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Abstract

This paper presents a new coupling of the Finite Element Method (FEM) and the Boundary
Element Method (BEM) to solve the two-dimensional exterior Helmholtz problems by using the
asymptotic radiation conditions in [1], in which the coupling relations are the same as C. Johnson and
J. 0. Nedelec’s!?). The error estimates are derived and results of numerical calculation in comparison
with analytic solation verify the theoretical estimates.
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§ 0. Introduction

In practical engineering we often encounter boundary value problems of
unbounded domain of PDE, such as the flow around a symmetric body, the acoustio
scattering and diffusion or electromagnetic scattering by an arbitrarily shaped body,
eto. The numerical computation of the above problems is very important in many
areas of cappliation, e.g. the design of wave guides, the study of engine noise, the
assegsment of damage by an electromagnetio pulse and the biological effects of
miorowave radiation, etc. Mathematically, the problemsg have the form of 2n
exterior boundary value problem of PDE, which gives rise to particular difficulties
emerging from the faots that the domain is unbounded and the solution is
oscillatory for large values of frequency. Specially, the acoustic of elestromagnetio
scattering by an arbitrary body can be formulated by Dirichlet’s (or Neumann)
boundary value problem of Helmholtz equation satisfying Sommerfield’s radiation
conditions at infinity (see [3]). There are varieties of numerical methods for the
exterior Helmholtz problem in recent years, such as the BEM: we refer to [4—8].
In [2, 9, 10], the coupling of FEM and BEM is presented and successiully applied
to many physical problems. P. Bettess gave an infinite element method in [11]. For
more infinite element methods for treating problems of unbounded domain see [12]
and [13]. C. L. Goldstein* 2 pregented a method by which the three dimensional
exterior Helmholiz equation is replaced by.an approximate problem in a sphere with
sufliclently large radius, and the boundary condition on the surface of the sphere ig
approximated by the Sommerfield ocondition at infinity (called bthe artificial
boundary condition). This approximate problem is then solved using FEM with

* Becsived February 12, 1985,
1} Projects supported by the Science Furd of the Chinese Academy of Bciences.
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nonuniform mesh sizes. KError estimates are obtained, provided that ocertain
relationships hold between the frequency mesh size and outer radius. If we, however,
wani.to obiain a highly aconrate approximate solution, we must take the diameter of

the gphere sufficiently large. In this case high cost of computation is inevitable

althongh nonuniform mesh sizes are wsed. In order to get a highly acourate
numerical solution, the approximate errors of the artificial houndary conditions

must be decreased. To this end, with the help of the asymptotic radiation conditions
of high degree in [1] a new coupling of FEM is presented in this paper for the
two—dimensional exterior Helmholtz problem with Dirichlet’s boundary condition.
The method does mnot artificially add any unknown variable as in [16, 17].
Furthermore, the existence; unigueness and convergence of the solution of the
disorete problem for arbitrary wave number k are proved and the error estimates ard
obtained. For references treating the exterior Helmholtz equation using the FIEM,
see [18] and [19]. |

| Weo end this section by outlining the remainder of the paper. SBect. 1 ig mainly
contributed to the asymptotio radiation condition. In Sect. 2 we give the details of
the coupling process of the FEM and BEM. Thus we establish the errors of the
asymptotio radiateon condition in Sect. 8. In Seot. 4 ‘we prove the existence,
nnigueness and eonvergence of the solution of the corresponding finite element
approximate problems, and obtain the error estimates. A numerical example is
presented for a given wave number 4 in Seot. B; results of numerical computation
verify the theoretical estimates. At last wo make & simple disoussion on resulis of
pumerioal computation, and on an extension of the method of this paper to the
corresponding three—dimensional problems. B

§1. A Family of Asymptotic Radiation Conditions
for the Helmholtz Equation

In this seotion, we will mainly introduce the forms of the asymptotic radiation
conditions of arbitrary order given by Feng Kang in [1]. |

TLet 5>0 be the wave number, Vo= (@1, 2a)ER?, r=|o|={(2f+25)""2. The
domain Qp~{(@1, z2) |r>R} is the exterior to the circle I'zx={(a1, zg) |r=R} of
radius R>>0. Based on the Fourier expansion of the Helmholtz equation in g, the
asymptotic expansion and the properties of Hankel functions, and Laplace—Belframi
operator, we can obtain the asymptotic radiation conditions for the two-dimensional
Helmholtz equation on 'y as follows:

| (Fo) g: = Fou=thu,
(E1) —%:—;= F1u=(@k L 21R )u,

1 (Fg) ——-g%% Fau = (ib-+ 2_13 + Sklﬂﬂ Y-t ijRﬁ A, . (1.1)
) ~ G Fu =Pl (- 4w),
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and for the three~dimensional Helmholtz equation on I'; as follows:

or
Ry
J' (Fz) —-g—i-—%('k—[—%—)ui YA Aqu, (1.2)
2 —'-g—q'“-=('k+%)u; (2;}32 %}Ra')zism
| o

& 1 @4 . Z .
where Aiu-W and A= =nd o0 ( sin ¢ @-) * si];Lﬂ 7 ;; = are Laplace-Beltrami

operators, and (r, §, p) € R® are the sphﬁnca.l coordinates. Consult [1] for further
details.

Finally, we point out that error estimates of the asymptotic radiation
conditions (1.1) were not obtained in [1]. In the Seot. 8, we will give an error
estimate of (F;) with order 1, thus obtaining error estimates of (¥#,) with arbitrary

order. P

.

§ 2. The Coupling Process of FEM and BEM
Congider the two—dimensional Helmholtz equation: |
: (A_{_kﬂ)u =f.r A4S 'QG:

" ’ (2.1)
ou 1

; W_I— @-ktﬂ=0 (\-—/?)_, ag §—>Cco,

where £>>0 is a wave number; ¢ is the complement in R? (the two—dimensional
Buclidean space) of a bounded domain 2 with smooth boundary 82<=1I", and 0EQ;
f ig a smooth function and has a bounded support on £° Point ¢ in R? will be
denoted by @= (a1, @s) in C(Cartesian coordinates, We ghall also employ polar
coordinates (r, ), defined by @y~ cos? and @g=rsnd.

- Let

o= (A-+¥7+38)"f ELA(Q°) for s#0, (2.2)

where A=A associated with the Dirichlet boundary condition on 8Q and acting in
L?(8Q°) hag a real spectrum. The first lemma follows from the results proved in
[20] and [21]. These results were obtained by using the Rillich compactness theorem
:and elliptic regularity theorem. -

Lemma 2.1. Supposs that B is boumi»'ad subset of Q°, f€ O”(Q”), supp f<B
and v, is defined as (2.2) with 8 >0. Thm

. (a) there exists @ unique solution uC O~ (%) of problem (2.1),

(b) [u*—u|z@—>0 as 8 | 0, and
o {e) Ju HH«'(B}‘@GHf"HH;B) for each integer 120, = & oo
where the constant O ds imdependent of f. However, O .incréases a8 dim(B)
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imereases.

Now we are in a position to deduce the details of the
coupling of FEM and BEM. Take an appropriately large
positive real number R. Let Qz—{z€ R?, |z <R} and denote
262, by I'z (usually called “the artificial boundary™). Let
_ Q. =GnN02° and 2;=R*\ 02y such that supp (f) ;. Denote

dig L by n the exterior normal vector to the boundary I’y of domain
0, (see Fig. 1). Then by the above division of the domain QY (2.1) is identical
with the following problem:

By + by = f, x € £2,,
wy =0, zs€ 1,
| dugt Bua=0, €0,
{ Ug =1y, merﬂi (2*3)
I g&;: = 331: ?u, IEEFR,
: 1
P ; ?‘f ] @k’lf»g -0(:/——-;), r==|a:[-—>m,

where u,=u|g,, $=1, 2. Thus, the direct coupling of FEM and BEM is that FEM
and BEM are respectively employed in the bounded domain £, and the nnbounded
domain £, with the coupling conditions of (2.8) to solve problem (2.3) (see
[9, 16]).

As usual, we define H™(£;) as a standard Sobolev space and the trace space
H*(I") on the boundary; for more details see [22].

We define the Hilbert space HL(£2,) ={v€ HY(Q,), v|r=0yH(Q,).

It follows from [22] that norm |e«i,0, i identical with seminorm |+ {10, I
H (£,

1° Since du+ k%= f in £,, the variational formulation of FEM in £, is

{ﬂ(ﬂu '!J)"i"{"ﬂ, ?">Pn'= (f.! 'U)ﬂn ‘#WGH}E‘(QI):

a(u, v)=—| Vu-Vods+k\| wvds,
0, 0,

4 o (2.4)

l(‘ur 7‘*)1‘...=jrl&¥&3ﬂ ?"=‘§nf
(S W)nl=Jnledfﬁ-

In

9¢ With the help of the fundamental solution -;:'? HP (kp) of the two—

dimengional Helmholtz equation and Green’s formulation and the Sommerfield
condition at infinity, in Q5 we obtain a boundary-integral equation (gee [4, 16])

_1( 2HOG) 4o L amE®( ,
u(z) = L. ke y do,— 2 L. NHP (kp)dsy, V2€Qs  (2.5)

, ou
Here p= |z ~a'|, ?«.===-§;;

‘and H{P is a Hankel function. Let  in (2 .5) go to the

I's
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boundary Ik, and we have (see [16])

HP (k 1
u(m)=—%—jﬁ i ulL) wdsy—55 |, AP (bo)sw, V2€Tz  (2.6)

. Using (2.6) we get the variational formulation of
Iy

ou
/ — —
Here p= |2 —='| and A 3

BEM on I'y as follows:
<y, por+<Gu, por,— bR, p)=0, VNEHM(T )5
1 3H 2 (kp) wds,

Guﬂ ———

24 on

B(A, p)= zﬁj (|, 7P ChpYdse ) dser

¥, urr, “J ps ds,.

Combining (2.4) with (2.7 ), then the direct coupling of FEM and BEM is
formulated as:

(2.7)

Find (u, A) € Hy(£24) x H*3(I'p) such that

a(u, v)+<u, Abr,=(f, v)a, VoE€EHL((Z:), (2.8)
<u, wrr.+<GQu, udr,— b, p)=0, Y€ H(Ig).
Therefore in (2.5), we may utilize the valnes u|p, and h=% . of (u, A) on

I'y solved from (2.8) and obtain the value of ¢ at an arbifrary point z€Q2;. But
kernels in b(A, w) and {Gu, w) are singular. When (2.8) is numerically solved, the
cost of computation will be large, and the existence, the convergence and the error
estimates of the approximate solution are diffienlt fto prove. Furthermore, the
required solutions in (2.8) are one more than in (2.1), artificially increasing the
computationsl efforts. In order to overcome these shortcomings we use the first order

u of the Helmholtz equation in [1] to

1
o e
approximate 3‘='§J as in [15]. So we eliminate the required solution A of (2.8). An

unknown variable is taken out, and the problem is simplified and can directly be

solved from (2.8) by FEM in 2,. As a result we may put the values of % = A =

(wk -l--é-lﬁ-)u and % on I'p into (2.5) and obfain the approximate value of uz at an

arbitrary point = € £2,.
By employing the asymptotic radiation condition of order ome of [1], the
approximate problem of (2.1) in £ is

dw-+ k“w=f, ﬂFEQh

we=0, s I, (2.9)

%Q:"}‘(ék } '213 )ew=0, x C I,

asymptotic radiation condition— (ék }

énd in Qg is

1( 2HP®G 1( &
w(m)-ﬂ_.[r.m E'én( - st"“ﬂé_e}-.[ .%Haﬂ)(kﬂ)d&u @ C {2y, (2.10)
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The corresponding adjoint-problem of (2.9) is
Aw‘+kgw‘=f: mEQn
W), A (2.11)

3'3‘;’,* :( i - 2_13 )w*=o, 2T x.

‘We now prove that problems (2 .9) and (2.11) are well-posed.

Theorem 2.1. Suppose that f c H™2(Q,). Then (2.9) and (2.11) have
respectively a unique solution w and w*E H™(Qy), such that

(a) |w]m0,<O|flm-2.0

(b) "m0, <O|f|m-22. |

Furthermore, if fEO~(8y), then w, w*€0=(Q,), where the consiant O is
dndependent of u, but dependent on R. - T

Proof. We only prove the theorem for (2.9). The proof of (2.11) is gimilar.
Firstly we show the uniqueness of (2.9). let w be a solotion of (2.9) with f
replaced by 0. Then

1o~ (h+ 5 ) lwlre

OHL. (dw+F°w)w do= — lwl%.qﬁfv“uwl 5B

It implies that

So

—@kﬂwﬂﬁ, p.ﬂo.
ow| _ow

L1
on Ia or \p _(Q’k ' oR )w
Tn order to get w=0 in Q; we utilize the usual duality technique o
\0,ﬂ1= sap (wr ‘;u)ﬂj_= sup (‘w, AP+ kﬂﬁp);h_,

voecsdy |@lo,0,  ¥Yeecia@w %100,

where @ is a solution of (2.1) with f—¢. Applying infegration by parts and the

={,

I's

wlf:=0:

| 2w

boundary conditions of @, w and %, we see that

j w{ AP + ¥*®)dw J (dw + Fw)Pdz
"M\mm“ Sup & = Ssup 20 =0,

Vo e C3y) l@]e.0,  YpeCIia) l@lo.0
So w=0 in £;. Similarly, the mniqueness of the solution of (2.11) can be proved.
From the results proved in [23] there exists a unique solution w& H™(Q,) of (2.9)
which satisfies (a). The remainder of this theorem follows from [24].

§ 3. Error Estimates for the Asymptotic Radiation Coﬁdiﬁbn

In this section we give errors between the solutions of (2.9) and (2.1). For
simplicity, let O stand for various constants in various places unless specially
stated. We begin by | | )

Lemma 3.1. Suppose that uCO~(Q°) is a solution of (2.1), BCL s a fized
and bounded subdomain, and I'—6B and supp (f) B, Then for r=|z| sufficrenily
large. we have
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i - - I RO ! =

@) |2t (bt ) ul <G fibn,

(b) Iu(-’b)lﬁ\/ llfllo,n,_

@ |G| <F=tflos,

where the constant O is independent of f and .
Proof. We may use (2.1) and integration by parts to ses that

u(e)=| 2L HP (hp)dsw— | FHP (kp)dw, (3.1)

where p=|z—2'| and H§® is a Hankel functmn Sot w= (1, §), a'm=(r’, 8). It
implies that

P=¢\/l~—%‘-’}— cosa—+ ('/r)?,

whers « is the angle beiween the rays joining » and 2’ with the origin. Choosing 7
sufficiently large, we have the asymptotic expangion

F

" EpGe)=af L1+ ]+0(Uop)‘ﬂ), (3.2)

where O“=Na/r};2 e/t and (= 2@%?0 I'(3/2)/I'(—-1/2).

It is clear that we may differentiate under the integral sign in (8.1). Hence (a)
follows readily from (3.1), (3.2), the Schwarz inequality and Lemma 2.1. (b) and
{c) can be obtained similarly, Q.E.D.

Remark 3.1. If we adopt the method of [14] , e.g. directly using tha

shu=0 of (2.1) at infinity on 'z, we only get ‘ y

boundary condition

or
1 B e, A i
O (J,T) Hence _3?_!_ (@Ia Y )u 0 ig clearly a better boundary condition on

Iz

Remark 3.3. If we want to obtain a better boundary condition than that in
Lemma 3.1, we must employ the asymptotic radiation conditions of higher order see
[1] for details. We shall estimate errors between the solutions of (2.1) and (2.9) in
the following.

Suppose that » and w are the solutions of (2.1) and (2.9), respectively. Set

ex=u—W for €y, and E=%+ (@k I 2112 )ﬂ;. Thus we have the following error
bound. . | |

Theorem 3.1. Suppose that BC L2y is a ﬁmed and bounded subdomain, I'CoB
and supp(f) CB. Tﬁen we have .

(2) lealo r <47 A 0.5,

(b) ler|o, I‘n'g-R'ﬁ‘ 1£ 1 0. 8
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() lesls < 1f

where the constant O is independent of R and f.
Proof. On I'p we see that

Ps 36?“ - % %”:=$+(@'k+-—1-)u—(«sfa ook Ju (@k+—1—)w

2R 28 2R
. i} — (%]ﬂ"l* 1 )ER.

0: By

2R
S0 e satisfies
Aeﬂ-!-kﬁeﬂnﬁ, méﬂi,
ﬂﬂ=0, .‘.‘BE.F, (3.3)
Oe ; 1 .
3: HE—('E'Z?"I“ ¥ )BR, mGI‘R.
Using (3.3) and integraﬁng by parts, it is easy to see that
— lesltio,+ Bleslbot | Bendss— (ih+—)loald.r,=0.
Hence 5
Im . EE;IiS;i“kUﬂg[g,r.. (3.4)‘

It readily follows from the Schwarz inequality, (8.4) and Loemma 3.1 that

1 . 1
ﬂﬂnuu,r.— 75"313"0.1’. Im P.Eﬂﬂd&'ﬁTHEﬂmn
1
1 =0 : C
~ (e B0 ) <Sfery |, o <flfles. @D)

This shows (b) is valid. We apply a usual duality argument to prove (a).
Denote the inner product of L*(2y) by (-, «)o,, For Vf €05 (B), we extend f to Q7
by

f, as z€B,
fﬂ{o, as @€ Q°\B.
Then fFE€O0F(Q°) and FECT(2).

It follows from Lemma 2.1 that there exists an unique '€ O0~(Q°) satisfying
(2.1), and hence

S [ N 14 WS [0 ) P R [ 2y 275 P
JecsB) "}* “'3'3 1€C5(B) ”fﬂﬂrﬂ feCs(B) llfllﬂ*-ﬂ

Using integration by parts, (3.3), the Schwarz inequality, Lemma 3.1 and (3.5),
we have

|| or

j (deg+kep)v'dr — ?f 'E’dS.+j 3;” er 8,
lerlo, s= sup =% e L TE——
FeCp(R) . "f"fhﬂ
iz !
-=}aup (@b : 57 )L aﬂu’ds,—j Ev'dsy+ ’ %ﬁd& /Ilfllu.n
EGi[B) B R
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or, } / Flos

= sup {O(nﬂﬂ."n,r.‘l‘ | Elora) 1% 00, {332: Umf."gﬂ

JecaB)

< sup O([ezfo,r.|+E|o.r,) |flo.3/1F |05

1 e0(B)

<0(|!8.Enﬂl 1‘,+ I]E"ﬂl Pl) Qﬂ‘g_ﬂ'nf"nlﬂl

where the constant O is independent of R and f. -
Applying the definition of |+ [, 5, integration by parts and (3.3), we see that

Hﬂﬂﬂirﬂ"“ gup {(ER: lﬁ')ﬂ'— (AHR: ‘ﬁ)n}/ﬂ‘f’ﬂim

PpEOMB)
= sup (eg-+&%z, Yo/l 5
v EUHB)
'_“ﬂnﬂu.ﬂ”lf!"mn ' N (- __q_ _
i Wha ol glfla  QED

With the help of Green’s formulation we obtain the variational problem of
2.9
Find w & H}(2;) such that

: B(w, v) =(f, o, Vo€ HE(Q;), (3.6)

z - | -
lB(w, 2) ——-)F'Ll WY da — . Vw?wdm—(@k 1 2.R) g 0P dsg.

We are now able to prove the existence, uniqueness and convergence of the
solution of the finite element approximation of (3.6), and give error estimates,

§ 4. Error Estimates for the Finite Element Approximation

Suppose that v, H%(2,) is a finite-dimensional space dependent on parameter
h such that
(Hi) Vo€ H™(Q,) there exists a mw € V, such that

| v — a0 | 1,0, <<OR™ | 0|, o,

(for YO<I<m<N, I, m and N are integalg).

We shall later see that (H,) is vital to the convergence of the finite element
solution. | '

The finite element subspaces, V,, are typically obtained by subdividing Q, into
simple subsets, T',={T'}, of diameter O(A). V, may then be defined ag the subspace
of H3(£2) congisting of all continuous funciions, v, vanishing on I", such that ths
restriction of v, t0 each element T is a polynomial of degree less than or equal to
some integer N. It is not necessary to imposs any boundary condition on the
function in o, (note that the asymptotic radiation condition on I” g i8 a natural
boundary condition). Then ¥V, construcied by the above method satisfies (H;). See
{23, 2b, 26] for the details of constructing the finite element snbspaces.

The discrete forms of (8.6) and (2.10) are
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{ Find w, € vy such that

B(ws, va)=(f, vs) for Vu,EV, (4.1)

wy () #_4.]—-6*."1". 3H.§;ﬂ}(kp) wh.(m')dsﬂr

+‘§7L. (% + - Jun(@) HE (b, p)dse Vo€, (4.2)

where p=|o—2'| and B (-, +) is defined as in (8.6). (4.2) is in fact a formulation
for finding the approximate values of u(z) in Qs We shall give error estimates
later. First we show that (4.1) is also well-posed.

Theovew 4L, For b sufficiently small, there evisis a unique solution w, €V, of
(4.1). Furthermore, for Vurn€ Vs, there exisis @ vy €V such that

(ﬂ') lB(uh ‘U;.) I ;":’Ouuﬁ“ 1-91“1’1!“1*911
where the congiant O is independent of k, but dependent on B.
Proof. For Vu, v€ H}(,), it is easy to see that

B(u, v)<O|ul1a |10,
So B(+, +) is a bilinear continuous function on V.xVs In addition, let z be &
solution of problem (2.11) with f replaced by ~ (B4 with ua €V CHE(Qy).-
Then it follows from Theorem 2.1 that |

| l2) 8,0, <0l ta) 1.2, | - (4.8)
Ohserve that | | |
| B (s, wa-+2) | = | Qt, un)+ B(un, 2)+B(us, wa) |5 (4.4)
where |
Qun, 1) = — lridio,~ (8B +5 7 ) lwaldorss

R(up, ) = (B+1) L 550 s,

Integrating by parts and with being a colution of (2,11) with f replaced by
— (A*+ 1) up, we obtain

B, 2) = — R(us, us) (4.5)
and we readily see that
| Q(ttny ) | }';'—|RE Q(up, up) |+ | Im Q(us, Un) |

1

> (1wl o+ g luslir,tFlalie,)>Olulion (4.6)
Combining (4.4) with (4.5) and (4.6), we bave
' | B(us, wn+2) | =0l 1.0, (4.7)
Since z€ H*(2,) N H;(Q,), from (H;) there exists a w2 € V' such that
|2 — muzl 1,0, <<OF?*|2| 3.0, , (4.8)

Applying (4.8) and (4.8) gives
| fwaz] 100, <C|2[ 8.0, <C|ts] 1.0,

1+ ' (4 . 9}

Hence

lun + 32 | 1,0, <O | a
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4y

From (4.8), (4.7), (4.8) and (4.9), it is asserted that
| B(us, wa+maz) | 2| B(us, un+2) | — | B, 2— mg2) |
>0\ wi.0,— O)tr] 10,12 — w2} 1.0,
=l up]1,0,(||us 1,0,— Oh®||2] 3,0, ) >0 |ua||3,0,(1 — CK?)
=0 |lup]| 1.0, [t +m32] 1,0, |
where the constant O is independent of . Thus (a) holds and (a) verifies
inf sup B(us, v;)=0>0.

UpE V¥V 1€
Iﬂil'—'?l I‘l"h|={

By reversing the role of u, and v, in the above argnment we obtain the inequality
fg,,p IB(“M 'IJ;,) , -;?"Oﬂul"irﬂ; ” Uy

II:DI-

Then the remainder of this theorem follows from the Lax-Milgram theorem.
Q.E.D.

BRemark 4.1. From the above argument we see that the condition of A being
sufficiently small will gnarantee 1—OCA2>C,>0 such that B(-, +) is weakly coercive.
The condition, however, may be deleted when the wave number % is small enough
and R is not large enough (i.e. 4R may be sufficiently small and in this case the
finite element mesh may be coarse). In the case of % being sufficiently small, using
the Poincare inequality, we see that

| B(ts, va) | >Re B(us, ) | = | 2|y

Bo— [l o~ a3 r,

; luh,%! &y i 21R "u?anﬂzrr,_kﬂuuhllg-ﬂ,f}f Iuhfgrﬂl _kﬂ“uﬁ”ﬂﬂiﬂl
= (ua]i,0,— B°R? |13 11,0,>(1— (RR)?) |wa) 3.0,
}Gﬂluhl‘fi ﬂ;g%‘”mnﬂnﬂu

where the constant ¢ is independent of R and 4. So B(-,+) is weakly coercive. Thus
Theorem 4.1 holds, and the following theorems remain valid.
Theorem 4.2. Suppose that w and w, are respectively solutions of (2.1) and

(4.1). Then

Hw—Wﬁ"j,ﬂlgtjhm-lll'zﬂ”m,nu Z=D.l 1.!

where the constant O is independent of h.
Proof. Obviously

B(w, wﬁ).= (J> o) =B(wy, 1), Y€ V.
From (a) of Theorem 4.1 we have |

nwh—’!?nﬂi.uﬁiaﬂﬁglg B(wn—‘uh; 33'1)/"3?!] 1.0,
==Of‘lalvp B(‘w“ﬂﬁ:Ish)/ﬁsh":hﬂfgo”w—Q’k”i:ﬂu V‘l?nEV;.

So |
oo — e[ 1,0, <OF™ 1} w3, 0,

In order to obtain an error egtimate in L?(Q)-norm we make use of the well~known.
Nitche's duality argument.
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Lot B(-, +)defined by (3.8) be a bilinear continuous fanction from H}x Hy to
R. The duality problem corresponding 0 problem (3.6) is formulated as

Find @ € Hy(£24) such that
| { B(w, p)=(g, v)o,, VVE HE(82,).
(4.10) is in fact the variational form of the following problem
dop+kp=g, in &y,

(4.10)

-g—f: (—-ﬂk 1 ;R )ep o =0.

Theorem 2.1 ensures that Vf, g€ L?*(£2,) there exists respectively a unigueness
solution w, @€ H2(£,) N HE(8y) of (3.6) and (4.10) such thai

[@)s.0. <0} ¢lo.s.-
In particular, take g=w—w,€L*(2;). From (3.6), (4.1) and (4.10) we
obtain

B(w—fw;,, "Uh) “ﬁ, V"”LEVE

and
4 B(w —ws, @)= f[w—wsli.o0

-

Hence
[iw"“wh“g-ﬂl=3(w—wﬁ: @) = B(w—wh, @ — V) <O|w—ws]1.0, | — 2]l 1.0
{ ESE*H@}— e <|p—ma@ l1,0,<Ok| @] 2,0, <Ok|w—ws|o 0,
(4.11)
Combining the above inequality with (4.11) implies that
120 — 04 0,0, <Oh | w — Wi | 1.0, <OR™| @] m 2,- Q.E.D.

The following theorem gives the convergence and error estimates between the
golutions of (2.1) and (4.1). To begin with, we verify some useful inequalities
ahout the Hankel function. We know from 6.13 (3) of [27] that, for any real z>>0,

we have

H(z) = (_2_.)%34 e [ e e (1-2 T, (4.12)

T 1 0
where n is a natural number.
In terms of (4.12) and definition of I'-function we obtain

me@<(2) (T ) f e

ey 1]

1

(1-%) |

1

<L) @) i)

1

@(-3; %(r (_é_.))'lra-*ﬁdﬁ-s; =21 (4.13)

0 wa

‘Bimilarly, .
| HP®(a)<0(@ Z+a71). (4.14)
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From Sect. 2 we know on e

oHP (ko) _ 8HP (ko) 1y17m &
e = — kH} T&J?"' (4.1B)

Let 2= (7, @) € Q, satisfy in}f |#—y| >8>0 (where 8>0 is an arbitrarily given real
: ¥<l'ny
numbper), i.e. r—~R>L>0. Lot ¢ = (R, @)E Ty Then
dp —co8(@—6")Y+R/r
* 1

" (2R -4 (E))

(since p=|T— | ==y (1—-2—:::005 (6 -8 +(§)9),}) Clearly

op =
(6"4;" (r.) o
Combining (4.14) with (4.15), we got
i .
OHP (kp) ’ J' | ey PR #
" o mr-‘i G( 5. (;——!—p +p )ds,f) ‘ (4.16)
Employing coordinate transformation on I R,
., ¥ zy=Rcosd’, zp=Rsin@
gives
; s b
CES,: - .R ER : ! R AN
B (B2 e (2 )
B* Byt . R R
-@—;L (1-?) 4'<0 =5 <O 4.
Similarly,
dse R
.(B) L‘- p° = F’
(0) oo B
T g%
Hence we deduce
1 i
OHP (kp) R* -3, p-17\E
/{ o220 <O E (L4 g7E ) (4.17)

(it follows from (A), (B), (C) and (4.16)).
Applying the same arguments as the above, we can show

1
| H5”(kp) 0.0, <O(R/B)7. (4.18)
With the help of (4.17) and (4.18), it is easy t0 prove

Theorem 4.3. Suppose that u, w and w, satisfy (2.1), (2.9) and (4.1),
respectively (or wy, is the solution of (4.2) as € Q,). Then

(a) lu——wnlfu,s"%(?(ﬂ‘”—f—ﬁoh‘")(Hfllu.n+H‘wﬂm.m), |
(b)) lu—wrfo,r, <O(BR2+0h™ ) (| flo.5-+ [
(¢) [u—wun|1,a<O(R2+O0h™1)(]f]

imfﬂﬁ)r

’m-ﬂ;);

u.n+||'w
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e

| 1 3 .. |
(d) |u(z)— w(2) | <OR*(B™+ B_E+B“”)%*(R‘“+Ouh“”1)(ﬂf lo,a+ [®@]m.0.)s
swhere B>>0 is an arbitrarily given roal number. z=(r, 8) € 2, satisfies
inf |z—y|>8>0.

| : - y€rs
The constant O in (a), (b), (c) and (d) is independent of R and h, and the constant Oo

i8 independent of k. | , .
Proof. It follows from Theorems 3.1 and 4.2, and the triangle inequality that

|26 — w0, a<O(R™* +0h™) (1 los+ (2] m.0)-
We can similarly prove (b) and (¢). Let (2.5) subtract (4.2). This gives

u(s)—wr@) | = | (], [ZES L u o)

(G (ab- 2%)""”")362)(.%‘0)]@")1 '

OHG | -
QO(” on 10.1*.“16 ﬂn“u.r.
ou : 1\ '
. ‘ “&m | (”"7‘ i 2R)W“Hu,p,|lﬂé”’lln.r.- | (4.19)
L ] &L - 1 I- .I: 1 | ; .
Since E"I' ok + 5T )w;.r-——E—l-(wk YT )-(u—-—w,,,), then

E%‘;—+ ik :-2:;3 )w_a ﬂmnéa(llﬂlu,rﬁ llu—-w;.hp.r.)-

Hence

u(a) —mn(@) | <O{(

+HP ko) o | Blowr,

AHD |
} 3:7. o,r;+ﬂHE*2)""-"-P-)'“t-""'ﬂ’nuu.r.

1
7
<o[E(1+ g 1)) (G0 ) Ul ol
(It follows from (b) of this theorem, Lemma 3.1, (4.17) and (4.18)). Q.E.D.
Remark 4.2. We conclude from (a) that wy—u (in I? norm) if m>=1 and
h—>0 and R—oc (note that linear interpolation provides N -—=m= 1). In the same

manner, from (c), wy—>u (in H! norm) if m>2 and A—0 and B—oo. It verifies the

convergence of this method. |
Weo conclude this section by pointing oud that for the non—homogeneous

Helmholtz equation,
A+ ku= 1,

el - (4.20)

%—+§ku = O(N—/j;—?_), r==|z|->00,

where f €0~ (Q") with a bounded support, g€ 0~ (042). From [28], g can be extended
o 2 smooth function @ with a bounded support in 9. If u is the solution of (2.1)
with f replaced by F—Ff +(4+F)@, then it immediately follows that uy=wu-+G is

the solution of (4.20).
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Therefore the method for (2.1) presented in the paper can be applied to
problem (4.20) without essential modifications.

§ 5. Numerical Example
Take 3
- Q={z= (24, 23) CR?| || = (2} + 22)Z <2},
0= {z= (24, 25) ER“'2< |2 | < 10}.

By employing polar coordinates (r,8) defined by z=rcosf and y=r ging
problem (4.20) is transformed into |

gjg 1 41~ g::_:_;tﬂ_ 53;2:+"2““f:--w=-(ﬂ o)eq’,

u|,=g—g, m=('r: B)E'F: | (5.1)
OU |, .q 1
B ) e
; _ ‘ : _
Specifically we take f=0, y-HTf) (2%) e%° and the wave number 2=0.1. Then,
from the nature of the Hankel function we know that the solution of (b.1) is

{ "
u(r, 6) = H® (kr) * L 2<r<oo, 0<<<<2m.

One thirty sixth of the computation domain and the finite element mesh are showed

in Fig. 2. The refined mesh is showed in Fig. 3. Figs. 4 and b are results of
numerical computation. - "

g=10

From Figs. 4, b we seo that the accuracy of the finite element solution is siill
high although the mesh is very coarse (note 4> 1), and that with the refinement of
the megh, the computational accuracy increases. Hence, the method in this paper is
efficient. | '

Since the asymptotic radiation condition (Fy), p>>2, of high order in (1.1)
contains terms of partial differential fo @, it is difficult to treat. So, for (Fy), p=>23,
results similar to Sect. 8 and Sect. 4 are not obtained in this paper.

- Finally, for the three~dimensional exterior Holmholtz problem

du+-Fu=f in Q°CR®,
‘H.Ipﬁﬂ,
| u=o(q.-ﬂ)’ o | (b.2)

'%f-—l-éku= O(r™2), gr—oo,
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g ——BF of analytic solution i
i 4 RP of numerical solution for |

0.5

A TP of numerical solution tor mesh of Fig. 2

9l < IP of numerical solution: for mesh of Fig, 3
— I of analytic solution

_ masgh of Fig. 2
= RP of numertical solution for
mesh of Pig. & Ab At
Ak
A+ o

Fat

O S S o Y T 1 1 1 ; l— Y
4 d 6 8 T ke 4 92 "4 4 & 8 T & 98 W
() _ )
Fig. 4 (for fized =0)
" e RP of analytic solution 4 prow s "
1 A RP of numerical solution for mesh of Fig. 2 2 numerical sokrtion for mesh of Fig. 2

0.5.

4 IP of numerical golution for mesh of Fig. 3

RP of numericalgolution for mesh of Fig, 3
® : . . % — IP of analytic solution

A
s 2
o R E

A b o

+
FS
+

Fig. 5 (for fixed §=m/18)

by condition (Fi) in (1.2), the resmlts of this paper hold wvalid without any
essential changes in the arguments.
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