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Abatract

This paper presents some results on finite dimensional approximation of branches
of solutions of nonlinear problems near a cusp point. These results can be applied to
numerical methods of solving nonlinear differential equations.

1. Introduction

Consider nonlinear problems of the form
F(A\u)=0

where F' is a sufficiently smooth function from R x V into V for some Banach space V. In
[1)-{3], finite dimensional approximation of branches of solutions near a simple limit point
and a simple bifurcation point were studied respectively. We will consider here the finite

dimensional approximation of branches of solutions of problem (1.1) near a cusp point and

obtain results similar to that of [3|.
Section 2 is devoted to general analysis of the cusp point of branches of solutions of

nonlinear problems. In Section 3 we discuss the finite dimensional approximation of branches
of solutions near a cusp point of problem (1.1). In Section 4 we apply our results to the

Galerkin approximations of nonlinear problems.

2. Local Analysis of the Continuous Problem Near a Cusp Point

Let V,W be real Banach spaces with the norm || - [lv and | - ||lw respectively and G
be a C? mapping from R x V into W(p > 4) and T be a linear compact operator from W

mto V. We set
F(A,u)=u+ TG’(A,u]. (2.1]

* Received December 25, 1986.
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We assume that (Ao, us) e R x V s a simple critical point of F in the sense that
(i) F?= ()Xo, uo) = O;
(i) DyF° = D F(Ag,up) = I+ TD,G(Ao,u5) € L(V;V) is singular and —1 is an

eigenvalue of the compact operator 7’D, G()¢, tg) with the algebraic multiplicity 1;
(iii) Dy F° = Dy F(Xo,up) € Range (D, FO).
We want to solve the equation

F{A,u) =0 | (2.3)

in a neighborhood of the simple critical point (Ao, uo).
As a consequence of (2.2) (ii) and the theory of linear operators; there exists o € V

such that
DyF? -0 =0, |wolv =1,
(2.4)

Vi = Ker(D,F% = R . ;.
We denote by V' the dual space of V and by < -, > the duality p'a.iring between the spaces
V and V’. Then there exists 3 € V' such that

(DHFO)* w0 =0, <po,pp>=1,
(2.5)
Va = Range (D, F°)={veV;<v,ps >=0}.

Finally, we have
' V=Vea& Va

and D, F° is an isomorphism of V;. We denote by L = [J.'J,,,J"""’I,‘,,.m)‘1 € L(Vz;V2) the inverse
isomorphism of .l.'},mli'“:",‘,=r ; |
Let us define the projection operator Q: V — V; by

Qv = v — {v, v5) o, VeeV. (2.6)
Then Eq. (2.3) is equivalent to the system

QF(A u) =0,
- (2.7)

(I - Q)F(X, u)=0.

By the implicit function theorem, there exist two positive constants £3, ap and a
unique CP mapping V : [—£p, &] X [~ao, ao] — V3 such that

QF (Ao + &, up + agpg +'v(E, a)) =0,
(2.8)

v(0,0) = 0.
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Hence, solving Eq. (2.3) in a neighborhood of the critical point (Ag, 4} is equivalent to

solving the bifurcation equation

f(€, ﬂf]_ =< F(Ao + & uo + apo + v(€,a)), 5 >=0 (2.9)

in neighborhood of the origin in RZ.
By calculations, we obtain

— %00 =2200-=
k £(0,0) = 5£(0,0) = 52(0,0) =0 (2.10)
so that the origin is a critical point of the function f. We set
a8 f a2 f 3*f
5¢2 (0,0) = C%, 3¢9a (0,0) .Bﬂ, 303 (0, 0) 0 (2.11)
where
Ao =< D, F° - (po)?, &5 >,
By =< DEuFuioﬂ + DE“FO - (o, '"'LDJLFO): ©o > (2.12)

Co =< D3, F° +2D2 F° . (—LD\F°) + D2, F? .- (—LDyF°)?, 5 > .

In [3], the author discussed the case where {)\g, ug) is a simple bifurcation point of F,
i.e. (Ag,uo) is a simple critical point of F satisfying

A= B2~ ACy > 0. | (2.13)

For the case A < 0, the author also have given some remarks.
Let us ¢onsider the case that (Mg, ) is a simple critical point satisfying

A = 0.  (2.14)

Now the origin is a degenerate critical point of f (see [4])-|6]).
By calculations, we have |

Dﬂjﬂz ( Co By

, A = det D? 9. 2.15
- Aﬂ) et D?f° (2.15)

From now on, we shall assume that
rankD? f° = 1. (2.186)

Then, from the matrix theory, there exist real eigenvalues Ay = 0, Az # 0 and nor-
malized orthogonal eigenvectors hy, hs of D?f? corresponding to A\; and Ay respectively.
Therefore, H = (h; hz) is an orthogonal matrix such that

HTD?f°H = ( iy ) {2.17)
0 Az |
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Lemma 1. Assume that (2.16) and (2.17) hold. In addition, we assume that

- b A
da®

331-0 3 3afu aﬂfﬂ
asa h11+33£23 h 1h12+3afa 2

where hy = (h11 h1z). Then, the set S of solutions of the bifurcation equation {£2.9) in a
neighborhood of the origin 13 diffeomorphic to a part of a sems-cubscal parabola

§ = huhis + 5 hiz #0 (2.18)

y' =2

Proof. It is easy to see that the set S of solutions of bifurcation equation (2.9) is
diffeomorphic to the set of solutions of the equation

Q(II,IQ) s f(‘fl El] = 0, (2.19)

(:;) = HT (i) . (2.20)

It follows from Dg°® = HT Df% = 0 that

D2g0=HTD2fOH= ( z 0 )

where .

Az
32 90
and —ng = 0. Therefore, by the implicit function theorem, there exists a CP~' function
Tq = fp[zl) near the origin such that
39
(Illptxl)) o

and
‘F’(D] = 0, ‘P'(B) =

Introducing diffeomorphic transformation of the coordinates
(21, 23) = (31,22 — (21))s

we have
2

g(:l, Ig] = 9(11, ?5'(31)] + ﬁg'/; (1 = 3)5'1-—%9(!1, P(’l) + !Ig)ds.

By direct calculations we obtain

9(31: Eg] = z?'ﬁltil) 5 & xa%(zll 12)
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and .
o 18%0 B
'ﬁl(ol E az::_:, "Eiéur
¥2{0,0) = %f\z # 0.
Let |
s 1/3 B g o 3290 1/3
2= 2(B:(@2))°, yv=—(sam SE)m(lbalz:, 2a))) 2.
| 2
Then

g(z1,23) = £ =g,

It is easy to check that the transformation (z,,z2) — (z,y) is a difeomorphism. The proof

is completed.
For convenience, we parametrize the branches of solutions of F.

We introduce parameter ¢t € R and let
A= Ao+ £(t), u=up+ a(t)we + v(&(t),alt)). (2.21)

Then, it follows from (2.19) and (2.20) that
21(t) \ _ or [ €0
( 23(8) ) “ ( a) ) ‘

z1(t) = t2a(t), z2(t) = t3a(t). (2.22)

Let

Introducing a CP~3 function 7 : (t,0,a) € [-1, 1} X [—&0, &0} X [0, 20] — F(t,0,a) € R3,

5(6,0,0) = ( t—%g(t%0,t%a) ) 40,

ﬂ'ﬂ + ﬂz -1 (2.23]
¥(0,0,a) = Em%' 7(t,0,a),
we consider equation |
¥(t,o,a) =0. (2.24)

Lemma 2. There ezist to > 0 and two pasrs of CP~2 functions [—tp, to] — (0:(2),as(t)) €
R2 3 =1,2, such that
F(t, 0:(t),a:(t)) = 0.

Proof. We consider directly function g introduced by (2.19) and {2.20). It is easy to
check that -
g(t?c,t%a) = tﬁ[%wa + E)Agun) + O(t%), t — 0,
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3sgu aﬂgu
where y = 3 # 0, A2 = —= # 0. Therefore, the function ¥ is CP73. Let
dz3 dz3
1 3.1, 2
7(0,0,0)= | 8 T37% | =o. (2.25)
o +a’ -1

It is easy to see that the solution of the first equation of (2.25) is a semi-cubical parabola and
the solution of the second equation of (2.25) is a unit circle. Thus, (2.25) has two sclutions
0

(0?,4?),% = 1,2. Moreover,

1

o
D(0.0)7(0,0,0) = ( ghe  dad ) .

20 2a

§(o,a) = det(D(,,q) 7(0,0,8)) = pola — 2Ag00.

We see that solutions of §(c,a) = 0 consist of

three lines

‘ 2
o=0, a=0, o= A2

g
It follows from o = — (3—:‘3—) ' (u?]} that the sign

of 0¥ is contrary to the sign of = (see Figure 1).
Hence, .
§(a?,ai) # 0.
By the implicit function theorem, there exist I
to > 0 and a unique CP~° function t € [—to, to] —
(0:(t), ai(t)) € R? such that |

Fig.l. Agup < 0.
F(t, o:(t),a:i{t)) =0,

:(0) = 0%, a;(0) = af.

The proof is completed.
Note that |
7(—t,0,—a) = 7(t,0,a)

and

o_ .0 .0__.0
0, =09, a; = —&3.

Therefore, by the uniqueness of the implicit function, we know that two branhes of solutions
of equation (2.24) generate ihe same branch of solutions of equation (2.19). Let us denote
this branch by

z1 (¢} = t2e{t), z2(t) = t2a(t).
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We call (g, uo) the cusp point of F if (Mg, uo) satisfies conditions (2.2), (2.16) and

(2.18).
Remark 1. By direct calculations, we have
a° f° a o a v’ 3 3, 3 v’
363 (‘D}.AAF + 3DAluFO ' E + 3‘Dluu‘Fo ) ('é—é-) i o DuuuFO ) (Ff_)
dv® 83° 84¢yY
2 . 2 : e
a>re 3 - v’ o %" 5 v’ .,
9§20a <D“‘“F0 o+ 2D3uu £ (o, -55_) * ZDhuFO * d0a * Dunuﬁo ' ((—5—{;‘_) , Po}
au® 8%° 9% y°
2 pO. 2 G .
+2DH-H-F [ aE ] afaa) + Duufﬂ (pﬂl 362 )l pﬂ)r
L v’ %" 32u° 8¢
afaai e (‘Diuan ' (@0)2 g Dﬁuan ' (‘Pgr F{) + Diu * sz_z" + than | ( 2 Y )
L
-1_-2115“1"'0 | (‘Pn, m):‘ﬂu}.
33f0 32uﬂ
75 = (DuuaF? - (o)’ + 3D F° - (os 5—37), #0);
where
v’
36"' - —-LQD,\FO,
2,0 -
Zg; — LQ[D3 F° - LQDyF° — D3, F° - (LQD,F°)* — D}, F° + D}, F° - LQD,; FO),
5740 ' | '
dfdox = LQDEan '(’PﬂiLQ‘DlFu] - LQ.DE“FD * €0,
84"
da2 = "“LQ-DEu‘FO < (‘pﬁ)g-

3. Finite Dimensional Approximation

In this section, we discuss the finite dimensional approximation of the problem (2.3).
Let {Vi}n>o be a family of finite dimensional subspaces of V', and T) be an approximate
operator of operator T, Th € L(W :V),). Set

Fu(u)=u+ThG(Au), AER, ueV. (3.1)

Then, we consider the approximate problem:
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Find (A, us) € R x Vj, such that
Fh()«',u;,,) = 0. (3.2)

If (A, u) € R x V satisfies Fj,(A,u) =0, it follows from u = —TRG(A, u) € V), that we
can equivalently find the solution of equation (3.2) in R x V.,
Just as in the above section, (3.2} is equivalent to the system

| QF.(}, u) =0,

{I — Q)Fh(liul =-0'

We assume that DPG is bounded in all bounded subsets of R X V,p> 4 (3.4) and

(3.3)

lim |7 Talleowiv) =©. (3.5)
Let
A= Ao+ £ up=u+ apotvn (3.6)

Then we have
Lemma 3. Assume that (2.2) (i), (ii) and (3.4), (3.5) hold. Then there ezist three
posstive constants §p, o, 6 and , for 0 < h < hg small enough, a unigue CP mepping

vy : (€, @) € R(&o, o) — vn{é,a) € V2 such that
QFh(Aﬂ + €,up + apo + ”h(€: ﬂ)] =0,

len(€, @) — v(§, a)llv < a
where R[&,,aq) = [—&o, £0] X [—@o0, @0]. Moreover, we estimates
(i) |D™vn(£,a*) — D™v(§,a)lle,mrv)
<K {lf" — &+ |a* — a| + ZiZo HT - Tu) DI (4, ﬂ)llc.(m;w}. (3.8)
(i) fDPun(€*,a)lle,(mov) S K

where (£*,a°), (£, @) € R(€0,00),0 < m S p—1, Li(R3;V) is the space of all continuous
I.linear mappings from R? into V and J(¢, o) = GlAro + §,u0 + apo + v(&, a)), v(§,a) 18
definded by (£.8) and K 1s a constant independent of h.

Proof. See Theorem 2 in [2]. |

By Lemma 3, we can say that solving (3.2) in some neighborhood of (Ao, uo) 18
equivalent to solving an approximate bifurcation equation

(3.7)

fh(f: a) === (Fh(Aﬂ + 5: Uo + apo + ”h(E: ﬂ:)), @E) =0 (3‘9]

in some neighborhood of the origin in R
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Introducing transformation (2.20) and setting

an(z1, z3} = fu(§, o),

we have
Lemma 4. Assume the hypotheses of Lemma 3. Then, we have

(i) "D"‘gh{zL z3) — D™ g(z, Iﬂ]”,ﬂ,,.{ﬂi’;ﬂ]

< K{|ﬂ"$1|+|55*$2|+z"(T"“Thlpu(frﬂ)”m(lﬂ’:l’}}s (3.10)
=0
(ii) || PPgn(z1, 22, (m2 Ry S K

where (z%,23), (21,22) € R(2%,23),0 < m < p—1 and K, 22,20 are positive constants

independent of h.

Proof. Smce

g(z1, x2) = f o ¥(z1,%2),
gh(zllzﬂ) = fh(f:ﬂ) oo .fh- < ¢(zllx2)l

where ¢(z1, 22) : B2 — R?,

¥(z1,%2) = H(:;).

by the chain rule and the product formula {see 7]}, we have
"Dmgh(‘f;l I‘;) i Dmg(mll mﬂ)llﬁm{ﬂ?’:ﬂ} < C"Dmfh(f*:ﬂ') = Dmf(f. a]"ﬂm(ﬂ’:ﬂ}i
i DPgn(z1, 22) 2, (m:m) < CYDP ful(€s a)le,(m2m)-

The proof is completed by Lemma 4 of [2] and (2.20).
Let t — (z1(t), za(t)) and ¢t — (x3,(t), z2n(2)) defined for |t] < to be a pair of C*
functions, 0 < r < p, which satisfy, for 0 < h < hg,

sup |z1(t)] < 27, sup |z3,(t)| < =1,
|t]<¢o It <to
qup |ma() <23 sup Ja3a(8)] < 25
|tj£to 8] <to

Then, we have
Lemma 5. Assume the hypotheses of Lemma 3. Assume sn addstion that
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9 Jim, eup {1 g (=in(0) — =1 (D14 2 (i) — (NI} =0

= d . d . "
(i) ‘:lg{1-Jt-;z1htt1|+|3;m(t)|}<_:o- - )

Then, we have

|27 (an (X3 (0), 33 (8)) — 92 (8), 226D

< k3 {| S atnl) - |+ |7 (z3a(6) — za(0)] + (T - 7o) S (e (e

I=0

(3.12)
where 0 < m < .r—1,|t|] £ to,K 15 a consiant independent of h and (§(t),al(t)) =
(z1(t), z2(t)) HT .

Proof. It is similar to the proof of Lemma 4.
Lemma 8. Assume the hypetheses of all above lemmas. Then, there ezsst a constant

8o > 0 and, for 0 < h < hg small enough, o unique point (23, 23) € R(Bo, Po) such that

soelh) o, 2ol 4 -
rank D?gn (21p, 72) = 1 (3.14)
and :
291 + laBl < KT - Ty) D' J(0,0) cy(m2:v) (3.15)
where K is a constant independent of h.
Proof. Let
95(1'1;52) = ::2(11,52], ¢h($1:$2) = gi: [51-_-22)-

By Lemma 4, we have
%
D™¢n(z1,22) — D™ é(21,22), h—0, O <m<p-—2

uniformly in some neighborhood of the origin of R2. Since

320

G

b Pl )
¢(UIO] =0, - E“I_g(ut O]

by the implicit function theorem and Th.1 of [2], there exist a constant Bo > 0 and, for
0 < h < hg small enough, a unique CP-1 function £, — za2(Z1), (21, za(x1)) € R(Bo,Po) a
unique C?~! function z, — zon(21), (21, zan(21)) € R(Bo; o) such that

#{(z1, z3(21)) = 0,22(0) =0, ;:;(51; z2(z1)) # 0,



No. 3 Finite Dimensional Approximarion of Branches of... 289

and
9 3¢h

én(z1,z2n(z1)) = 0, (=r-1, zan(z1)) # O

for |z1| < Bo. Furthermore, we have

m-=+1

(x:(zl)-m(zl)ﬂ{K{|x1~—x1|+z"(r TP (6 a)lcurrvy ) (3:16)

dx
i {=0

wl re 0 < m ﬂ p—2, and (6, a)¥ = H(zl,mg(zl])r.

Let '
- 3,

$(z1) = 971 g(x1, 22(z1))
-~ and -_ 3 .
¢h(51) = a—z“;gh(IIrIZh(zl)]*

By direct calculations, we have

#(ar) = [Zgotonmata))] Al zate)

‘bh[zl) = :22 gh(zlsmﬂh[:‘ln] ‘ﬁh[:‘lrzﬂh(zl))l

where '
Az, z3) = det{D?g{z,,z2)}, An(z1,23) = Idgl:{D"gh(zl, z2}}-

Hence, we have

3
$(0) =0, $"(0)=— 53900 0) = 6 #0.

It follows from Lemma 4 and (3.16) that, for some 8o > 0, we have
»™(zy) — ,p( z1), 0<m<p-2, for|m|< fo uniformly.

By Th.1 ﬁf [2], there exist ho > 0 and, for 0 < h < hg, a unique point z3y, such that

RACAET AP )
and
20,1 < KI¥h(0)] < KID*an (0,017 < K{ 3" (T ~ T D@03, mov |- (3.18)
1=0 ;

Let zg,; = zg,(2%, ); then, by (3.16), (3.17) and (3.18), we can choose ho small enough such
that, for 0 < h < hy, '

'ﬁ ah('-"lhr 2!;) s ﬂ a.nd a 39’!(:‘1!”’:2&) # 0.
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Finally, we obtain (3.15). The proof is completed.
Let D™gp = D™ gn(29), 234)sm =0,1,2, -, and

5 |
Kao(h) = gh Kl(h)='3—=';gg. . (8.19)

In general, we have

KOU‘] 7& D: Kl (h] 7& 01

that is, the point (:ﬁ“lh, 29, ) is not a critical point of gn.
Let us consider equation -
Gn (21, 22) = gn(z1,53) — Ko(h) — Ki(h)(=1 - zon) = 0. (3.20)
Then, it is easy to check that |
 #=0, D=0 and D™ = D™gp, m22.

Using Lemma 6, we know

o

for some orthogonal matrix @ € L
that (see [8])

R?; R?). By Lemmas 4 and 6, we can choose Q;, such

AR =2, 1Qn = Tlg(r2imey) — 0, 88 h—0

and

A — Az + IQn — Tl e(ra:rn) < Kl D?gh = DM emo:rry (3.21)

El(t:ﬂl ﬂ) - tgﬂ. . .
( iz(tl % n) ) = Qh ( 3a ) ’ : (3-22)
t-95, (22, + Z1(t, 7, 0), T + Z2(t, 0, 9)) ) , t#0, .

fh(t‘,d,ﬂ)= ( ‘ 0’2-_1'&2—1
#1(0,0,0) = lim In(t, o, a).

Let

(3.23)

all above lemmas. Then, there ezist a pos-

Lemma 7. Assume the hypotheses of
C?~2 functions

itive constant to and, for 0 < h < ho small enovugh, & unsgque pasr of
t € [—to, t0) — (on(t), anlt)) € R3, such that *

7ult,on (), an(8)) =0, forlt| < to



No. 3 Finite Dimensional Approximarion of Branches of... 291

and

Idtm (ona(t) — a[t])l + |—(u,.(t) - r.:[t])l

2 m+3 1
< K{ 3" (T - T DI (0,0)| gmowy + Italuf S~ T - W) D' I(E(e), () e }
i=0 - ' o 1=0
_ (3.24)
where 0 < m < p—4 and K > 0 13 a constant independent of h.
" Proof. By (2.23) and (3.23}, we have
a 1 ! . o '
2 , 1 e e S '
Fle. o 0) = Aga® + 2/; (1 — 8)“D7g(st e, st”a) ( S ) _da . (3.25)
o +a?-1 |
| 1 1 3 e o 3
- h,.2 s £1 _ Y2 N3 0 o 0 -
%olh, o )= _)tgq il j; (1 — s)*D?gp(xy), + 8%1(t), 35, + sZa(t)) (Qh (ta)) ds
| 0.2 + u.‘! | |
(3.26)

From the proof of Lemma 2, we can see tha.t.
det (D(4,4) 7(0,0(0),a(0)) # 0
Therefore, foré, ::a- 0 small encugh, we hﬁve
|D(o,a) 7 (¢, 0(t), a(t)) "l 2(r2ir2) S C,  for |t <to
By calculations, we obtain

D™ 7u(t, 0,a) — DT (¢, 0, “)nﬂm{ﬂ;:ﬂ’) |

< K{|A3 — Aa| + [1@n — I|| £(r2:r2) + I |D™*3g — D™ gyl 2 ss(r2RY) }-

Hence, by Th.1 of [2], there exists a umque pair of CP~ functions ¢t — (a‘h[t), an(t)), I¢| < to,

satisfying

Fn(t, on(t), “‘h{t)] =0
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and

(m.(c)—a(tnl+l (uh(t)-a(t))\wzw 7 (7t olt) o) = 5o o(t),a

m+3

< K{122 = 23]+ |1@n — Il crore) + D, sup |Dg(Eo(e), £afs)

—Dign (a8 + 51(8), 5 + 22 | cutrrim )

m-+43

{K{Zu(r T D' 30,00 msw) + sup 3 I(T = T DI(E), ol exgaran

ltl{tﬂ {=0

The proof is completed.
Furthermore, we have |
Lemma 8. Under the hypotheses of Lemma 7, there exist positive consiants ¢y, a and,

for 0 < h < hg small enough, a unigue branch {(Z14{t), Z2n(t)), |t| < to} of the solutions of
(3.20) such that " |
Z1n(t) — z1(t)] + [Zan(t) — z2(t)| < @,

z1a(0) = 235, z2a(0) = 23,
and
u%(gm(t) ~ ;l(t))‘ + u%_(izh[tl & zzttl)l

m-+3 (3.27)

<K sup 3 (T - T)D'I (60, aD ey

[ti<to j_g

where K 15 a constant independent of h.

Proof. Let
5':1;.(3) _ :lh tzﬂh(t)
( Zan(t) ) N ( Z9n ) b ( t2an(t) ) |

By Lemma 7 and (3.21}, we have

an® Y (2@ _ (2% ). Fea® =), o[ R
(.1.-:...(:)) (,,,m) (zah)"'"""(ta(ah(t)—n(rn )*" Q"’(r’am )

The proof is completed.

‘Moreover, we have also
Lemma 9. Assume the Aypotheses of the above lemmas. Then, therc exist a lugh-

borhood U of the orsgin in R2 and, for 0 < h < kg small enough, a d:ﬁcamorphum
n : (21,23) € U — (21, 22) € U suth that

Cin

gn (21, 23) = gn(z) + z1, Iﬂh + z2) = 2] — 23, . - (3.28)

yh(ll, Eg) = g;,,(zm <+ 51152.!; + 32) = 33 -_ ..",‘3 + K (h)@h(ll) + Ko(h)
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and

max{ swp [Din(or,mlccmrmrmyy sp  [Dinlan,za) Mecenan} <€ (329)
{’h-‘l‘l]EU : _{Sl.#:)EU

where |on(21)] < C and C s a canatant'indepandmt of h.
Proof. By the proof of Lemma 6, we know that

2@ i i "“‘ co >0
azggh_' Bzgg" 0

for 0 < h < hg small enough. Hence there exists a smooth function z; — th{z1) such that

g . ; "
-angh(I?h +':'£1,Igh ~- 1h(z1]) =0 and lh(ﬂ) = (),

Let £y = z1,Z3 =23 — ih(il). Then
Gn(z8) + 21,29, + 72) = a2, + 21,23, + E2 + in(%1))
; | o 3 1 32 . o
= Qh(_ﬂ’{l]h"'*' Zy, 29, + ta(Z1)) + m%f (1-3)== 322 g;,(:rm + %y, Inh + s%q + (%, ))ds.
0
Since 4 3 3
; ﬂ'ﬂ:n "'"U'__"'u' ._._"0."0=
n 259 = 3z, 0t 5z, 9 14 (0)

z 8% 9° % ov-1 A0
Ef"g = 3mom;n O+ amﬂ-"'* B (a F0h) " A =0

" and
D™gn — D™g

a8 h — 0 uniformly in U which is some neighborhood of the origin in R? and

a3 .
il 0, h—0
dﬁgh .aﬂ:lgn_# H = ;
we have
& | ﬁh(f-?h + 2z, Igh "jfh(il)) =-i§5§"(il)’

where |@5(%1)] = €0 > 0 for. h and z small enough.
Let |

¢h(mh 52) — [ (1 3) Az g gh(xlh -+ 11., Lo + EEQ + ih(il])dﬂ..

Then, we have |
[¥n(E1,82)| 2 €0 >0,  for (%1,25) € U.

Setting . ,
s, P . d
2= 51(9%(11_])”3: 23 = —( sgn 3—59 )-"2|‘Ph(51=32)|1ﬁ:
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we can obtain

- (.0 0 3 2
gh(ﬂ’lh + Z1,Z3), + "-’-‘-2} = ) — I3,

Since |
£y = &1 (Pn(£1))Y° = 31(5}:(931])1‘(3_:
we have |
| i’h(ﬂzl)l = |@n(z1)*/° +=1 B (21)@n(21) 2|
> e* ~ lzl - e P15 (21)| 2 &1 > O
and

A (U) =

By the inverse function theorem, we get a unique function z; = @; !(2;) such that
_gh(’?h + zl,zgh -+ Ig) = 2? — ﬁg s Kﬂh]ph[ﬂl) = Ku(h)

where o5 {%1) = &5 1(21) — 214-
Finally. let

z) | #1(8n(51))*/°
( ) = In{®1,22) = ‘8%

a2 _( sgn Az 29'0)2:2'5];(51, :".'l::ﬂ)llf2

We have some r.> O independent of h such that
8(21, Z3) 3(%y, Z2)
(24, Z3) 3(x1, z2)

Because each element of Dy, (z1, 22) is8 bounded um.fannly in U, the proof is completed.
Let U be a nemhbnrhnod of the origin in R2. We denote by S, S and S, the sets of

the solutions of equatmnu

| det D3 (21, z2)| = | det | - |det |>r>0, for(z1,23) €.

Q(II: 3?) =0, gh(m?h + Z1, :th ¥ Ii] =

and _ |

gh(zlh T zlrf-gh\__)- =

in U respectively. ‘S.ilﬂilﬂl'l}': we denote by 55 and § , the sets of the solutions of equations
on(21,22) =0 and  Ga(21,25) =0

'in U respectively. Introdut:ing'the distance between two bnunded closed sets defined by

d(4, B) = max { sup inf = — ull sup inf |1z - 9},
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we have
Lemma 10. Assume the hypotheses of all above lemmas. Thm, we have

1
d(Sh, 3) < c{lxo(hn ATACTRES

where C 15 @ cnmtant mdependcnt of h.
Prmf Pirst, we consider d(Sh, S,-.) By the definition, we have

d(EnFn) = sup inf Jlz—yl+ sup inf Jlz—uf <di+ds
!Esn 3€ hiEgn

where _
b (12:(2a) - ma(8a)l|___ ) 8

dz=  sup (|=‘=[“1) y"'(m)ll: —ﬂ)

0<g:1<dy”?

S = {(21(22), 22)} = {(21, 2a2(2:)) },

§h = {(§1(2), 82)} = (31, 92(91))}
and do is a positive constant which satisfies 2] < do forallz€ U.

Since §;- 2 0 for all § € 5;., we have (see

Figure 2} =
|2, (23) - §1(%)P°
< (21— 91)® + 3215|121 - ol
<z} -gl= lon (21,22} - dn (91, 92)

-+ Ko(h] z
 + Ka(h)en (1)) -
th

< C{|Ko(h)} + Ki(h)]}
for ¥; > 0 and 23 = ﬂg,llld
0> 23 = 23 + Ko(h) + Ka (W) (21)
2 =C{|Ko(h) + K (A)(}
for 2; < 0 and 23 = . Atthesame time, -
Fig. 2

we have

ﬁa g2 =23 = 23 — txu(h] + K (h)‘ﬁh(ﬂi))
< C{lxo(hll + |K1{A)1}-

To sum up, we have

dy < C{|Ko(R)] + IKa (R},
On the other hand, we can choose z2(21) so that the sign of 22(Z;
the sign of gg(ﬂl) for 2; = §,. Thus, we have

|23(21) — (@)l = I-fa ~ 2] 122 —92] < |23~ 9=I<C{|Ko(h)l+|K1(h)l}, for 21 = th-

) is the same as
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Hence, we can obtain

d < C{|Ko(h)] + |Ka(h)|}*/2.
Finally, by Ko(h), K1(h) — 0 as h — 0, we have |

d(8h, 51) < C{IKo(h)] + Ky (B)[}2.

Using (3.29), we complete the proof of the lemma.

With all lemmas above, we obtain

Theorem 1. Assume that (), uo) 12 a simple critical point of F satisfying (2.16)
and (2.18). Assume in addition that (3.4) (p > 5) and (3.5) hold. Then, there ezist a

nesghborhood O of point (A0, u0) sn R x V and a positive constant hy such that, for 0 <
h < ho, the set Sy of solutions of equation {3.2) in O consists of only a branch of solutions.

Fhrthermnrr., we Aave an estimate

d(sa..3)<c{(|xo(h)|+|x MM sup 3 (T T D I(E(e) ol } (330

[t1<to ;=0

where § 13 the set of ab!_utmna of equation (2.8) in O,

$ = {(A0), ult); |e] S to},
CA(#) = 2o + £(¢), u(t) = uo + alt)eo + o(£(8), aft))
and C 15 a constant independent of h. .

Proof. Since
d(Sh,S) < d(Sh,Sn) + d(Ss, S)

where S is the set of solutions of equation (2.9) in some nmghborhtmd U nf the origin in
 R?, we can draw the conclusion from Lemmas 7-10. The proof is completed.

Remark 2. By Lemma 4 and Lemma 6, we can give the eut:mate for Ko [h) and -
K1{h) as follows:. : |

Ko+ 1K ()] < O] 3T ~ T DI o e, n}

=0
Remark 3. If Kn(h) = K (h) = 0, the point (A9, no) is a cusp point of Fj,, where

Ahﬂ = ‘10 + fhﬂl Upo = g + ﬂh:ﬂpﬂ + ”h(fhﬂ: ﬂhﬂ)

$ho j H E?h -
QR0 .‘.I:gh.
-Moreover, we have the estimate

[A0 = Ano| + [luno — uolls "5C{l=1hl+lzznl+||"h(€hosﬂhn)\|u}
<q ST = TP IO e )

=0

and
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W

4. Appliéatinn: Galerkin Appt’oximation of A Nonlinear Problem

We consider a two-point boundary value problem of ODE

—u’ —u =ud —¢pMr%sinz, O0<z <7,

(4.1)

u(0) =uf{x)=0

where ¢y = /2/7x. -
‘Let V = H,{0,x) and W = L?(0,x). We define a linear operator L : Hy(0,x) N
H?*(0,x) c V — W by Lu = —u". It is known that the inverse T = L1 of L is well defined
and compact from W into V. Let G(), u) = —u — u% + coA? sin z. Then, the problem (4.1)
is equivalent to equation | o . |
F(Au)=u+TG(Au)=0 | (4.2)

and G € C”(V;ﬁ’),p_z 5. |

Clearly, the point {Ag; uo) = (0,0) € RXV is a solution of equation (4.2). Moreover, -1
" is an eigenvalue of the compact operator T D,G° with algebraic multiplicity 1 and ¢o = co
sinz is a normalised orthogonal eigenfunction corresponding to —1. Because D,F® is a
self-adjoint operator, we have ) = wo and (D, F?)*pg = 0, |

{0, Po) = f ¢2 sin? zdz = 1.
0 :

We define the projection 'upera,tur Q:V-oVo={veV;<y, pﬁ >=0} by
Qu = v— < v, 9} > po. |  (4.3)
Then, equation (42) is equivalent to the system
QF(A,u) =0,
(I - Q)F()u)=0.

Let A=A+ €= §,u=upg+ape+v,v EVs. By the implicit function theorem, there
exist poeitive constants £y, ap and a unique smooth mapping v : [—£o, €0} % [—eag, ao] —
v(§, a) € V3 such that |

QF(¢,apo + v(€,a)) =0 and v{0,0)=0. - (4.5)
By the system (4.4), we have the bifurcation equation

' f(§,a) = (F(E,mpu+v(f, ﬂ]):’PE). - '  (4.6)
=. Eg = clus + h.ﬂ.t. ‘ -
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| _ |
where ¢; = f eodz and h.ot. = O(&® + 2a+ £a® + at).
0 | .

' By calculations, we have
£(0,0) = £3(0,0) = £4(0,0) = F{a(0,0) = f£a(0,0) =0,
f;'! (0, 0) =2 #0, f:,"a;, (0,0} = —6¢; # 0,

Therefore, we obtain
A=detD?*f° =0 and rankD?f% = 1.

Farthermore, taking h; = (A1, hyi2)? = (O, 1)7, we can check that the conditions of Lemmas
{ and 2 hold. Thus, we know that (Xo,u0) = (0,0) is a cusp point of F and the set of
solutions of equation (4.2) in some neighborhood O of (Ao, %o) i diffeomorphic to a part of
a semi-cubical parabola. | ' |

Now, let us consider Galerkin apprnximaﬁun of problem (4.1).

We introduce a continuous bilinear form a : (v, v) eV xV —a(u,v) € R by

a(u, v} = (u,v') = j: w'vids.
.&B we know, a is V-elliptic in the sense that there exists a pnﬁtive constant 7 such that
. a(u,u) 2 7llull; Vs eV. o (4.8)
éy [9], we also B
a(Tf,v) = a(v, T" f) ='_( fv), YWeVYfeV' _ (4.9)

The weak form of problem (4.1) is
Find (2, u) € R x V such that

a(u,v) + (G(A,u),v) =0, VveEV. (4.10)
Let {Vi}a>o be a family of finite dimensional subspaces of V and
ﬂuﬁh v — u;?“, o 0, VWwevV. (4.11)
Galerkin approximation of problem (4.1)- cﬁns'mts in finding solutions (A, up) € R x Vj of
| u(uh,u;.]_-l- (G(}t, uh), ﬂh) = 0, | Yu, € V). | (4.12)

Let us define the operator Il € L{V;Vh) and Ti e L(W;Va) by

a{llyu — u,v5) = 0, Yo, € Vp,,YVueV
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and |
a(Thf: “h) = (fl ”h): Vup EV;;, V.f eV’

respectively. Clearly, we have

T =TT
and equation (4.12} is equivalent to .
Fr(X un) = up + ToG(A, up) = O. & (4.13)
From [9], we have | | _
lim [lo— Taolly =0, Vo€V (4.14)
and - _
lim [T — 7| g wv) = O. | - (4.15)

Using Thoerem 1, we obtain immediately .
Theorem 2. Assume that condition (4.11) holds. Then, there exist a neighborhood
0 of (Mo, %0).in R x V and a positive constant ho such that, for 0 < h < ho, the set §), of
solutions of problem (4.12) tn O consists of only a C” 3 branch nf solutions and the set S,
13 diffeomorphic to the curve defined by |

z° —-y? + ap(z)+ =0, zn+yﬁ£cu,

where a, B,co are constants, co > 0 and o(z) is 6 smooth function. Furthermore, we have

the estsmale

(S, $) U A P
-l Eu(f n,.lr"" £, ) carow)

| <to §—

where S s the set of solutions of pmbf:m (4.1) tn O,

§ = {(M8), u(®); |4l < to},
H MO = €0 ()= Ao + o(£(0), e

and C and Lty are constants independent of h.
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