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Abstract

Tn this paper, we first establish the quadrature formulae of proper integrals with weight by
trigonometric interpolation. Then we use the method of separation of singularity to derive the
quadratnre formulae of corresponding singular integrals with Hilbert kernel., The trigonometric
precision, the estimate of the remainder and the convergencs of each quadrature formula derived here

are also established.

§ 1. Introduction

We shall congider the numerical evaluation of singular integra.ls' with Hilbert
kernel of the form

1(f, &)= |, w@®f Detg 5 (t-a)dt, w€L0, 2), (1.1)

where w(?) is a given non—negative function with period 2z which is known as the
weight function, and f(¢) is a function with period 2x. w(#) and f(#) are assumed
further to be Holder—continuous for the existence of (1.1)™,

The investigations on numerical evaluation of singunlar integrals with Cauchy
kernel are rather complete® %, But the results of invesiigations on numerical
evaluation for singular integrals with Hilbert kernel are not many up # now,

except for some special cages.
In 1974, M. M. Chawla and T. R. Ramakrishnan discussed the numerical

evaluation of (1.1) for the case w(¢) =1. They assumed that f(z) is a 25’5-*1)91‘10[110
function analytic on the rectangular domain D,={z, 0<Re(2) <2w, —r<Im(z)<r,
r>>0} with the boundary B,, which.ds written as f € AP(B,). For such functions,

ovalnating directly the contour mtegral
(i) 2| [#(erotg £ (=) /ein(n) Jotg - (c—$)de
by the analyticity of f(z), they obtained the following quadrature formula®™:

Ew AOLL '%‘(“”’)d‘=‘32n(f: z) +Ra(f, %), (1.2)

where

* Received April 29, 1986.
1) Projects supported by the Science Fund of the Chinesa Academy of Seionces.



206 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 8

2n—1 1

TSV f () otg = (t— ) +2xf (D)etg(na), @%by, k=0, 1, +, 2n—1,
n k=0 2
'TE' EZ'} rf(tﬁl)ctg "S‘T(til'_m) +2Wf’(ta) /H'J & =3, 0{3':2“_11'

R.(f, ®) = (4mi) ™ Lr [f(z)ctg 'jj' (z—2)8,(2z) /sin (nz) ] dz,
where = ko / 7, o
S,.(z) = Lﬁ gin (nt) ctg —%— (z—1)dt,

snd ¥’ denotes the summation for % except k=s.
In 1983, N. I. Ioakimidis rediscussed the quadrature formula (1.2) for the
purpose of numerical solution of the singular integral equation with Hilbert kernel

ay (t) +% E'y(t) ctg %(t—m) dt - E’ k(t, m)g_(t)dt=f(m), O<o<2x (1.8)

with constant coefficients ¢ and b. He extended the result of Chawla and
Ramakrishnan 1o the case that the number of nodes may also be odd. Only assuming
J €02, he obtained"®

25’!-7 n—1

(¥ sttt -y dt= 22 f(t)otg 5 (=) +2motg 3 naf @),

n
vkt k=01, <+, n—1, (1.4)
where &, =2km /n.

Toakimidis pointed out that the quadrature formula (1.4) is exact when f (1) =
sin(§8) (j=—n+1, —n+2, -, n—1), f(¢) —cos(jt) (j=—n, —n+1, +--, n). But he
gave neither the estimate of the remainder of (1.4) nor the convergence of (1.4).
Toakimidis’ method applied to the derivation of (1.4) is the method of separation of
singularity. By this method, (1.4) is converted direcily to the classical guadrature
formula for periodic functions. | .
| The investigations of the numerical evaluation of (1.1) in the case that w(t) is
a general weight function, to the author’s knowledge, have noi appeared in
literature until now. It is very natural to consider the weight function in the
investigation of the numerical evaluation of aingulai: integrals with Oauchy kernel.
In general, the weight function possesses the weak singularity at the end-points of
the interval of integration, and hence separates this singularity from the integrand.
Particularly, this separation is one of the foundations of the numezjeal method of
singular integral equations with Cauchy kernel™® ", In the singular integral with
Hilbert kernel (1.1) we require the weight w(¢) be Holder continuous. Hence its
geparation from the*function f(¢) is often thought unnecessary, but recently the
author found that the theory of numerical evaluation of the singnlar integral (1.1)
with weight w(¢) is very significant in practice. In concreie terms, the quadrature
formula (1.4) can only apply to the numerical solution of the singular integral
equation (1.3) with the constant coefficients, which is discussed by Toakimidis, For
the numerical method of general singular integral equations with Hilbert kernel, it
i & material matter to separate the weight w(¢) from the function f(#). Thus, the
quadratore formula of (1.1) is essential (this problem will be discussed in another
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paper by the author). Therefore it is significant in praoctice io investigate the

numerical evaluation of (1.1).

In this paper, we first use the trigonometric interpolaiion 10 establish the
quadrature formula of the proper integral. Then we use the separation of singularity
t0 derive the gmnadrature formmula of (1.1). The trigonometric precision, the
estimato of the remainder and the convergenoe of each quadrature formula derived
here are established.

§ 2. Quadrature Formulas of Proper Integrals

First of all, we discuss the quadrature formulas of the proper integral

1) = wf@®a, (2.1)

which will be used directly for the numerical solution of singular integral equations
with Hilbert kernel.
Notations: o
The family of all the trigonometric polynomials of the form
ao+ 2[a,008(jt) +bysin ()] (2.2)

is written as H. ~

The class of all the trigonometric polynomials of the form

gsin(nt+80) +Tua(t), Tea€HI 4, nzl, 0<i<m (2.8)

is written as Hy (7).

T4 is obvious that any trigonometric polynomial of order » can not belong io
two different classes HT (¢,) and HT (fa) (014 03).

Now we consider the approximate evaluation of (2.1). It is well-known thad
the general form of the mechanical quadrature formula of (2.1) is

j:“ w(t) £ () di= 3 Haf (). (2.4)

The right-hand side is known ag the quadrature sum. |

We may arbitrarily choose the nodes #, and the coefficients H,, in as much a9
the structure of the quadrature formula is arbitrary. Certainly, we hope that (2.4)
will possess the best accuracy for the class of trigonometric polynomials through the
choice of ¢ and H;. |

If (2.4) is exact for trigonometric polynomials in H7, and not so for a ceriain
trigonometric polypomial of order m-+1, we then say (2.4) possesses the
jrigonomeirie precision of order m. We mention that (2.4) does not possess the
trigonometric precision of order », however we choose i, and H;. This may be eagily

seon by considering the trigonometric polynomial f(2)= ﬂ1 gin® -%—- (t—%).
e

Thus, (2.4) possesses the trigonometric precision of order n—1 at most. It will
be seen that there actually exists such a quadrature formula.

We assume that (2.4) is of trigonometric precision of order n—1, the existence
of which is assumed for the #ime being. Under this assumption, we discuss some
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principles for choosing the nodes and the coefficients.

We call
e TTain s 1
1,(¢) = I sin (- 3 &) (2.5)
the nodal trigonometric polynomial of (2.4) of order n.
Let
A®=I,t/2) = Men L (~t). (2.6)

Lemma 1. If (2.4) possesses the tmgamstmc precision of order n—1, then
11.(¢) and any trigonometric polynomial in HI_y are orthogonal with respeci to the
weight w(2¢) on [0, 2a].

For simplicity, we call such a trigonometric polynomial the orthogonal
trigonometric polynomial with respect to the weight w(2z¢) thereafter.

Proof. j:" w(28) I, (6) 008 ) '
—j w0 (26) I (8 008 () db+ (— 1)+ j w(2%) 1T, (8) cos ( jt) it

= [+ (=)™ | w(28) Ia(6) c08 (i) i,
When n+7 is odd,
j:" o0 (28) IT,,(£) 008 ( ) dé =0,
When 7n+j is even,

f" w(28) IT . () c08 ( j8) -zj: w(26) T, (2) cos ( 3¢) i

-=L w(8) 4,(8) 008 = jbdt.

Thusg, we have
4,(%) 008 % JI€EHY ;, 0<ji<n—1;
thereby |
j“w(t)a,(mm L oitdi= S H, A (8)00s L j2, =0,
0 2 3 Foper k k ) Jﬁ. . 2
Similarly,

| w2ty I sin e =o, i=1,2, sl a1,

This Jemma is proved.
Lemma 2 Iy (2 4) possesses ﬂw #rwgoﬂomm'arw pq'mmﬂ of order n—1, then

."I"i’#

j+k

k= 1 2 vor, M, (2.7)
‘Proof. Since |
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£ (&) =TT sin 5 (t—t)cos™™* 5 (t—4) € HI.y,
J%k

the quadrature formula (2.4) is exact for f(¢), i.e.,
an n 1"
(7 w (o) T sin (e — 4 008"~ - (b =) do= 33 H, f (4 = Hnf 8.

fic
It means

Hk=ﬁ [Sinl(tr“f)]_ljh ‘w(t)ﬁ sin = (¢ #J)msn_i-j;(t-tk)df-
=1 2 1 0 =1 2 2

We introduce the notation
£y = w(®) 4,(8) cow? 1 (t—o)cig 3 (-9, (2.8)

which is known ag the associated function of 4,(¥) with respect to the weight w(%).
When z€ [0, 2x), the 4:(z) is understood in the principal value sense. If II,(¢) is
the orthogonal irigonometric polynomial of order » with respect %o the weight
w(21), we call it directly as the associated function of 4,. This function plays an
important role in the following discussions. We now point out a fundamental
property of this function.

For simplicity, let (4:)'(z) denote the derivative of 4;(z) in the set [0, 2mr)

throughount this paper. We have
(2)' () = [T w®) [T sin (6~ 008 - (t—t)otg (¢~ o) bt
. 2 Jo je=1 2 ’ 2 2

f+ K
+3(n—1) j:" w(8) A, (1) 008" 5 (t—t)d. (2.9)

In fact, it follows from the continuity of the principal value integral™.

Nots. In general, (45 (z) does not exist since we only assume w(#) is Holder
continnous.

Now we rewrite the coefficients given by (2.7) as

Hy= 4, () /24, (%) - (2.10)

Theorem 1. If the trigonometric polynomial (2.5) determined by the modes of
(2.4) is the orthogonal trigonometric polynomial of order n with respect to the weight
w(2t) and the coefficients are given in (2.7), then (2.4) possesses the lrigomomeirio
preciston of order n—1.

Proof. We choose again n—1 distinct points f.i1, Zwss, ***s fan-a bosides %4,
$s, **-, t.. When fE€ H} _,, we know

2n—1 on—1 SN G 5 (t £5)

F) = Zf(tn)ﬂ— T

-—(z‘-k = tf)
Hence
1 2n—-1
- WO [ w(@) 11 sin (6~ ;) dt.

j*k
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By the orthogonality of II.(f), we have, when £>n,

H;,;""O.
In fact,
x n—1 2n—1
L w(®) [T sm— G~ t,,)dt-=L w4 T sm—(t ) dt
i+k ik
2n—1 1 -
1_=L w(26) I, (8) %lm( — 5 t;)di=0;
when 1<<k<n,
2ex Zn—1
L -w(z%);]'_[ sm—(ﬁ—t,)df.
+ic -
1 2n—1 n=—1
=" w %m%““*’)[w La—1)— T s Lw-sp oot Le—w |
Z2n—1 ; 1_ 20 " y ]. i j_ |
+ 11 sin 5t~ [ 0@ sin 3 G- t)oos* 5 (G-t
Il 2 0 =1 2

4k

In order to prove that coefficients H,’s in the present case are given by (2.7), we-
should only prﬂve that the above integral vanishes:

o w®ITsin3@-tp[ IT sing@-t)— IT mn—(zkét,) oo™ 2 (t—4) |t
Jk :
mJ:HW(t)A"(t) {[ Ej;-_[;_l gin ; (t—1;) ——;ﬁz Sill-é—(‘h;-—-ﬁ;) cos™—1 %‘(t_‘f’k)]/

mn%(t—t;ﬂ)}di
.=J:“w(2t)ﬂ,,(t)[ﬂﬁ sin t—-%t;) 2ﬁi sln-——(ﬁ t;)ﬁﬂﬂ"*(t-——*k)]

=n+l f=n+1
o |

?:GDﬁEC(}EH"E?t%)dﬁ

= ()

in which we have used the Drthﬂéonality of 11,.(%).
Thus, when f&c H. 1, we gei

[T w@ f @ ai= 3 Bf e,

where H,’s are just those given by (2.7).

Now, we prove the existence of the orthogonal trigonometric polynormal of the.
form (2.5). g

In the following, we introduce the space I2 [0 2] equipped with the scalar
product

2

(f, 9= w@) f@g@ (2.13)

Using the Gram-Schmidt orthogonalizing process, we obfain the fﬂllﬂwing;
Lemma 8, There is a unigque orthogonal irigonometric polynomial of order n.
(up o a constant factor) with respect to the weighi w(2t) in every class HZL(G)
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T

rr—

(0<f<m).
This follows from the fact that
1, cos ¢, gin ¢, ---, cos(n—1)2, sin(n—1)¢, gin(nt--6)
is a linearly independent set in L [0, 24].

Woe show that the orthogonal trigonometric polynumlal nf nrdar 7 W1th respect
10 the weight w(2¢) is of the form (2.5). To do so, we firgt discuss some pmpertles
of T,(1). -

Lemma 4. IfT,.€H, %0 and i3 the orthogonal trigonomeiric polyﬂomwls with
respect to the weight w(2i), then it is of order n.

Lemma §. If both T.C€H} and T:C HY are orthogonal trigonometric poly-
nomials with respect to the weight w(2t), so 48 their linear combination. @ @

Lemma 8. If7T,(%) isihe orthegonal iregonometrio fpulynomwl -wmth 768 ;uact 0
the weight w(2t), so is T (w+1).

The proofs of these lemamas are simple,” '

Lemma 7. If7T,(%) is fu’w wthoyml ﬁmgwmwtrw polynomial with respect to
the weight w(2%), then

Tu(t)={(— 1) T (w+1).
Proof. Write | | . .
T, (t) =a.,éoé(ﬂf)+b..sin(nt)+---+au; '
then ' b "
T (w+it)=(—1) GHBOE(%I?)-F( 1)"b ﬂm(nt)+ * - @os

By Lemma 6 and b, we know T,(¢) — (—1)*T,(w-+£) is the orthogonal trigonometrie
polynomial with respeect o the weight fw(2t) Noting 7', (z%) (—1) "T,. (w-+18) € HY 4,
the conclusion follows by Lemma 4. -

Lemma 8, IfT,(¢) is the orthogonal trigonometric polynomial of order n with
respect 10 the waégh# w(2t), then. T,(t) possesses 2n simple zeros én [0, 2@), n of
which, t1, s, -+, i, are located in [0 w) and the others are just m:+t;,, (k=1, 2, =+, n).

Pyoof. Suppose that the zeros of T, (¢) in [0, @) aTe iy, fa, -, tm With urder ki,
ka, -+, km TOSpectively. By Lemma 7 we know that it has and anly has the zeros
nr—l—ti, w+1ta, +++, W+, with order &y, kg, +-, ks in [ar, 2m) .

Without loss of genera.hty, we assume Fci, ch, ves Kop ATO odd and others, if any,

even; then the sign of T, (t)Hﬂm (¢—t¢;) does not change, Thereby

L w(20)T, () Esin(t—mdtaao.

Again from the orthogonality of 7, and noting m<n, we get
p=m=mn.

Now, it is easy 1o obtain
Theorem 2, There exists a unique orthogonal itrigonometric polynomial of
order n with respect to the weight w{2t) im each class HI(8) (O <m)

H,(ﬁ)—-—aﬁsin(t-—%—t;), i, 2.12)
=]
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where %—t, are the n distinet zeros of 1I.(1) in [0, .m:) ;

In (2.12), by appropriately choosing the coefficient a, we may get I1,(f) of the
form I8 () =sin(d+0) + T, 1(8) (Tao1 € Hiv).
Lemma 8. II2(f) — cos 8112 (¢) +-sin AT (2).

Proof. By Lemma 5, we know that cos@II} (%) -+sin 1l ,? (¢) is the orthogonal
trigonometric polynomial of order n with respect to the weight w(2f). Then by
Lemma 8 we know that it is just II% (%).

Now, we may construct (2.4) based on II,(%).

Let A,.(t)=H,,(% t). Taking the zeros #y, ta, *+-, t, of 4,() in [0, 2m) as the nodes

and evaluating the coefficients by (2.7), we obtain the quadrature formula of (2.1)
which is stated in the following theorem.

Theorem 3.
ICH =Q.(f)+R.(f), (2.18)
Q)= N HEuf (),
Ru(f) = w@)raslts ta, -, bt S D,
where the nodes are the zeros of 4.(f) in [0, 2m); 4,() =11, (%t), I,() is the modal

trigonometric polynomial which is the orthogonal trigonometric polynomial of order n
with respect to the weight w(2%); the coefficients

Hy= 45 () /24, (), A:(Z)';E!W(t)dn(t) W“_H‘%‘(t_z)dg % (t—z)dt

is the associated function of 4.(1);
fn-;l.(tia tay ***y tny f; ) =f(t) _'Tn-l(#h oy **% bwy .f; t);

T._1(ts, ta, *+* tw f38) € HI_1, which takes the same values as f (1) at {}1.
The proof of this the:rem is obtained directly from Theorems 1 and 2,
Corollary 1. The quadrature formula (2.13) possesses trigonometric precision

of order n—1.
Two important properties for the associated function are given in the following.

Corollary 2.
£ (2) = E’ w(£) A, (£) cos™ % (6—2) otg % (—2)df, —l<m<n, m=n (mod 2).
) | (2.14)

k+1 1

In general, if f(#) = ];{15111 -ﬂ—(t—}\.,), —1<k, m, j<n, k+j+1=m=n (mod 2), then
[0 4.) @ 0ost (- D)ot 3 (b= r)dk
= f(2) f w (%) 4, (%) cos™ %(ﬁnz)ctg ; (t—2)dt=f (2) £ (2). (2.15)
- It éufﬁces to prove the first equality of (2.15). It follows from
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[d,.(t) f(t)aos’_(ﬁ z) — f(2) 4,(2) cos™ —-(t — z)]ctg-ﬁ-(t—z) cHI 4

and (2.13).
Corollary 3.

(A:)'(tk)=-%- J:uw(t)jlj sin—;-(t—-tj)ms“'i L hctg 5 1 s)de.  (2.16)

§k

This follows from (2.9), (2.13) and the orthogonality of I7,,(¢).
Corollary 4. 'The coefficients H; in (2.18) may also be given by

— (ﬁ)[ w(t) 4 (8)otg o (t—t)ds, =0 (mod 2),

Hk= 1 (2 .17)
TN j w(t)d,(t)cosec-——(t bydt, n=1 (med 2).
Corollary 5. 'The coefficients H; of (2. 13) are positive:
; 1 _.__.._j wOIT ains L (t——t,)dt, fand, B e i, B
H ﬂlﬂﬂ—(ﬁn 1) it
j-ﬂa

This follows from (2.15), or directly from (2.138).

§ 3. Quadrature Formulas of HX (@) Type

In the last section, we have established the guadrature formula of the highest
trigonometrio precision which is exact for any trigonometric polynomial in HJ_,
and not so for a cerfain trigonometric polynomial of order n. It is worth noting
that the gquadrature formula (2.138) is not exact for all trigonometric polynomials
of order n. In this regard, some authors had a wrong view'™!. In fact, it will be
found that the trigonomeiric precision of (2.13) may be stated more exacily,
namely, it is exact for a certain class HZI (8).

It is interesting to note that there is an essential difference between the
ooncepts of algebraic precision and of trigonometric precision. A guadrature
formula having the algebraic precision of order n—1 is not ‘exact for any algebraio
polynomial of order n, bul a quadrature formula having the trigonometric precision
of order n—1 is exaot for certain trigonometric polynomials of order n and not so
for the rest. This will be verified later,

If the gquadrature formula (2.4) is exact for any irigonomeirio polynomial in
H:(#), we say it is of HI(8) type. In this section, we diseuss the quadrature
formula of H7(#) type, which is important when applied to the theory of
numerical solution of the singular infegral equations with Hilbert kernel,
Obviously, the quadrature formula of HI(f) type possesses the <srigonometric
precision of order n—1. Henoce it must also be given by (2.13). We have seen thal
the quadratore formula (2.13) is not unique, since I1,(2) is not unique and exigts
in each colass HI(9) (0<f<w). Thus, we have a cerfain chance of choice in the
construection of (2.13). We now discuss how to choose II,(¢) such that (2.13) is of

M8 type.
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In the first place, we mention an obvious and useful fact: whatever the choice
of II,(¢) is, the quadrature formula (2.4) cannot be exact for both of the two
different classes HZ(8;) and HT(8.) (8;%6,). In fact, if (2.13) is exact for both
HJ (61) and H[(f,), then it is exact for both of the trigonometric polynomials of
order

gin (fm& +- 91) cos Qi sin (ni) +gin &1 cos{nt)
and |

gin (nf + 5) = cos By gin (nt) +sin O, cos(né).
Hence there exist ks and %, sach that

(cmai meg)(h) m)
. 311191 sin f4 Ko [/ \1 .
Thus, (2.13) is exact for

008 (1i£) = foy SIN (1 -+0y) + g 8in (it +65) .

By analogy, it is exaot for sin(at). Therefore it iy exact for any trigonometrio
polynomial of order n. This means it possesses the trigonometrio precision of order
n at least, which is uzuposmble as shown above.

Lemma 10. If (2.13) s exact for one tmgonomezﬂrw polynomial nf ard'ea- n in
H>(®), then it 18 of HI(H) type.

These facts reveal the characteristics of the quadrature formula of H; (#) type.
In fact, the gmadrature formula of H,(#) type is exact for all irigonometriec
polynomials in HT (§), and is not exact for any trigonometric polynomial of order
nnot in H7(§). From this point of view, it is reasonable that we specify the
frigonometric precision of the quadrature formula by the class H] (§).

Moreover, we shall prove that any quadrature formula having the
trigonometric precigion of order n—1 iv of a certain H] (#) type, in reverse, given a
class HI(#), a quadrature formula may be constructed so that it is of H(#) type.

We firsi establish several lemmas. Denote

ri= i, 1H =[" win i e,
ri= (0, M) = [ w(@) B d, JERY

ro= (2, I3) = Eﬂ w(2t) I3 IT2 () d.

Lemma 11. For any given a(O0<ia<m), there ewisis a unique B, such that s
and II7 are orthogonal with vespect to the weight w(zt)
Proof.

j ** w(28) IT2 () sin (né + B) di

L

—cos 8| " w(2) 172 (#) sin () df +-sin ﬁj:“w(zt)ﬂ:(t)m(m)df.

_WB;: w(zt)li*:(t) () dit +sin 8 E‘ w(2%) H:(t)ﬂ,? (t)dt
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- 008 ﬁmaﬁ“ (28 sin (nt) T2 (¢) dé+ 008 Bsin j:“ w(28) cos (nt) 12 (£) d#

+sin Bcosaj:“w(zt)san(ﬁz)ﬂ?(t)dwsm Sina j:“w(zt)m(m)ﬂ?(t)d:

= co8 6 ¢os Brt +sin(a+ B) r,+sin agin B,

Henoe II%(¢) and II?(¢) are orthogonal with respect to the weight w(2¢) iff
| cos & ¢os Brs +sin (a4 8) ry+sin asin 81, =1, (8.2)
ie, iff .
{ arcctg( —mna:'f,—Fasar“

B= COS Gi'y, + SIN G,
0, for cosow: +sinar,=0.
In the above proof, for the case cosos’+siner,=0, the unigueness of the
solution of (3.2) must be specified. In this case, we should prove sinar;+cosor, %0
for the uniqueness of solution. In fact, if

), for cosar’ +sin ar, %0,

(3.3)

{msm',’,+ainm',,=-0,

sin o’ + cos ar, =0,
then | |
f}';*]": m— ("rn ﬂ- |

On the other hand, noting (38.1), by the Schwarz inequality, we gel
rr (1) (8.4)

in which the equality holds iff II3 () and II E' (£) are linearly independent.
From this contradiction, the lemma follows.
" Obviously, II*(¢) and II2(t) are orthogonal to each other, and thus are said fo
"be a pair of conjugate orthogonometric polynomial. The condition (3.2) is called
the conjugate condition.

Lemma 12. If f€ HI(f), g€ HT (), then fgeﬂg;([al—w, +%L) where

the notation [x], denotes the number congruent to @ in [0, @) for the modulus .
This lemmma is established by direct evaluation,

Corollary 6. I (~¢)sin (1 ni-+8.)€ HI ([6+01+ 5 =] ).

Theorem 4. If the nodal trigonometric polynomial of the gquadrature formula
(2.13) is II2(%), whose conjugate orthogonal trigonometric polynomial is II;(%), then
¢he necessary and sufficient condition for (2.13) io be of H(#) type és .

| : f= [d—l—ﬁl-l—- —%— E'F:L. - (3.6)
Proof.  Note o -
2% : : D » 1 - 1 | ;
, L w(2¢) IT5 () sin (v -+ ) dt = 2 L w(3) I ('LT t) sin (‘5? n£+¢)dt. (3.6)
When ¢ = [Ef_-_-%- rm—a] ,.by Lemma 12 and the above corollary, we know

& T(Fe)em(gere)eEiO).
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Hence if (2.13) is of HI(#) type, then

2x

L w(26) I%(8) sin (nf+ ) dé =0,
i.e.,

2%
L w(28) T2 (D T4 (§) di =0,
1t follows that II3(?) and II3($) are conjugate to each other. By Lemma 11 we get
e 1
3-—96—[3 =5 m:L,

ie., 6= [rx+ﬂ +%— WL.

In the second place, we show the sufficiency of the condition,
If we take ¢=8 in (3.6), then

E’ w(®) IT2 (-%- ﬁ) siri (_%. nt—i—ﬁ) di=0.
1 1

It follows that (2.13) is exaet for IT% (E— t) Sin ('ﬁ' nt B). Again noting that this

trigonometric polynomial is of order n and € H1(#), by Lemma 10 we know that
(2.13) is of HT () type.
Now, it is easy to state exactly the irigonomeirio precision of (2.13) as follows,
Theorem §. If the nodal trigonomeiric polynomial of (2.13) 4is 11%(t), then

2.13) is of HY ([a+B+ + |.) tupe, where 8 is given as in (3.3).

This theorem shows that (2.13) is of a definite type. The following theorem:
tells us how to construct the quadrature formula of HI(#) iype for a given class
H7 ().

Theorem 6. There are only two quadrature formulae of H.(8) type. More
precisely, ¢f the nodal trigonometric polynomial of (2.18) 48 II5(t), then (2.13) i3 of
HZ (@) type iff

a——*[; g —%—ﬂ,resind]

1 1 '
5 Q—E arc sin AL,

M
where »
A=[sinB(ri—r> —2c080r.]/ (2 +12).

Proof. By Lemma 4 and the conjugate condition (3.2), we know that (2.13)
is of H] (@) type iff & satisfies the following system of equations

{9=[H+B+% m::L, (3.7)

cos acos Brs+sin(a+ B)r.+esinasgin Ar5=0, 0<a, S8<m.
Substitubing the first equalily into the conjugate condition, we get
' gin (2a— ) = [sin § (s, — %) — 2008 07, ] / (re -+ 1) = A,
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Noting (3.4) (not using the equality), we have
|AP<E(rs—2) 2+ Cr)®/ (o) 2 <L —ri) 2 +dresl / (o s * =1
Finally we obtain |

u:=[1 R 1 &rﬁainA] 2
12 21 1 ) (3-8)
B=[-—2-'-m: e a,mamAL,
or
0= 1 :;,'l"l,:'—l--l —}-ﬂrﬂBm.A_] "
ti 12 2 . (3.9)
‘8___2.‘_9+'§-mm‘4:|='

The $wo systems of solutions are symmetrieal and different. In fact, « and &
gatisfy the conjugate condition (3.2). Hence a# 8, i.e.,

[% 6‘+% ﬂIGBiIlA]'?E[-—%-W"i‘% 8———%—

The theorem is proved.

We take w(¢) =1, for illustration.

In this case, the nodal trigonometric polynomial is II3(2) =sin(nt+a); the
nodes are #,=h+2kx/n, k=0, 1, -+, n—1, A=2(w—a)}/n; the coeflicients are Hy=-
27 /n. When n=1 this is obvious, when n>>1, the evaluation is as below:

arc 8in A] :
&

j:w sin (ni) ctg %(t—z)dt-—-zw cos(nz),

‘Eﬂ cﬂg(ﬂt)ctg % (t ﬂ)dt=—2ﬂﬂin('m3), A [Or 25'!7).
Henoe, we have, when n=2j,

A (8) = L sin ( jt +a) ctg L i 2)dt =2 cosacos j2— 2 sin & sin (j2)

=2Wms(jz+ﬂ) =2wm<§- ﬂz"l'ﬂ);
and when n=27+1,
&) =j:”' s [(;+_§.) ] cos (t——z)ctg 1 iyt
ﬂ%_rw [sm (jt 1 z)-l—ﬂm ((34_1); | % z)] ctg —%—(t—-z)dt

4

== Zar COS (—%» nz -+ n;).
Thereby, in any case, we have
£i(2) =2 006 (3 nz +a). 2€ [0, 2). (3.10)

Finally, from (2.9) we have
- Hy=4() /24, () =27 /n.
Thus, we obtain the guadrature formula
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rateatis. ]

[ rwa=223 1), =25, 2@—0) B CELY

n

which is just the olassical quadrature formula for ’ahe perlodin funﬁhﬁnsm’. Here it
follows from (3.3) and Theorem 5 that (8. 11) is of HY([2a],) type.
Particularly, taking =0, we have

n=-1
L f@®asm2E 2 S £ (2ka/m), (3.12)
which is of H7 (0) $ype and is quoted by Ioahmldmm’. e

§ 4. Quadrﬁture Formulae for Singular Integrals

In this seclion, we establish the quadrature formulae for singular integrals
with Hilbert kernel (1.1).

We assume f€ C05,. Lot

[F®) ~f@]etg 5-(t—2), t#a (mod 2x),

2f' (), t=2 (mod 2x).

It is obvious that F (¢, #) is a continuous and periodic function of # and z W1th
period 2z, Sometimes we treat z as a parameter and write F (¢, x) as &' «(1).

If f€ H; (), we have the following lemma. =

Lemma 18. If f€ HI(9), thon Fu®) € HI ([ £ m+6] ).

Proof. We should only show the case f=cos(nt), sin(nt). Obviously,

[oo (nt) — oos (nz) Jotg (¢ —) € HY.

F(t, ) ={ (4.1

Henoee

[o08 (nt) — 008 () Jotg - (¢ — o)

=eos(n—1)t(aost—casm)ctg—-(t — ) —sin(n—1)¢(sin ¢ — sma:)ctg (t-—m)

+[Gm(n—1)t—m(n—1)m]m(m)ctg 5 (t—x)

~— [sin(n—1)¢—sgin(n—1) ;]sin(m)ct_g %— (t—=)

=11+ 1, +Iﬂ+L
Ia,. Iie Hﬂr—lr ﬂnd

11=_21..[sin(n-2)t—sin(m)3 — sin () 008 (n—1)¢,
Ig-—"%[-—Sin:(ﬂ-—Q)t—.ﬁin (nt) ] .—ﬁcos(m)'sin(ﬂ-ﬂl) t
80 that |

Lo0s (ne) — oos (n) Jotg - (t—2) = —sin(nt) +Tus (), Tos€ HI,,
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By analogy, we get

[sin (nt) —sin (o) Jotg (6~ @) =cos (nf) +Thy (8), Thoa € HIy.

Note 1. From the above proof, it is seen that if f is a irigonomelrio
polynomial of order n, then F,(¢) ig also a trigonometric polynomial of order «.
Note 2. 1If f is a trigonometric polynomisl of order n and not in H (§), then

F,(t) does not belong o H 5 ( [}— 7 - 9] ) either. In fact, if f & H 4 (91) (6,%8), then

| 2
by Lemma 13, Fu(t) € H? ([ % - ;] ). But _H;{‘ ([ +a]') and H? ([%. w+6:] )
are two different classes; hence F,(t) is not -in H,’{' ([§+E]=).' .

By the method of separation of singular Point, 7(f, #) can be divided into two
parts, Thig thought is proposed by Professor Chien—-ke Lu in the discussion of the
approximate evaluation for singular integrals with Cauchy kernel™, We prooeed as

follows:

I(f, %) ==E“w(t)f(z)ctg (t—5) i

=L w(t) F (¢, m)dt-}-f(m)E'w(t)gtg%(t_—m)dt.

In the above, the first integral is a proper integral in which F (t1 x) is as in (4.1).
+Using the quadrature formula (2.13) established before, we obfain the guadrature
formula for the singular inftegral (1.1):

I, D) 2, @) ~QuF) +f @) | w®ete 5 (—a)dt, (4.2)

whioch is stated in detail in the following theorem.
Theorem 7. If f€ O, then

I(f, =) Qn(fr ﬂ})-I'R,.(f ), 5 . (4.3)
[ 3 Huctg 5 ) f )+ f@), oty k=12, e

Qn(f: ﬂ::) .

E*H,,ctg_(t,,-t.) f(z,,)+z, f(t,) +2HLf (), o=ty 1<s<n,

k=1

R.(f, m)=-L w(®) . (b, ta, - 5 e 5, f; otg 5 L —a)ds, (4.4)

where 4,() =ﬁ (; ) II () i3 the wthogoml tmg&nometrw polynomial af order m

awith respect to the weight w(2t), the modes tk are the zeros of 4.(¢) in [0, 25::), the
coefficienss H,= 4, (1) /24,(ts),
£ =] w) 4@ c0s (1 —2)otg 5 (=)
43 the assoctated funciion of 4.(t) and |
- | o Ke=(4) (4 [ Au(ts) —-H.dﬁ(t.)m (%),
. wwith (4;) (t) given by (2 16).

r?



220 JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 6

Proof. From the quadrature formula (2.13) ﬁe have
A, D) =QF)+[@ | w(E)otg 5 (- o)t

- S ) +1@) | w®etg g —a)dt.

Using Lemma 13 and noting the trigonometrie precision of (2.18), we get, when
n>1,

£@) = | w® 4o L (1) olg = (1—a)dt

-=j:" w(®) [ 4,(2) o2 -2- (p—a —d,(m)]ctg-ﬁ-(t;m)dt
+ 4, () rﬂw(t)ctgl(t—m)dt
G EHHA,(m)ctg 5 (tk_m) + 4, (fﬁ)j w(t)ctg%(tﬂ-m)dt;

and, when n=1,

A;(m)=fw(t)sin;(t £1) 00560 3-(1—2) d

ﬂrﬂr w(t)ms—%—(m—tl)dt—l—ﬂw w (i) sin —%—(a:—-—h)ctg -%'—- (t—a) dié

4]
e E A (i el %(ti—m) +4,(2) j: w(t) utg_;.(t-m)czt. (4.5)
Thus, furthermore, we obtain

Q(f, ) = 3 Hyotg 3 (h—2)f () + [£(2) /4, (2)] F @),

If =1, we evaluate

lim [ 31 Ayotg - (—0) £ () + 28 1 @) ]

= 3V Hyolg 5 (h—2)f (b) + Kof () +2H.f' (),

where

K,~lim[ H,otg 3 (4—a) — £ (2) /4(2) ]

..'—'}t.-

.-=1im H ens-—-(t —x) — A, (@) / 4 (2) /Elll-—-—(ts"'ﬂﬁ) =2|:A (@) /8 (@) ] 0=,
= (4,)’ (ta){ 4, (ts) — H. 4, (L) /4,(2s),
in which 4 (@) =4,(z) / sin -——(m ).

Noting (4.2), we know

R.(f, o) =I(f, o) —-Q.(f, o) =R.(Fo). | (4.6)

From the above equality and Lemma 18, taking the trigonometrio precision of

(2.13) into account, we know that the quadrature formula (4 8) is exact for any
.trigonomelric polynomial in Hi_,. Therefore



No. 3 QUADRATURE FORMULAS FOR SINGULAR INTEGRALS... 221

RS, ) ={ w®(Ootg S G—dt-Qu(f, o) = w(t) f (6 ot - (t—2) 8

[T 0O Tu st ta o e 3, f Dot 2 (4—a)dt

dx
E_L} w(t)q.n-i(tl? tﬂ'f iy tm Ty f; t) Gtg ; (t m)d:t-
Note 1. When =1,
Tn-—i(tl! iﬂ! iy tﬂ.t @2, f; tk) =f(t]ﬁ)r k___']-g 2, sre, My,
T:t*ﬂ]. (tlm tﬂ'r S tnf &, f; f’a) 3‘}” (t.g_) .

Note 2. When n=1, in fact we have not given the remainder, since in general
we cannot find the trigonometric polynomial of order 0 such that its values are the
same as those of f(¢) at {#;, z}. This shorteoming indicates just that the
trigonometric precision of (4.3) must be siated more exaoctly.

Imitating the definition of the quadrature formula for proper integrals, we say
the quadrature formula (4.2) has the {rigonometriec precision of order m if it is
exact for any trigonometric polynomial in H T and not so for a ocertain
{rigonometric polynomial of order m+1. |

We have shown that (4.8) is exact for H;_,. Hence il possesses trigonometric
precision of order m—1 at least. Moreover, we may further prove that the
trigonometrio precision of (4.3) is just of order n—1. Note the following theorem.

Theorem 8. If the nodal trigomometric polymomial of (4.8) 4s II3(Z) whoss
conjugate orthogonal trigonometric polynomial s IIS(t), then it is ewact for Hy ([a+
Blx) and not so for trigonometric polynomials of order n not belonging to .

As before, we say that the quadrature formula (4.3) is of H; ([a+8ls) Type.

Proof. Just noting Lemma 13 and the note attached fo i}, by (4.6) we know
that Theorem 8 is true.

Note. Now, 7,_1(ts, ta ***, ta @, f; t) in (4.4) may be replaced by

T:(th 2, vy b T f; t) =f(t) _Tfl(tii tay *°ty bm T, f; t):
where T8 € HI(8) (0= [a+ Bls), and its values at {w, #, k=1, 2, ---, n} are the same
as those of f(t). Thus the problem suggested in Note 2 of Theorem 7 may be
solved reasonably.
From the above discussions, the following theorem may also be oblained.
Theorem 8. If the nodal trigonometric polynomial of (4.8) iés I3(t), then for
a given 8(0<<f<m), (4.3) is of H; (0) type ¢ff

f | e o dgn d cos @ (ri—r%) +2sin fr,
c:—+|:2:m . 29, zarﬂc{rs S L
o | 1 & 3
_ - [ cos B (ry—rh) +29n Or,
O [7517'!‘?9 —E-&I'GGDS J;I";—I—TT; er-

We point out that if f€ AP(B,), i.e., f is a 2&-periodic funclion analytic on
the rectangular domain D,={z, 0<Re(?)<2w, —sr<Im(z)<s, r>0} with the
boundary B,. Then the remainder (4.4) of the quadrature formula (4.3) may also
be given in the form of contour integral, which is convenient for the asymptotic
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ogtimation,

Theorem 10. If fc AP (B,.), then the fa'mamde-r of (4.8) is

e gl J [ 4. () -
B.(f, o) ol Pl otg 5 (z z)dz, n=>3.
We first prove the following lemma. |

Lemma 14, Suppose f € AP(B,) and the n+1 poinis A, lie inside B,. Write

n+1

(1 (t)='= i:_:[;l::l.gm é (t ?\a;;)

and construct

Toa(fy ) =iy | 7@ [0nr () —ona(Deos? 3 —1) Jotg =G~ oty ()

4wt
j+1l=n (mod 2), 0<j<n—3.
Then, T, 1(f, t) €EH;_,, ils values at {M}i*' are the same as those of f, and the
remasnder s

Tu-1(fs 8) =f & —Tou(f, 1)
= (i) 2| f@oni@)eos’ 5 E—tark@etgE—1)de.
Proof. By Lemma 13 we get
[mﬂﬂ (2} — wpp1 () cns’ 5 (z—1) ]ctg 5 (r=—¢t) €HL ,, fort,
Henoce, T,,_i (f,)CH. .. Astis 1ns:1d.e B,, we have

@) = (i) | f@otg 3 G—1)de.

Thereby
Fas(Fy )= @) 2| F @ s @00 3 (-0 otg 5 G—Dorh () de

= (i) s (®) |, £ 008 3 —t)otg 3 G—Dwrh (e
vaiously, it follows that |

Fp—1 (f, ?b]ﬁ) == (],

Note. In the above lemma, some of the A,'s are allowed to be the same. For
example, if A, appears m times, then 7', ; possesses the same derivatives as f up to
order m at A,.

The proof of Theorem 10:

Taking wp;q (t)‘=zl,.(t)sin —21— (t-—x) and constructing 7', 4(f, {) a8 in Lemma 14,
we getl
F@4@sn 5 (t——m)maf (1)
d,, (z)sin 'é' (z— m)

ra-1(f, t) = (4wi) _1,[3, ﬂtg-%(z—-t) dz.

Then using (4.4) and noting the property of associated fanction (2.15) we obtain
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ctp -%—— (z— a:)dz] dt

2 1 1
_ = 1 f (@) 4. ($)sin -5 (t—z) cos’ 5 (2—7)

R D= w® ][, @ sin L (—a)
. 5

-1 /@ (™ () 4, @sin 2-(t—)oos? = (c—2)
doci L, Aﬂ(z]sin%(z 2 [L Y SR G\ TE)OE g\

xctg-%'— (z—¢)ctg -%— (t—a) d#]ﬂz

-~ () FO) &) ote 36— 47 (e

Note. In Theorem 10 the requirement n>>3 is taken just for simplicity and i9

not necessary.
The following ﬁ:xa.mpla is given for illustrated by taklng w(t) =1

Let 4,() =ﬂm%~ ni. From (3.10) and (4.5), we gel

j F ot 5 (t—a)dt=Qu(f, &) +Ru(f, 2),

| F(tetg L (t—a) +2motg L (w)f @), @ty k=0, 1, =, n—1,
QLS @) =d ™ =

gf(tx) ctg—g— (tu-—t.)+—f (1), w©=t, 0<s<n—1,

2m X
n
20
n
where t, = 2kx /n.

If f€ AP(B,),

R(f, 8) = — Gai) | 7)) (sin Fne)  otg 1 c—2)de.

The result is just the same as that obtained by Chawla, Ramakrishnan and
Toakimidis'®®, It should be noted that the first two authors obtained ithis
quadrature formula only for the case that n is even and Joakimidis did not give the
remainder.

§ 5. The Convergence of Quadrature Formulae

Theorem 11, If f € Ugs, then the quadrature formula (2.13) és convergent,
3.8., |

.. lim R, (f) =0.

More precisely, we have

| B, (f) | <24 (f: nil )J:“ w () dt,

where w(f, h) is the modulus of continuity of f.
Proof. Denote the best approximate irigonometrie polynomial of nrder not
greater than n—1 by 7',_;, then, from Jackson’s theoremM® it follows that
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max |f(¢) =T, 1(¢) \(12&}()‘, nil)'

Oxt<2x

From the irigonometric precision of the quadrature formula (2.13) and noting
that the coefficients are positive (gee Corollary B of Theorem 3), we get

Rn(f) =Rn(f _'Tn-i)
.=J:w w@) [fE) —T 1) ]dt— i Hyl f () —To1(2)]

<120 (7, ﬂll)[j w(t)dt+z:ﬂ,,]

=24 o (f, — : T )j w(t)dt.

Theorem 12. If fE€ Ci, then the quadrature formula (4.3) ds uniformly
convergent, ¢.6.,

li]Il.Rn(f, m)=0

n—on

48 und formly true for o€ [0, 2x). More precisely, we have

IR.(f, 2)]. =), wia,
where w(F, h) is the modulus of the function of two variables
Ft, 2) = [ (&) —f @) ]etg —(t—2), O<t, o<,

and | f|. denotes the Chebyshev norm of the function f:
[fllee= max |£(2) .

Proof. Writing the partial modulus of continuity of F (¢, o) for ¢ as
w(Fy h)= sup |F(t1, )—F(s a)],

‘hh—tal =R

from Theorem 11, (4.1) and (4.6), we have
1 2w 1 Sor
Bu(fr 0) [ <20 (Fo —1)| " (@) dt<24o (F, —23)[ " wiar,

Hence
1 2%
IR.(f, @) <2400 (B, —22)| " w(@as.
Note
lim o (7 1 )=0
70 ? ﬂn—l *
therefore,

l:?;"Rn(f? ﬂi) Hm=0

The application of the quadralure formulae established in this paper %o ithe

method of numerical solutions of singular infegral equatmns Wlth Hilbert kernel
will be given in another paper.
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