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Abstract

A numerical method for coarse grids is proposed for the numerical solution of the incompressible
Navier-Stokes equations. From singular perturbation considerations, we obtain partial differential
equations and boundary conditions for the outer solution and the boundary layer correction. The
former problem is solved with the finite difference method and the latter with the approzimate

method. Numerical experiments show that accarate outer flow and boundary flux result with little
computational effort.

§ 1. Introduction

It is well known that partial differential equations exhibit multiple scale
phenomena. To resolve all the different scales in numerical computation presenis
quite a challenge to the computational fluid dynamie community, see Chin,
Hodstrom, and Howes [8]. Even for the numerical solution of boundary layer
problems, affordable uniform grids are often foo coarse to resolve such layers.
Usually fine grids are used in the boundary layers for small scale effects represented

by large pradients in the solutions, while coarse grids are used in most of the region

for large seale phenomena desoribed by smooth solutions, see e.g. MacCormack and
Lomax [14]. Or, the viscous and inviscid equations can be coupled and solved
iteratively, see e.g. Van Dalsem and Steger [19]. Both approaches need great
computational effort. Often for practical purposes detailed resolution of the boundary
layers is not necessary; only the boundary fluxes (shearing stress, heat flux, etc.) in
terms of normal derivatives at the boundaries are needed. This will allow the use of
more efficient numerical schemes.

The present paper is concerned with the numerical solution of the
incompressihle Navier-Stokes equations in primitive vaxiables with large Reynolds
numbers. It presents a method with singunlar perturbation considerations; concepts
of outer solution, boundary layer correction, ete. are taken over, but not the solution
procedures which consists of finding the outer and inner solutions of various orders
sucocessively. Our method is, first of all, o decompose the solution into two parts, an
onter part which is smooth and a boundary layer correction part with large
gradients, coupled essentially through suitable boundary conditions a$ the fixed
boundary. Thus different methods can be applied to the two different problems,
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giving numerical solution 0 the complote Navier-Stokes equations if necessary.

In thig paper, for smooth flow in the main part of the computational domain, a
finite difference methods on a coarse grid is used for its nmumerical solution. At the
boundaries where the solution has large gradients, if the analytic behavior is known,
then efficient numerical schemes can be developed, as the exponential schemes for
two-point boundary value problems, see e.g. Doolan, Miller and Schilders [5]. For
two-dimensional scalar partial differentia) equations, the analytioc behavior of the
solution mear characterisiic boundaries hag been invegtigated by Eckhaus and
de Jager [7], Howes [11], etc. But for our nonlinear gystem of partial differential
equations, to the authors’ knowledge, no simple analytic function can eapiure the
essential behavior of the solution in the boundary layers. Hence approximate
methods are applied directly to a simplified system of equations for the boundary
layers. This system is to be formulated in terms of boundary layer correction, since
the authors find it mathematically more tractable than that of omter and inner
solutions with matoched asymptotic expansion. However, the class of approximate
methods for Prandtl’s boundary layer equations due to von Xarman and
Pohlhausen, see Schlichting [17, Chap. 10], can be adapted 1o the numerieal solution.
of the boundary layer correction equations. In this sense, our method is similar to
the coupled inviscid integral-boundary-layer algorithm quoted in [19]. Bui here the
complete outer solution can be obtained, nob just the first order ‘inviseid solution:
and then corrections are added at the boundaries, with no matching because of our
formulation. Numerical solution with boundary layer correction is also given in
Flaherty and O’Mallay [8] for one dimensjonal problems, but with semi-analytio
considerations and a different solution procedure,

In the following, Section 2 presents the basio idea of our method with a simple
linear soalar differential equation. Section 8 foouses on the inmcompressible Navier—
Stokes equations. The outer system of équations and ifs boundary conditions are
discussed, and the boundary layer correction equations and the ocorresponding
boundary conditions are derived. Then in Section 4 the method of solution is
presented, and finally in Section 5 tes$ resulis of onr method on incompressible flow
Past a semi-infinite plate are given. These preliminary numerical experiments
prove the feasibility of our present approach,

§ 2. The Basic Idea

We present the basio idea of our numerical method with a simple example from
O'Malley [15, Chap. 1] a linear soalar differential equation with constant

coeflicients
2 |
8 dw% : %+g=0 (2.1)
for 0<Ca<1, with boundary conditions
y(0) =0, (2.2)
y(1) =1, (2.8

Ifs exact solntion i -
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@) =T, mam—iEY Iz (2.4)
We suppress noigiion for dependence on s. For s =0.01, it is shown in Fig. 1. We
see that there is & boundary layer at =0 with thickness decreasing with the small
parameter ¢. Our interest will be centered in the case of small & and our goal ig to
obtain the numerical solution to this problem with the boundary flux, but without
resolving the entire boundary layer if possible. This will be done with ideas and
motivation (not solution procedurs) from singular perturbation problems. For
clarity, we review some of ifs terminology briefly. |
For 0<a<1, the “omter solution” is considered. It is defined by (2.1) and
(2.8). For, let the outer expansion

Y(@ "-’ﬁn(m) e swl(m) + 8%a4 (mj ol e

ﬂatisfy (2.1) and (2.8) agymptotically; substituting the expansion info them gnd
equating the coefficient of each s/ yield

dﬁo ! === et
Ts o= 0, @y (1) 1,

._dﬁj_ i a dﬂﬂﬂ (1) i 0 (2 '5)
de % da? ’ ;

llllllllllllllllllllllllllllllllllll

(2.5) is called the “reduced problem” and has solution

ay(x) =6'"° (2.6)
it is the first order outer solution. Similarly a;(2) (6=1, 2, +-+) can also be found,
thus the outer expansion is determined, see [15].

In the neighborhood of =0, the “inner solution” is considered. Let the inner
expansion

| Y (&) ~bo (&) + 8b1(&) + 834 (&) +++s
satisty (2.1) and (2.2) asymptotically; the “stretched variable” ¢ is defined as

£ = _‘E__ (2.7
We obtain as above
d2h db
df: : d; =0: bﬂ(ﬂ)=0:
d%,; . db
rdfﬂi l d§=_bm 61(0)=D:

L
llllllllllllllllllllllllllllllllllll

Working with jnst the first order solutions, for example, we find

. bo(£) =B{1—-67¢),
where constant 8 is determined by “matching”,

{Ezbn(f) ‘“ﬁu(o):

hence 8=0 and

Bo(£) = b, (-E-)=a fLwaTi, (2.8)
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See [15] for further digcussion. For e=0.01, (2.6) and (2.8) are shown in Fig. 2.
I+ is also possible to obtain a composite solution by adding a modifying term to
the combination of outer and inner solutions. However the authors find the
boundary layer correction formulation mathematically more tractable, and for our
example, it is as follows:
PFirst, extend the oufer solution to z=0. Let the asymptotic solution of our
problem be written as |

(@) =Y (z) +F (.‘-‘i) | (2.9)

8

where ¥ (£) is the “boundary layer correction (solution}”. Equation (2.1) being
linear, Y satisfies the same equation, but its boundary conditions are

Y (0)=—-Y(0) (2.10)
and by definition of boundary layer correction |
];im?(é‘}’-—-»(}. (2.11)

For all practical purposes, this will ensure that y satisfy boundary condition (2.3),
gince for 8 small, the houndary layer is thin. Let ¥” be expanded as

?(gj ~col&) +eey (&) F8%ca(§) + s

we have

dc dc ;

Lo+ 00 =0, 0o(0) = ~ao(0), Lim co(¢) =0,

ﬁg}_"(zﬂi_____ f0'=__ 0 lim =()

dg? £ d& Co ..ci‘\ ) a1{0), f_#c:l.(g) e
Then

~ € —=
o€ ) =0co -('E—)= — ao{0)e * (2.12)

and similarly ¢;(€) (=1, 2, --+) can be found. Hence the boundary layer correction
(solution) is defined by (2.1) for Y, (2.10), and {2.11). For £=0.01, the first
order asymptotio solution is shown in Fig. 2. For later use we note that also

lim 22 0. (2.18)

Now we discuss the numerical solution of (2.1), (2.2) and (2.3). We divide

1 |

& U0 2 T |

Fig. 1 Exzact solution y(a;) | | | Fig. 2 Asymptotic solutiona
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the interval [0, 1; into J equal parts, with dz=1/J. Since the outer solution is
smooth, i.e. no large gradienis for small s, the classic finite difference method
with a reasonable size 4r can be used for its numeriocal solntion. For simplicity, let

us consider the central difference scheme,

5 Zui"ii";**ff-i ' =i 1 y,m0 (2.14)

or

g

(1-%) s (2 da” ) Y, +(1+%)Y,+1=-0,
where R is the cell Roynolds number

R=_4:_. (2.15)
On the right from (2.8),
}r,}' o 1. . (2 . 16)
On the left we use, for example, parabolic extrapolation with
ay .
[ dx :|m=|ﬂ+_—':}'1II : (2 .17)
S0
Y(,:% Y;]_"‘% Yﬂ. (2'18)

Exirapolation can be considered as the extension of the outer solution to =0, or
(2.17) can be considered as an additional boundary condition for (2.1) with ¥.
That is, we solve in effect the following problem for an extended outer solution
&y’ . a¥* .
& ) i e +¥Ye=0

at =0, some boundary condition for exiension, as [ﬁs] n-O; atp=1, Y°(1)=1.

Let us still use the notation ¥ for such an extended outer solution.

We show that (2.14), (2.16) and (2.18) has a unique solution. For this
we show that the corresponding homogeneous problem has only the trivial solution,
at least for large R, which is of our interest. Substituting ¥,=2! into (2.14), we
gel

— 20+~ da®— 4+ R2 Vil
= 2+ R R 28 "
Now Y =~e¢ AL +c AL, where ¢, and c_ are determined by (2.18) and ¥,=0, the
homogeneous condition corresponding to (2.16). That is,

_4 1 .a (i 4 1 .4 »
( 3 I\.++§-l+)c+ +(1 'é'}‘*+§2‘“) C-_.--—O,

Aic,+Ale_=0, (2.19)
For R—oo, A,—>— da+ ~/ 14+ 42® ; in the case of small fixed dz, it is easy 1o see that

the determinant R '

=1

4

(1--‘%- xﬁ% ?«.3.) a.i—(l—-gz,_+%-ai) AL %0, (2.20)
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So for large B, c.=c_ =0 is8 the only solution.

We comment on the oseillation of the numerical solution often agsociated with
the centered difference scheme. For a=1, in
? the case of (2.1) without the ¥ term, A.—1,
then from the first eguation of (2.19) we
+ obtain ¢_=0, thus there will be no oscillation.
For the present problem, for large R, A,.=1,
»,(Ax=0.1) + there will be negligible oscillation. But for
il E (‘i :E* ;;J : moderate R, there can be noticible oseillation
' in the outer solution ¥; though slight
3} compared to that in the solution g, from
W x 4 central difference scheme applied to (2.1)
¥ with (2.2) and (2.8). See Fig. 8, note the
" n turn at the left boundary is due {0

i, F extrapolation with (2.17).

In general, to obtain the correct boundary
flux, we need to obfain the boundary layer
A — — correction (or its O(e™) approximation, some
positive m), exactly when possible, with finite

Fig. 8 Hinitaditteronce sointions. Y, y difference method when necessary, or by some
simple approximate method when allowable. We will consider the last methcd for
the present problem. First, from (2.1) for ¥, we have

L s7] [ 7] o] Fiemo

& e

i daz 0
for some X outside the boundary layer, and from (2.11) and (2.13), this becomes
dY | = X =
e & _+7 LG L i, (2.21)

Now for demonstrative purposes, we simply approximate ¥ by a linear funcilion

Y = (@) = A+ Bp, where
x

0
and 3 is the boundary layer thickness, such thai
..f (0) e Yﬂ:
f@)=0
which correspond to (2.10), and (2.11). So
: flg)=Yo(p—1). (2.22)
Substituting into (2.21), we get

and so

§=1—«/1-2¢ =s.
The approximation for Y is completely determined and in particular the boundary
layer correction flux (2.21)= —Y ¢3/22 —Yse/2, Finally, we have the boundary

flux '
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[s-—-—+Y] +[ aY +?] (—--;—s Yo (2.23)

Numerical results have been ﬂbtamed with the present method for s=0.01,
J =10, 20 and 40. The numerical value of the outer solution at the, midpoint of the
interval and the boundary flux are given in Table 1. We see that with 4z=0.05,
the order of accuracy of the centered difference scheme is of order 0.0025, and the
error at the midpoint of the interval is 0.0004, while the error of the exact solution
of the reduced equation (a,{0.5)=1.6487) is 0.008. We see then the reason for
solving the entire equation, i.e. retaining the g term, rather than just the reduced
equation. Also given in Table 1 are results from centered difference scheme applied
to (2.1) with (2.2) and (2.8), for J =100, 200 and 400. We see that the boundary
flux of the present method with 21 points in the whole interval is better than the
result for the usual finite difference method with 401 point, i.e. 18 points in the
boundary layer {we take its thickness to be 0.0465, for which ¢*-*=0.01). We point
out that approximation of the boundary layer ocorrection is usually problem
dependent, and for the present problem only its order is important, since the outer
golution can be found independently and, neglecting O(g}, the boundary flux is
simply Y.

Table 1 Solution at mid-point of interval and boundary fiux
(e=0.01, exact: y{0.5)=1.6573, et/ (0) =2.6907)

Present Method Central FDE (2.1)(2.2)(2.3)

J X, (1-¢6/2) X0 J Y74 s(dy1—ys) /34
341 g

10 1.6810 2.6039 100 1.6571 2.3977

20 J.6568 2.6762 200 1.6573 2.5853

40 1.6571 2.6024 400 1.6572 2.6578

We conclude from this simple example that the present method is very eflicient
and yield accurate numerical outer solution and approximate boundary flux, and
hence is worthwhile investigating for more complicated problems.

§ 3. Incompressible Navier-Stokes Equations

Now we consider our method for the incompressible Navier—Stokes equations

Ou | Oy _
R | ﬂ ou? oY Eﬁ 9 Fu ! O
= +__ay L e i 27 ) (3.1b)
oy, ouw , &' af v , &%
. o oo oy oy - (5 o) Ride)
where
1
| B”'ﬁ; ' (3.2)
Re the Reynolds number We state only the bottom boundary conditions
u(=, 0, t) =0, | - (8.3)

oz, 0, £) =0, (3.4)
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Let
u’(m: Yy, §) =U(z, y, t}—{—U(m, n, §),
v(z, y, 1) =V (2, y, t) +V (=, 3, 1), (3.5)
p(w, y, 1) =P, y, 6+ P(z, 1, 1),

where U, V, P constitute the outer solution and U, V¥, P the boundary layer
correction, and

?}=%. | (8.6)

For y >0, let the outer expansion be
Ulz, y, ) ~Us(w, gy, t) +8Us(z, y, £)+ -,
Ve, g, t)~Vilz, y, t) +eVala, gy, £+,
Pz, y, i)~Pi(a, y, t)+ePslx, y, £)+ -,

see van Dyke [20]. From the asymptotic point of view, U, V and P are determined
by the original parfial differential equations, i.e. (8.1) with U, ¥V, P, and the
boundary condition

V(z 0, t)=Vp(w, t), | (3.7)
where }'p is to be specified. For, substituting the outer expansion into (8.1) with U,
V, P, we obtain for first order solution the reduced equations

an X 3V1==0

dx Oy d
3U1 i an? | aU:LVi ! E:3-P1l. =)
ot  &x oy  Ox '
V., UV, Vi, 8Py _, -
ot ' 8x | oy Oy

also known ag the Euler equations, which takes the boundary condition
Vi(ﬂ.", 0_., t) == (],
We obtain for second order solution the egnations

Uy Vs
Oz T oy .
a.Ug 3Uﬂ 1 BUﬂ " 3Pﬂ _ 3U1 ' _ an g
ot ils dr FV 2 dy oz ox Us Dy Vs
oV 5 Y 5 Vs 0Py _ Vi ;7 V4
Y, "!"[;TI bz +V1 ay \ 3y Oz U’ 3?} V"'

The equations are linear and have the same characteristic, dw:dy:dt=U,:V;:1, as
the reduced equations, hence we assume the same type of boundary condition, i.e.
impose ¥ a(z, 0, ), see also [20]. It turns out that equations of all the following
orders are linear and have these characteristics, hence the outer solution is indeed
determined by (3.1} with U, V, P and (8.7).

Let us now extend U and P to y=0. Subtracting (8.1) with U, V, P from
(3.1) with u, v, p, we obtain the following boundary layer correction equations

aU , ov _
32} '_@y_ _O, (3.83)
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s

U , 3 (o s 2 _W_.m,_ 7y . 0P _ 2T 2T

2 o ") "_ay"‘(vlf"“ Akt b - sj(am.’ ’ _By")’ S50

v ., & S @ sar OP (T | T
+-§;W+_W+E-F)f—@-(2rf?+?')+—~ams’ 5 B+3y$r). (3.8¢)

ot

From fluid dynamics considerations, see Schlichting [17, Ohap. 7], v=0(s) in the
boundary layer, the boundary layer thickness d=0(s). At the boundary, V, being
0, V' =0(s), and it remains 8o in the boundary layer, hence ¥ =0(s). So we expand
as follows |

ﬁ(m, 7y t)“’ﬁi(mr 1, ) +Eﬁﬂ(m: 7 t)"'"'"r

Viw, n, ) ~eV(a, n, ) +6Wa(z, n, £) 4o,

Pz, n, ) ~Py(a, n, ) +ePyls, n, £) 4.

Substituting into (3.8) we get from (3.8c) gf: =(0(&?), then with O(s?) accuracy

o
an
for which we apply the boundary layer correction condition

lim P(w, 5, t) =0
1] -

and obtain

P=0. (3.9)
With this simplification, (8.8a) and (8.8b) become, also with O(e?) accuracy
| ou , av _
Y ] 6@/ —0, (3.1'03-)
_3ﬁ i 3 TT 2 7727 _3_ Y7 T ""'__ [ aﬁ -
ot QUT+T+ L (UP+TV +T7 - ¢ > )=0  (3.10b)

two equations for two unknowns U and 7. Hence the solution of the boundary layer
correction equations can be obtained more easily than with (3.8). A total of three
boundary conditions should be imposed on the top and the bottom boundaries.
Oonsidering (3.8) and (3.4), we impose

Uz, 0, ) = —U(=, 0, £), (3.11)
V(o 0,t)=—V (o, 0, t) | (3.12)

and the boundary layer correction condition for T |
- 1imT(s, =, ¥) =0. | (3.13)

From the disoussion of boundary layer problems for system of equations in
Abrahamson, Xeller and Kreiss [1], and also Li [12], we see that the boundary
condition for the outer solution indeed should not be ihe original one, i.e. ¥ (=, 0,
) =0. For, then the solution in the interior of the region would be influenced, and
I” would not vanish outside the boundary layer. From a suggestion by Li [12], we
specify Vp(o, £) in (8.7) such that the boundary layer correction condition does
hold, | |

mV (», n, ¢t)=0. (3.14)
b
So the outer solution U, ¥V, P with boundary condition (3.7) and the boundary
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layer correction U and ¥V, or its O(s*) approximation, with boundary condifions
(8.11)—(8.14) are coupled essentially by boundary conditions at y=0, since U
varies only slightly in the boundary layer. We insert here an additional condition
from fluid dynamic considerations, see [17, Ohap. 10],

lim 202 1 1) g, (3.15)
fena on

Before discussing the method of selution, we put the boundary layer correction
equations into integral form. For a fixed small s, let ¥ be sufliciently large, in
particular larger than the boundary layer thickness, outside of which U and V are
sufficiently small. Integrating (3.10) over m<a<z and 0<y<Y, see Fig. 4,
applying the divergence theorem, considering conditions (3 .11)—(8.15), and
noting

e Y '
o (1 (02, i) asa= [ [ 00 )

or Jo Ja g o Ja; ot

since the limits of integration are either fixed or such that U =0, we got

JT U (a:,, ﬁ, t) dy——J.:: U -%, t) dy—E: Vs, 0, t)do=0,

= (.
For all practical purposes, this is

-rr (U(‘“ror 1V (@, 0, t) —&* ['—_5378 ' t) ]u=n )dm

[[v.ay-["T. ay+ (" Vo dam0, (3.16a)

a (1) (ky &y m _._ ds e e
"é?j j U dxdy + L (2 U..U,-+U?-)dy—jo QUU,+U) dy

N 2 (20U & )
+L. (U a+e? ( o ). Jaz=o, (3.16b)
: . where subscripts I and r denote z=z, and
4=, Tespectively, and B denote the bottom
P= Y o] e o s e i e e e

boundary.

y=3§x) We remark here that the boundary
| conditions for (3.1) satisfy
y=0

% - 3 jﬁm - (3.17)

Fig.4 Bottom boundsxy where 802 is the boundary of 2 our region of

- golution, s is the arc length, and n the unid normal vector. This is obvious from
(3.1a). The boundary conditions of the outer solution also satisfy such a condition -
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in Vi, (3.18)

This is ensnred through (8.17) and (3.16a) which determines ¥ for the outer
solution. We note also that projection of a vector ¥ onto a space with zero
divergenoce in £ and zero normal component on 92, as discussed in Chorin and
Marsden [14], can be easily extended to projeotion onto a space with zero
divergence and condition (3.18).

§ 4. Method of Solution

For the outer solution, we again can use finite difference methods on relatively
coarse grids, assnming the solution to have no large gradients for large Re (small g).
We write the finite difference equations for (3.1) with U, ¥V, P in the following

form

3L | &V _n_
A |. Ay .D 0 (4.13)
4l  AF, , 4,F, BP
At ds Ay dm 5 (4.1b)
AV | 4G, | 46, | 8P _
pr ! Ar ! Y 7 0, (4-10)
where
F.=U2—q tizf’ Fy=UV —a? AAyU’
4.V APE: i
G, =UV —-o® ;m ,G,,=Vﬂ—-a5—-j;—'—.

In the above, a®=2g2, 5.(8,) denotes first order centered difference in a{y), 4, (4,)
denotesy any first order difference in the 2(y}, and 4 denote any first order difference
in ¢. We use the staggered mesh as shown in Fig. . As all the projection or MAQ
methods, see Peyret and Taylor [16, Ohap. 6] and Harlow and Welch [9], we obtain
the finite difference equation for pressure by combining (4.1b) for s and I and

(4.10) for g and b,
E];[(%f r dx )i ]+-£-E[(S£§ )u (a’;’ )b]=_RHS-’ (4'3)

where |
RES-Z+ (), (G5 Am[( S v
+o (), ~ () ‘135")“ ¥
=47 & (Ra)e— Rt (By)a— (B)s (4.4)
On the bottom boundary, as Easton [6], we simply drﬂp all the torms on B, 80 in
(4.3), we set.
335 _):o ' (4.5)

and
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AD | 4V | .
RHS Z]t s ;:Itd-y | (—R;:)r (-Rm)1+(Ru)a (4'6)

in which ¥V 5 is delermined with the boundary layer correction solution.

As before, we can extend U by extrapola-
V L) L

olf
U | P v, | [“é_y_]y:{]:{'l Skt
" This can also be considered as an additional
W ST . SR boundary condition to (3.7) for (3.1) with U,
V, P; that is, again we really deal with a
extended outer solufion. Also the resulting
extrapolation formula can he considered as an
=0 ) Ve - Us additional numerical boundary condition to
Sé (8.7) for (4.1), (4.2).
Fig. 5 The staggered mesh Suppose the accuracy of the difference

scheme is O(4da™) (dy=gdw, g a constant), and Az is chosen to atiain the desired
acouracy. Now, for high Re flow the exact viscosity outside the boundary layer is
often not important. So if 2« O(da™), then the &? term can not be resolved; one
might as well take o to be O(d2™) and regard the second order partial derivative
terms as artificial viscosity frequently used for improving stability, linear or
nonlinear.

We remark that the solution P of (4.3), (4.4) with the ocorresponding
boundary treatment (4.5), (4.6), exists and has one degree of freedom since the
sum of RHY over the computations]l region is zero. Indeed, RHS is of discrete

divergence form, and all the boundary terms are dropped. However, in practice
(4.6) is, say,

=Dn+1_1)n ; VEH-VE ’ B
RHS _-df» g o /_13,' I (Rm)r (R:)I (Rﬂ)m

where D"*! is set to zero o ensure (4.1a), and D" is refained to keep the iteration
error of P from accumulating, see [9]. In the sum of RHS, there remain the Vg
terms and those on other boundaries, which all add up o zero within discretization
error, due to (3.18).

" Now we come to the numerical solution of the boundary layer correction
equations, Leb

v
' : (4.8)
B —L (UT +T2) dy,

and

)

which represent the shearing stress since &?(Qu/dy)z=2e2(8U/0y)s due to (4.7).
Then on our mesh, (3.16) yields difference equations of form

A8
Az

-*Vﬂ-—'-D, (4.9&)
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dg UBS Eaz‘S
L+ L LB ULV Fy=ca® 22 (4. 20)

Artificial viscosity has been added on the right hand side of (4.9b) for stability,
with coefficient ca? within error tolerance. We have assumed only for convenience
that the boundary layer is thin so that U is approximated by Up. We can adapt the
approximate methods for the classic boundary layer equatlions, see Schlichting [17,
Ohap. 10], to the boundary layer correction equations. For example, let U be

approximated by a third degree polynomial

U=f(p) = A+ Bp+Cp?+ Dg?, (4.10)
where
o1,
the coefficients 4, B, ', and D are determined by the conditions
f(ﬂ) = —{,, (4.11a)
f1  _ U .y AU g
[d@}ﬂ ]P=U EE ( irs U Az )B 0 E(Uﬂ)! (4.111))
(1) =0, | (4.11¢)
[ﬂ-] =0. (4.11d)
dp ‘p=1

Here the second condition is obfained from (8.10b), (4.11a) and (4.7). Substitufing
(4.10" into (4.8) and assuming Up and § 10 be known, results one equaiion in one

unknown 8, which we write as
a(Up)d%+c(Up)d+d-8=0, | (4.12)

Once § is found, U is determined. |
Thus for each nnknown depicted in Fig. b, we have a corresponding equation:

(4.1b) and (4.10) for U and V', (4.8) for P, extrapolation formula for Up, (4.9b)
for 8, and (4.12) for §, and (4.9a) for V.

We now state the computational steps for explicit schemes. Suppose that up to
U, ¥*, U%, ¥4 and 8" (hence 8" S* and F%) are known, then:

(1) Compute S§*** with (4.9b), -

(2) Compute Vit with (4.9a),

(8) Calculate F,, F,, G, @, with (4.2) and RHS with (4.4) or (4.6),

(4) Iterate for P with (4.8) and (4.5),

(6) Compute U"** and V**! with (4.1b) and (4.1c),

(6) Extrapolate for Ug*' with (4.7),

(7) Determine 5"+ with (4. 12), .
which completes one time cyole. Note (4U/4t)p in (4,.11b) is obta.med lagging one

time cycle.

§ 5. Numerical Example

_ Now we test our method on the classic problem of steady-state incompressible
flow past a semi-infinite flat plate, see Fig. 6. The length of the plate for which we
seek the solution and the free siream velocity are chosen as references. We have the
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Fig. 6 Coarse mesh for flow past a semi-infinite plite
O(&*) approximaition of the outer solution in non—dimensional form

B r—a
r z

Vi(m.r ?/)”BE'J ?‘;—ﬂt‘n s Cﬁl)

r
_ .é‘/fr—
Pd(m! y)—e'.'f' b 2

where r=~/22+¢® and 8=0.860, see Schlichting [17, Chap. 7]. We also know the
Blasiug solution to the classiec Prandil’s boundary layer equations, which are the
first order equations for inner asymptotic expansion. The solution to the second
order equations happen to be zero, so the Blasius solution is also the O{s?)
approximation of the inner solution, again see (17, Chap. 7]. From it we have the
non-dimensional shearing stress %, displacement thickness &§;, and momentum

thickness Jg,
£l
To (@) =2 z ?

51(513) = Eﬁi '\/I, (5'2)
" aﬂ (H.?-) & 848! '\/E:
where 8,=0.382, 8,=1.721 and 8,=0.664.

We seek numerical solution on the non-dimensional rectangle: w;,=0.2<o<1,
O<<y<y.=1, with staggered mesh shown in Fig. 6. To test the basic feasibility of
our method, we use the FTCS (forward time centered space) differences in (4.1)
for the outer solution because of its simplicity. We also use FT'CS in (4.9b) and the
third degree polynomial (4.10) for the boundary layer correction solution. Since
our method is for coarse grids, ‘the regirietion on time steps should not be too severs.

The bottom boundary condition has been discussed in the last section. The lefi
and the top boundary wvalues of U and ¥V are given as those of the asymptotic

Uz, ) =1—¢
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solution (5.1). The right boundary is left open i.e., we impose numerical boundary
conditions compaitible with the oncoming flow. We could use, for example, the non-
reflecting boundary conditions as Hedsirom and Osterheld [10], but from the
authors’ numerical experiments on finite difference schemes and boundary
treatment for the ineompressible Navier—Stokes equations [18], we found the follo-
wing to be the best from the practical peint of view: Ug from D=0, and Vz from
upwind difference scheme of the steady-state, non—viseous version of (3.1le) with
U, Vv, P.BSo

dm
UR"=UJ—-§1= Ay T+l VL’: 1) _
Ao [V 1 (6.3)
2

The initial values U® and }° are obtained from (8.1) by adding suitable ferms

U(w, y) =U*(=, y)+r{ac—ap)*(y—ya),
Vo(z, ) =V4(z, y) —r(z—a) (¥ —ya)?,

which satiefy the zero divergence condition and hence ensure (8.18) in the initial
state. Noile these satisfy the left and top boundary conditions. |

The boundary and initial eonditions for the boundary layer correotion equations
are as follows: On the left, S and § are obtained from the Blagius solution as 3; and
54 Tespectively. The initial values of 8 are obtained from Vp with (4.9a). Equation
(4.12) is then solved for 3, with simplifying assumptions which yield likely initial
values of § and Fs. On the right, we simply use upwind dlﬁ'erenm in (4.9b),
dropping the artificial viscosity.

Now, for Re=10* the boundary layer variables §, S and Fyp are of order
e=0.01, We use dr=4Ay=0.05 and o®=42*=0.0025, so thait the error of finite
difference approximation may be within tolerance. We use 4t=0.000 10 ensure
stability for (4.1), (4.2), the sirictest condition being ri<2s,, see [18], i.e.

(5.4)

3
U L5 <2025 (5.5)
Putting (4.9b) into a difference equation for 8 and dropping the lower order terms,
we find (5.5) to be a sufficient condition for its stability also. In initial condition
(6.4), we take +=0.01.

In onr numerical experiments, we found the processes (4.9a) for Vjp and
(4.11b) for coefficient a(Uz) 10 be destabilizing, since they are of numerical
differentiation. Whereas we found the processes for the boundary layer correction
variables § and § to be quite st&bﬂmmg, since they are of integration; results of g
determined in the same prucess ig also very smooth. For the above mesh, ¢ in
(4.9h) was taken to be 4 and a strong filter was used for a(Up):

~ 1
a; = z"(ﬂfu"‘?ﬁf +ay_1).

For a coaser mesh with Ax=Ay=0.1, as shown in Fig. 6, 4£=0.02, 0 was taken %0
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be 1 and no filter was needed.

The numerical results U, V' of the outer solution are presented with the
asympiotic solution U4, V4 of (5.1) in Fig. 7; and numerical results of the
shearing stress Fj, are presented with the Blasius 7, of (.2) in Fig. 8.~ Noting the
scale, we conclude that the results are quite good, especially the shearing stress——
even with the coaser grid. Now with extrapolation with (4.7), U ig also close o 1,
80 we expect the boundary layer quantities § and § t0 be respectively close to 8,
and d; of (5.2). From Fig. 9, we see that they are indeed s0. Also we expect Vz to
be close to V“(x, 0) of (5.1), but now on a finite grid V3 no longer has olear
physical meaning; Fig. 10 shows that the results are still quite acceptable.

The steady-state results for dz=Ay=0.06 were obtained with 1000 time steps.
| U —U*| gex and [P*+2— V| max are of order 1078 and | D | max i8 of order 10™8 which
wes initially of 107¢. For graphioc purposes, results with 600 time steps would have
sufficed.

§ 6. Concluding Remarks

The numerical results of the previous section indicate that our method is very
promising. It can predict acourately the large scale phenomena ouiside the boundary
layer and the boundary flux within the boundary layer with Iittle compuntational
effort. Hence it can be extended t0 computation of real problems, such as natural
convection in enclosures with thermal boundary layers. The finite difference scheme
for the outer solution and the approximate method for the boundary layer
correction have much room for improvement, and will be one aspect of our future
work. For the latter, the recent zonal methods in compressible transonic flow
calculations for aircrafi, reviewed by Loock and Firmin [13] for example, will be
carefully gtudied.

There remain open questions in the mathematical formulations as well as the
numerical methods concerned. The present work is a sfep in the direction of
decomposing the computational domain into two parts: one where convection is
dominant and one where Viscosity is prominant, coupled essentially only at the
boundary, so that the stage be set for incorporating different simplifications and
using different numerical methods for different types of flow.

We note that viscosity has not been accounted for in the O(s?) approximation
of the asympiotio selution (5.1); it ig not important in our simple example. But it
does play essential roles in other problems and hence it should be kept in the finite
difference equations as (4.1), (4.2), in which « can be taken as 2 if needed and if
computation done with suitable mesh, Viscosity must be considered for internal
layers, computation of these layers will be another topic of our future research.

T'o resolve more complicated phenomens, the numerical solution of the complete
incompressible Navier-Stokes equation on local fine grids will be necessary. Hence
adaptive mesh, as Berger and Oliger [2] for hyperbolic problems, must also be
investigated and adapted to the present problem. It is the authors’ belief that on] y
with a combination of these techniques, can efficient algorithms be developed for

the computation of viscous flow fields.
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