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Abstract

A new method for nonlinearly constrained optimization problems is proposed. The
method consists of two steps. In the first step, we get a search direction by the lin-
early conatrained subproblems based on conic functions. In the second step, we use
a differentiable penalty function, and regard it as the metric function of the problem.
From this, a new approximate solution is obtained. The global convergence of the given

method is also proved.

§1. Introduction

The nonlinearly constrained optimization problem to be considered in this paper 1s

defined by

Minimize  f(z),
(NP) ' subject to &(z) >0, +=12,---,m,
hi(g) =0, 7=12,--,1

'Afhere f, e, h; denote real and differentiable functions of vector r in the n-dimensional
Euclidean space IR".

Many techniques have been proposed to solve minimization problems with nonlinear
constraints [2]. One of the proposed approaches is to iteratively solve linearly constrained
subproblems. This method with quasi-Newton updates was originated by Han [4]. Powell
[8] proposed another more practical update scheme, and proved that the methods having
superlinear rates usually use a nondifferentiable penalty function, and regard it as the met-
ric function of the problem[5]. Moreover, Yamashita 113] constructed a globally convergent
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constrained quasi-Newton method, but his method is only suitable for the problems with in-
equality constraints. Murray and Wright 6[] studied the computation of the search direction
in constrained optimization algorithms.

The above-mentioned methods are based on quadratic models. However, when the
objective function has stronger non-quadratic properties in the neighbourhood of iterative
points, these methods will face some difficulties. For this reason, we consider the methods
based on the non-quadratic model. At present, conic models have been used in unconstrained
minimization algorithms successfully (see Davidon [i], Gourgeon and Nocedal [3]). In this
paper we establish a globally convergent method for nonlinearly constrained nptimimtion
problems. The method consists of two steps. In the first step, we get a search direction by
solving linearly constrained subproblems based on the conic function. In the second step,
we use a differentiable penalty function, and regard it as the metric function of the problem.
From this, a new approximate solution is obtained. Section 2 gives the construction of the
search direction. In Section 3 we establish the algorithm. In Section 4 we prove global
convergence of the given method.

Except in Section 4, for convenience, in describing an iterative method we do not
use superscripts to denote three neighbouring iterations containing the present iteration.
Instead, we place a bar over or under quantities which correspond to the neighbouring
iteration, e.g., if z denotes the present iteration, then Z and z will denote the following and
previous iteration, respectively. Subscripts are used to denote components of a vector, for

example, z; is the 1th component of vector z.

§2 Comnstruction of the Search Direction

In order to make a search direction d at iteration point z, we consider the subproblem
that minimizes the conic function with linear constraints:
Vf(z)'d

1+ b6"d

aWd

(CCP) Minimize c(z+d) = f(z) + (1+57d)?’

"
2

subject to  ¢;(z) + Ve;(z)'d > 0, t=1---,m,
hi(z) + Vhi{z)'d=0, ;=1,---,,
1+67d>0

where c(z + d) is the approximation of f(z) near z by the conic functon, w = V3 f{z) +
bV f(z)" + Vf{z)bT and b € IR™.

Remark 2.1. The subproblem CCP is consistent. For example, d = 0 is its gpecial
solution. | | |

The solution of CCP and its corresponding Lagrange multiplier will be denoted by an
array (d,o,7) € IR™ x IR™ x IR’ in the following discussion. By the Kuhn-Tucker condition
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of CCP we know that the array (d,o, r) must satisfy

m {
o(I — 0bd7)(Vf(z) + IWd) = Y 0:Vei(2) + ) _ 7;Vhj(z), (2.1a)
1=1 =1
oi(e:(z) + Vei(z)}d) =0, +=1,.--,m, (2.1b)
§; >0, §=1,---,m (2.1¢)
here 8 = § 1—-0b"d
wher 1+ o d :

On the other hand, in order to ensure global convergence of the method to be described

later, we construct the metric function

: i : ¢ .
Fla,u v o) = £(2)+ 3 Y wamlala) = 2P+ 3 D pilhila) = 57 (22
1=1 =1 J

where 0 c uc IR and 0<ve R, 0<uce R and 0 < p€ IR correspond to penalty

parameter vectors, and °

e 1, e;(x) — us/pi <0,
' 0, otherwise.

The following lemma will describe the descent property of the direction d.
Lemma 2.2. If (d,o,7) is a solution of CCP, then inequality

m i
va(ﬂi,u, U,ﬁ,p]rd < —f8d"Wd— Z pi(I: Ui, Fi;ﬂ'i] s Z 1&‘1'(17, Uy Ps TJ) (2'3]
. : =1 J=1
holds, where

i (3, iy s, 03) = (wipsi(es(2) — wi/ ) + 0:/6%)ei(2), (2.4)
¥z, vi, ps, ri) = (pi(hi(z) — vy /pi) + r_,—/ﬂz)h_,-(z). (2.5)

Proof. Since

vIF(mI“: v, 4, P)rd — vf(x)rd'*" Zmip‘i(ﬂi(m) — “’if“i)vci(;)rd

o]

+ Z pilh;(z) — vi/p;i)Vh;(z) d

=1

we know by (2.1a)

m |
Vi) d= (3 oiVeilz) + 3 1 Vhy(x))"d ~ 64" Wa

oy | j=1
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Thus

V. F(z,u,v,4,p)'d =—0d"Wd+ Z[wgm[e;(z) — ui /) +0; /0%)Ve;(z)7d

l =1
v Z(P:'(h.f(ﬂ:) — v /p;) + rj-jﬂz)?h_,-(z]'d.

Moreover, since d is the solution of CCP, we obtain by {2.1b)

wi(ei(z) — wi/ue)Vei(2)"d < —wilei(z) — ui/pi)ei(2),
oiVei(z)"d = —o;e;(x),
Vh;(z)"d = —h,(z).

Therefore

V. F(z,u,v,8,p)'d <—0d"Wd-— i(wim(ei[z) — u; /) + 0 /8%)ei(2)

i=1

!
- Z(PJ'(hJ'[E) ~ v;/p5) + 13/6%)h;{=).

Lemma 2.2 shows that, if the parameters u,, v;, 4;, p; are adjusted properly, and W is positive

definite, then the vector d can become a descent direction for the metric function F at z.

§3 Algorithm

Algorithm 8.1. For given z,W,e > 0 and r € (0, 1), we do as follows:

Step 1. Construct the subproblem CCP and find its Kuhn-Tucker array (d, o, 7).

Step 2. If [|d|| < ¢, stop; or else go to Step 3.

Step 3. Compute u, v, 4 and p.

Step 4. Select A such that

F(z+ Ad,u,v,p,p) < F(z,u,v,1,p) + oAV F(z,u,9,u,p)"d

where ¢g = 0.0001.

Step 5. Set 2 = z + Ad.

Step 6. Calculate b.

Step 7. Update B by some scheme. |

Step 8. Calculate W = B+ bV f(z)" + Vf(2)b".

Step 9. Set x =%, W =W,b = b and go to Step 1.

Remark 3.2. (a) A numerical method for solving the subproblem CCP was proposed
by Sun [11].

(b) Step 3 iz a procedure for finding the approximate values of u, v, 4 and p such that
- d becomes a descent direction for the function F(z, u, v, m, p) at z. We usually compute by
the fn]lms:ing_ algorithm: ‘
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Algorithm 8.3. It is given that n; € (0,1), u,v, 4, p, Au; > 0,8v; > 0 and r > 1.
Step 1. Set u =y, v =y, = p and p = p. |
Step 2. If

m !
Z s (IU{, P‘i":ri) + Z '»bj'(z: Vs, Py TJ') 2 -—l’“ﬂded (3 1]

s=1 §=1

then stop, or else go to Step 3.
Step 3. Define

I={i|pilz,ui,pi,0) <0, i=1---,m},
I = {i | e;(z) < 0,3 €T},

I, = {3 | 0 < ¢;(z) < wifpi,t € I},

J={J| vile,v5,p5,73) <0, 3= 1,1},
Jy ={51 hi(z) < 0,5 € J},

Jp = {5 | 0 < h;(z) < vi/pj,7 €T}

Step 4. Set
u; = us + Auy, 1 € I,
u; = max{rp;,u;fe(z)}, 1€ I
v, =v;+Av;,, JE Ji,

p; = max{rp;, v;/h;j(z)}, 7 €2

and .go to Step 2.

Algorithm 3.3 shows that, if necessary, u; and v; are increased when ¢;(z) < 0 and
hi{z) < O respectively, and that u; and p; are increased when 0 < e;(z) < u;/u; and
0 < hy(x) < v;/p; respectively. Therefore, if W is positive definite, it is known by a simple
calculation that Algorithm 3.3 has the property of finite termination.

(c) b is obtained by the following procedure. From CCP, we know that the conic
function c(z + d) satisfies

() = f(z), Ve(z) = V (), Ve(z) = V2 f(). (3.2)
Let x be the number of iteration times. If we impose the requirement
(2®) = fz¥), t=1, -, m | (3.3)

' for past iterations £(*) and x, = min{x — 1,n}, then

b7sl) = g, | (3.4)
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where
s =z — (¥ (3.5)
q==1+ﬂ1_‘/5¥+q’z(ﬂ+ul) (3.6)
ag
where

o= 280Bs®, a;=Vf()"s®, a3 = f(c) - f(z)
(see Schnabel [10]). In this case, b is defined by the linear equations

Sh=gq (3.7)
that is,

b=S%g (3.8)

where S is constructed by 3{*) as row vectors, and St is the generalised inverse matrix of

S. We can obtain St readily by using Greville’s algorithm with successive row recursion
(see Sun [12]).

(d) Updating B is most effectively done by the quasi-Newton methods. The matrix
B 1s intended to be an approximation of the Hessian of the Lagrange function

m { |
L{z,o,7) = f(z) + Za;e,;(m] + E yhi(3). (3.9)

We follow Powell’s recommendation [8]. Thus B is updated by the BFGS formula:

56" Bss™B
575 o Bs (3.10)

B=DRB+

where s =2—z, 6 =ny+ (1— n)Bs,

y = V,L(E, o, r] - ?,L(:ﬂ, o, r) and g € (U, 1)
18 chosen such that s™6 > 0.

§4 Global Convergence

Now we discuss the global convergence of Algorithm 3.1.

Lemma 4.1. The functions p;(e;(z)~u;/u;)%,3 =1, -+, m, are monotone decreasing
functions of u; when p; satisfies le;(z)]| < u;/u;.

Proof. Because

B(M(ﬁ(:‘;; ui/pi)?) (e5(%) — ws/pi)es(z) + ui /) (4.1)

the formula (4.1) is not positive when |e¢;(z)| < u; /.
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We have the following lemma that is similar to Lemma 4.1.

Lemma 4.2. The functions p;(h;(z) —v;/p;)%, 7 = 1,---,1, are monotone decreasing
functions of p; satisfying |h;(z)| < vi/p;.

The proof of this lemma is like that of Lemma 4.1.

For clarity, we use superscripts to denote the xth iteration of the algorithm in the
following statements.

Lemma 4.3, Let the Lagrange multipliers o(®) and %) of CCP be bounded; then
there exzists an integer kg > 0 such that ul®) = yl®o) gnd o) = p(*o) for x 2> Ko.

Proof. Suppose that the conclusion of the lemma is false. Then there is an index
such that u(":) — o0, because u[ *) increases mnnutnmca]ly with a fixed step-length Au; > 0.

On the other hand, we have w;{z, ui, pi,03) 2> 0 if u( <) > ur:r{'"'"};’ﬂl‘2 and ¢;(z(*)) < 0.
- Thus u{ *) o oo is impossible by the fact that u {”] is increased only when c,(:c{"}) < 0 and
that cr[ <) 3 bounded. In other words, there is an integer x; = 0 such that u(*) = ul=1) for
k > k. For the same reason we also know there is an integer xz 2 > 0 such that v{*) = yl*2)
for £ > Ko. Set xo = max{x;,x2}; then the lemma is proved.

A principal result of this paper is stated as follows:

Theorem 4.4. In the problem (NP), assume that the following conditions are satis-

fred:

(a) There are two posstive numbers ay > 0 and oy > 0 such that
a1272 < 2"Wez < azz’z, Vze IR,

(b) There is a compact set () € IR™ such that z(*) € Q.
(c) There is a Kuhn-Tucker array (d{"] o(F) r(x}} of CCP, and this array 1s bounded.

Then any infinite sequence {z\°)} generated by Algorithm 3.1 has the property
. . {E) —
lim inf |d*<']| = 0.
Proof. From Lemma 2.1 and inequality (3.1) we have
vzp(mfﬂ},u(ﬂ], pl®) P(H‘-},plﬂl)fdlﬂl <—(1- nl)ﬂk(d(")]'Wmd{").

Thus, from Step 4 uf Algorithm 3.1 we get
Fzl=t1), ulk) pl=) Ll=) p{k)) F(,_;{ﬂ} ul%) ylr) (=) plely
< —cohe(1 = 1) 8, (A Widls).
Moreover, by Lemma 4.1, Lemma 4.2 and Algorithm 3.3 we have

FlaletD), ul®) o) y(+1) plet1)) < R(glmtD) yl=), o) =), RO

From Lemma 4.3 we get
Plaletl), yls 1)) y(mtD) ylst1) plet1))  F(gle), ule), ol), ule), (<))

4.2
< —cpAre(l — ??1)9.:(&(”,]'“’;3{”} 9
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for sufficiently large x.

Suppose that the conclusion of the theorem is false. If {u®} < oo and {(p®)} < o0
we can obtain the desired conclusion by the usual convergence proof of Armij’s step-length
rule. Therefore we consider the following situation, i.e. when %) — co and ol*) — o,
there exists an go > 0 such that [|d*®)|| > .

Since F(z, u,v, s, p) is bounded below by f(z), by assumption (b), and as the sequence
(z(%), ul®) y{®) ulx) p(=)} i3 bounded below, from (4.2) and assumption (a) we have

00 > Y Acle(d)Wed™ > oy Y Aebielld 2.

Let k = {«|x > Ko, b £ pl*=1) and <} £ plr=1)1 we may assume, without loss of
generality, that it is an infinite set. From Algorithm 3.3 we get

2 {
3 izl ufF D, u Y, 0) £ 37 (e, of T, T, 1) < () W),
1=1 J.=1

(4.3)

Define
[“1} [ﬂ: ll,a{")” i=1,--

( ) = — aI'g mln{@ (:E[ By '1m}:

87 = argmin{; (s, ", 5"V, ) =10
Thus
(=) (6=1) G000y 4 gy (o), 1), =) ple))

mps, [m(r::)’ uiﬂ 3 .u'in Jn ; pJﬂ 4 Jn

<3 pula, w00 4 Z wi(zt=), of™ D, gl Y, 1))
i=1 =1
< —m1 0, (dN )W dlF).
Notice that ( ) oc and p( =) 50 by the definition of 2. By taking the relations
0 < e, (2!} < u{"" 1]/ =)
0 < hjy(2(®)) < v~ W 1
fnto account, we have respectively

i (), =Dy lm=1) Ry - ) (=D (o (Gl))2 4 (o) 62 - P ulEH e (219))

}_(lggf)ﬁi_ (<} [ﬂ‘--*lll (=— 1]); (x—1) > ﬁf {F- 1)

In 'l-ﬂ

and

Pio (209, oo 1) ple=t) ooy LoD ()2 4 (r1°) 162 — ol ™) ks (2))

’Ju

> “(lT}:)f‘HE-. {H: 1}| (e 1}” (x—1) ~ > B, fp{': 1)
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where §; and f, are constants satisfying
Br 2 ol 162 — ] E"'”l (") and B > |r;?) /07 — vi TVl

Thus
mpr/pse ) + 182/ > mbeen|[d®|?, kek.

The above inequality shows a contradiction because p.( e P — 00, p;ﬂ- ) — 00, and at

the same time ||d{*)| > e¢ > 0. Thus the theorem is proved.
This theorem shows that if £ = 0, the algorithm either terminates at a Kuhn-Tucker

point of CCP or generates an infinite sequence {z{*)} in which there exists a subsequence
{z{®)}, x € k, such that d{*) — 0. Also, the theorem shows that for any given ¢ > 0, there

is a finite x{e) such that we have ||d{*)] < e.
By Theorem 4.4 we obtain directly the following theorem describing convergence.

Theorem 4.5. Let the assumpiions of Theorem 4.4 hold; then any infinite sequence
{z(%)} generated by Algorithm 3.1 has at least one accumulation point z* € IR™ such that
z* 18 a Kuhn-Tucker posnt of (NP).

Proof. From Theorem 4.4 we know that there iz a subsequence {z{*}} k € k, such
that d{~) — 0. Without loss of generality we may assume that there are z* € {],0" €

IR™, r* € IR' and positive definite W* € IR"*" such that
%) gt ol® ot AR o and W, — W

where x € k. In {2.1) let £« — oc0,x € k. Since 8, — 1, we have

¢

Vi{z*)~ ) ofVei(z*) = > 15 Vhi(z*) =0
i=1 =1
oyei{z*}) =0, 3=1,---,m,

o; 20, 3=1,---,m

and
e;{z*) >0, t=1,.--,m,
hi{z*) =0, 7=1,---,1

Thus z* is a Kuhn-Tucker point of (NP).
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