s IV, Let go—min{es, &2}. We can obtain the
needed conoclusion by using Lemma 3. |

Corollary 1. Let f: R*—>R" be continuous and #*€f1(0). Assume that f is
continuously differentiable and Df(«") is nonsingular. Then the » in Theorem 1

ig 0.

§ 3. Deformation Algorithm for Approximation of Several Solutions

When we attempt to solve 2 nonlinear equation which has gseveral solutions, if
ig difficult to approximate different solutions. If f has some smooth and regular
properties, theoretically, by using Newton’s method we can approximate all
solutions to f(z) =0 if we chooge correct initial points. But if some zoro—point has
an overwhelming domain of attraction, choosing the correct initial points may be
very difficult. Therefore, 2 generally oconcerned problem is how to approximate
another zero—point of f if we have already obtained a satisfactory approximation
.of a zero—point of f.

Simplicial methods have been snocessfully used to approximate all solutions to
gystem of algebraio equations (see [10], [11]). Let p: O"—>C" be a polynomial
mapping. We identify 0" with &2 Choose a2 polynomial mapping g¢: O"->(O" which
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hasg d—f[ d; (where d; is the degree of P;, the jth component of p) simple zeros

Jm]

already known. Define labeling A by
| p{w), if 01,

M & -{g(m), if =0,

Then all zero—points of p can be approximated by using the deformation algorithm,

But the idea can nof be applied o general mappings because in general cases we
cannot know the exact number of solutions and global and local Brouwer degrees of
the involved mapping. Without such information, we ocan not make the correct
choice of “initial labeling”, ‘

In 1972, Jeppson introduced another kind of method (see [4]). In the version
of deformation method, Jeppson’s method can be described as defining a labeling A:
BR"x [0, 1)->R" such that there is no A—completely labeled n—face at R" X 10} in order
to make different zero—points connected by = A—-completely labeled chain. J eppson’s
method hag been used o approximate several solutions to some nonlinear PDEs, but
striot theoretical analysis has not been given. In fact, Allgower and Georg™** only
- gave the conditions under which the involved problem has a second solution in a
certain region, but did not give a striot analysis of the algorithm. In the following
disoussion, we will give a strict theoretical analysis.

Condition 1. Tet QCR" be a bounded open set and f: 2->R* continuous.
Agsume that #*€ 2 15 an isolated zero~point of f, and there is a d € R” such that for
overy o€ 9{2 there exists a v, € B" satisfying vTd>0, »7f(2) >0.

Define labeling A: B*x [0, 1) R* by

Az, ) {f(ﬂ’); if 1—-2"%<t 1,
m, P
d, if 0‘5;#<1 — Q*k"_, ku>‘0¢

Algorithm 2. Let Condition 1 be satisfied and a refining triangulation of R"x
[0, 1) be given. Define A by (6). Assume that mesh (') is small enough such that
there is no A-completely labeled n-face intersecting 202. Choosgs a A—completely
labeled n-face %, R"x {1—27%}, where k>>k,, such that the A-completely labeled
semichain {#}i% in 7'|paxy_gw,y oconverges to a* (if #* has already been
approximated by msing Algorithm 1, such =z, ig available), Then there exists a
unique o &€ 7’| gaxri—g-4,1 Such that 7,Co. Starting from 7p=7,, generate a sequence
of A—completely laheled n-faces in T\ {o'}:

;UJ ;1, i":;.]ﬂ? -'-1.

The algorithm will not end. If mesh (T') is small enough, {7,}#= will be contained
by @% [0, 1). Henoce any of its limit points is a zero—point of f.

The following example shows that somelimes Algorithm 2 fails to approximate
a second zero-point of f. =

Egample. let f(2)=2%(z+e)(a+2n), sER.  Let Q=(-8, 2), d=1, z*=0.
Then f, 2, d satisfy Condition 1. But by using Algorithm 2 we can not approximate
& zero—point other than " =0 if we start near it (see the figure).

Now the problem is when {7;} has a Hmit point which is different from z*. The
following theorem tells us that if f is a O mapping and Df(s") is nongingular,

(6)
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In the figure, signs of A(z, t) at vertices of siplices in T, a refining triangulation of Bx{0, 1) such that

mesh (T) <1, are marked by LM gr 42 or %07, A-completely labeled chains are marked by dotted lines. -

]

Algorithm 2 will succeed. B
Theorem 2. Let QCR® be a bounded open set, and let f: Q—>R* be coniinucus on

0 and continuously diflerentiable in Q. Assume that " €10 N2, and that Df(a")
is nonsingular. Moreover, assume that f and £ satisfy Condetoon 1. Then any limit
point of {Zp}is generated by Algerithm 298 @ sero—point of f and is different from z”.

Proof. Suppose that {7,} eonverges to z°. Denote max {i; R x {1—27%}}
by ¢o. Then 2o% 0,&1}& %o, Ti, decide two different A—completely labeled semichains in
T | pwx 11201y @Dd both of the chaing converge to «*. This contradiots Corollary 1. §

Under the conditions of Theorem 2, if 4 is approximated by using Algorithm
1, denoting max{ j; 7R X {1—27%}} by Jo, We can choose 7o=17;,, Where ko is a
poditive integer. ko can be chosen arbitrarily. But considering the efficiency of
computation, it seems 1o be good to ohoose kp=1 becauss such choice may make
{74} move from z” to another zero—point of f faster at lower lovels of . |

If we only assume that f is continuons and index ( f, #*)#0, we can prove the
following §

Theorem 8. Let f, 2 and a” satisfy Condition 1. Then for sufficiently large
positive integer ki, there are at least lindex(f, #*)| A-completely labeled n—faces tm
Rrx {1—2"%} gnd near (a7, 1—27%), such that starting from any o f them, the
A—competely labeled n—face sequence generated by Algorithm 2 has the property that any
of its limit poimis is a 2er0-POUR? O f f and is different from @. |

Proof. Let N, an open neighborhood of &*, satisfy that NcQand £2(0) NN =
{z"}. Then for sufficiently large integer k, there is no almost A-completely labeled
n-+1 simplex interseoting N X [1—27%, 1) and for k=ky

I,( (%)) =index(f, 2").

TN ¥X{1—-2-%}

Suppose that there are m A—completely labeled n—faces 71, **, Tm 1D Nx{1-27%},
gnch that any A-completely labeled n—face sequence in T | guxpregs,p decided by 73
converges to z*. It is easy to see that -

index( f, ") ==2 I (P(7))e

Starting from a 7 (1<<d<\m ), perform Algorithm 2. It is possible that after finite
stops we reach 7, (1<j<m, j#4). Assume that all guch 7; are ¥y, **, 7. According to

Lemma. 2,

3 1 (P(w) =0.
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Then starting from any 7, I+ 1<é<m, any limit point of the obtained A—completely
labeled n~face sequence shoumld be a zero-point of fand be different from "
Moreover, we have |

index(f, s = 3 I(P(%)).

Hence m—I>|index( f, z*)|. |

The above disoussion offers a theoretical ground for using Algorithm 2 to
approximate several solutions. Because of the wide application of the degree theory
to proving the existence of several solutions 0 nonlinear PDEs and other nonlinear
problems, the algorithm discussed here ean be used 1o numerically approximate
several solutions to these problems. In [4] and [12] we can find sueh application.
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