Vol.7 No.2 Journal of Computational Mathematics April 1989

FINITE ELEMENT SIMULATION OF
INCOMPRESSIBLE FLOW WITH
MOVING BOUNDARIES

M. S. ENGELMAN
(Fluid Dynamics International , 1600 Orrington Avenue, Evansion, IL 60201)

Introduction

Flows involving a moving fluid interface are often encountered in many sci-
entific and engineering applications. Extrusion of liquids, problems in capillarity,
crystal growth, electrochemical plating and corrosion, metal and glass forming pro-
cesses, and the coating of solid substrates with liquids are examples of such flows.
If the interface is between a gas and a liquid, it is frequently referred to as a free
surface.

Computer aided analysis can play a significant role in understanding, oper-
ating and controlling such processes in both laboratory and industrial settings. It
would enable the analyst/engineer to perform simulations and parametric studies to
determine the system configuration and characteristics subject to various different
flow rates, temperature profiles, etc. on the computer rather than in the labora-
tory, and in many instances greatly improve and shorten the design process. To
carry out such analyses requires a technique which can accurately represent sys-
tem variables on a deforming, irregular domain whose free surface portions may be
unknown a priori. The Galerkin-finite element technique has aspects which suit 1t
well to such irregular and possible time dependent domain problems since, for ex-
ample, it can easily accommodate the higher resolution required in certain regions,
the singularities associated with contact lines and the complicated boundary condi-
tions associated with such system. The.basic approach to problems involving a free
surface presented herein involves a deforming spatial mesh where nodes located on
a free surface are allowed to move such that they remain on the free surface. An
additional degree of freedom is associated with the nodes on the free surface which
directly determines their location in space. This is then coupled with a Newton-type
iterative procedure which results in the simultaneous calculation of the position of
the nodes on the free surface and the field variables at the new nodal positions once
convergence is attained.
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2. Formulation of the Continuum Problem

The equations of incompressible fluid flow are derived from the basic physical
principles of conservation of mass and linear momentum and are the well-known
-~ Navier-Stokes equations. The equations for a free surface flow problem are identical
except that the location of the free surface is unknown and is determined by addi-
tional boundary conditions at the free surface. In the numerical procedure the nodes
on the free surface are allowed to move. This requires the addition of a new degree
of freedom to the problem to account for the changing shape of the fluid mass.

At a free surface, continuity of stress and velocity is required which leads to
the conditions,

un = 0, ﬂ:EI‘f, | (la)
fn—po=20H, z€Ty, (1b)
fi=0, z€& I‘f, (lc)

where u,, = u;n; is the normal component of velocity, f, = o;;n,n; the normal, and
fe = oiin;t; the tangential component of the stress vector at the boundary, ¢ is the
surface tension, py the pressure in the adjacent vaporphase and H the mean Gaussian
curvature of the surface. These conditions can also be written in dimensionless form
as:

fn=po+ _Rel-Cazﬂ’ (2)

where u;, p, po are dimensionless quantities and Ca= ulU/o is the capillary number.

In the general three-dimensional case, the mean Gaussian curvature of a sur-
face H is equal to %(K 1 + K2), where K; and K3 are the principal curvatures of a
surface. It is not necessary to choose the principal curvatures, however it is often
more convenient to do so. In the two-dimensional case, the curvature of a “surface”
reduces to the curvature of a line with one of the principal curvatures, K3, being
zero. For a hne, the curvature vector is,

dt

k=Kn=(V -njn=——

B = (W enjn = e

where n 18 the normal vector to the line and ¢ is the tangent vector, i.e. the curvature

1s equal to the change in the tangent vector as one moves along the line.

3. Finite Element Formulation

Since the details of application of the FEM to the basic equations of fluid flow
can be found elsewhere [1], this section will concentrate only on those aspects of
the procedure introduced as a result of the free surface. At each node on the free
surface a new degree of freedom is introduced; the value of this degree of freedom
will enable the determination of the position of the node within the region and is



No. 2 Finite Element Simulation of Incompressible... 107

an integral part of the representation of the free surface. This degree of freedom
must be chosen so that it is easily incorporated into the equations describing the
fluid motion, as well as constraining the motion of the node so as to avoid greatly
deformed meshes. The technique for representing the free surface degree of freedom
is a generalization of the method developed by Saito and Scriven [2], where nodes
in the mesh which are free to move lie on generator lines called spines. Referring to
Figure 1, a node’s position 18 represented parametrically as:

i = aglhjr1 +wti(h; — hip1)] + B,
¥i = aylhjp1+ wti(h; — hjp)] + B, (3)
2 — a:[h_f+1 + Wti(h,f = h,f+l). + B,

where A; is the interface location parameter for a given spine, a = (o, oy, ;) is the
direction vector, and 8 = (85, 8y, f:) is the base point of the spine. The location
(2:, yi, %) of a node on the spine which is free to move is determined from its relative
position, wi;, to the moving interfaces located at h; and h;4,.

This parametric approach allows the initial aspect ratio of the nodes on a
spine to be easily maintained as each node on a spine will retain the same relative
position between the interfaces. Also note that each of the spines is independent
of the other spines. The interface location parameters, h;, are the new degrees of
freedom introduced.

Inputting the spine and interface location information requires relatively little
additional input; primarily the list of nodes that comprise the generator lines. Nodes
lying on the generator lines are considered free to move; points not located on spines
are fixed mesh points. As a result of the parametric representation used for the
location of a node, nodes located between moving interfaces will retain the same
aspect ratio as set up by initial mesh. In the event that there is only one free
surface, the second interface is assumed to be a fixed reference interface located
at the last node of the spine. This artificial reference interface does not add any
additional degrees of freedom to the system.

In the finite element context, the free surface consists of a collection of line
segments of N nodes each, where N depends on the order of the approximation
used. The coordinates of a point on one of these line segments can be represented

by:

z = Xz; xi(8) = Blazhji + B:)xi(s),

v = Duixi(s) = Dazh;s + By)xi(s), (4)

z = Xz xi(s) = T(azhji + B:)xi(s),

where x;(8) is the basis function used to approximate the free surface line segments.
The Galerkin finite element method can now be applied to the equations of

fluid motion and the free surface boundary conditions. This results in a matrix

system of nonlinear algebraic equations of the form:

MU + A(U)U + K(T,U)U -CP+ BX = F,
CTy =0, (5)
KU =0,

b
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where X is the global vector of the free surface unknowns, A(U) is a matrix which
represents the contribution from the convective terms, K(U) is a matrix which
includes the diffusive terms, C is the divergence martix, B is the matrix representing
the contribution of the normal stress balance boundary condition in the momentum
equation, K, contains the normal velocity boundary condition effects and F is a
vector including the effects of the body force, applied tractions and contact angle
boundary conditions.

4. Solution of the Finite Element Equations

It now remains to solve the nonlinear system of equations (5). A fixed point
iterative procedure could be used, however, this would necessitate the interpolation
of the nodal velocity degrees of freedom to the new nodal positions at each itera-
tion: such a method would also exhibit a linear rate of convergence. On the other
hand, if a Newton-type method, e. g. Newton-Raphson or quasi-Newton, is utilized
and complete account of the variation with respect to the free surface degrees of
freedom is incorporated into the system Jacobian, then at the end of each iteration
the velocity solution will represent the velocities at the new nodal location. The
great advantage of this approach is that the free surface location and the velocities
at the new nodal locations are a direct result of the iterative procedure with no
interpolation or updating being required.

Solving the global system of FEM equations using the Newton-Raphson or
quasi-Newton method requires the determination of the Jacobian matrix of equations
(5). This Jacobian matrix i8 defined by:

dR(u)
du

J(u) = (6)
where u = u(u;,p, T, z) is the solution vector and R(u) is the residual vector for the
system (5). |

The evaluation of the Jacobian J(u) is particularly tedious as the matrices
K,A,N and K, and the vector F depend on X (or rather x and y) by equations
(3), not only through the integrands, but also through the limits of integration,
i.e. the element domain. However, just as the integrals over fixed elements are
handled by mapping an element onto a ‘parent’ or reference element and performing
the integration over its simpler, fixed geometry, the same technique can be used
to compute the variation of the various matrices with respect to X (see [3] for
complete details). The line integrals which arise from the boundary conditions on
the free surface also contribute to the global Jacobian matrix. The variation of these
boundary line integrals with respect to the free surface degrees of freedom X can
again be computed by making use of the isoparametric mapping concept.
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5. Time Dependent Problems

The technique for handling the free surface movement for a transient free
surface problem is identical to that described for steady state problems. Care,
however, must be taken in the treatment of the time derivatives which now appear
:n the momentum equations and the free surface boundary condition.

The momentum equation for a transient flow 1s,

w;
p(—— + ujui ;) = 0i5,; + pbi. (7)

Also the condition of no normal flow across the free surface, equation (1a}, must be

modified to,
08

ot

where S(z,y,t) = 0 is the function defining the .free surface. If this equation 18
normalized by dividing by |V S}, it becomes,

tu-VS =0 (8)

a5 — S
gt ‘n = . 8 = .
£y +u-n=0 ; V5]

(9)

The time derivatives appearing in equations (7) and (9) are Eulerian time derivatives,
i o. the nodal velocity field must be for nodes fixed in space. However, the technique
of parameterization of the free surface is such that the nodes are not fixed 1n some
frame of reference (Eulerian formulation), nor are they fixed in a frame of reference
carried along by the fluid (Lagrangian formulation); rather each node 1s constrained
to move along a fixed line in space - a mixed Eulerian-Lagrangian formulation. Thus
the time derivatives in equations (7) and (9) must be transformed to time derivatives
which follow the moving nodes along these lines.

Denoting by 6/6t the time derivative following a moving node, the relationship
between 6/6t and 3/8t, the Eulerian time derivative is given by,

5§ _ 0 | Oz

ot at T 3t Vv (10)
. lSSBz_V
— 9ot ' 6t gs

L

where x = x(5, £, n) are the coordinates of a moving nodal point. The finite element
implementation follows in the standard fashion. The time derivatives are discretized
. the usual manner using a finite difference scheme (refer to Gresho et. al. [4] for
complete details on the time integration scheme).

6. Temperatiire Dependent Problems

Many free surface flows of interest possess not only flow but concomitant heat
transport which, combined with presence of a free surface, can lead to a significant
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“surface tension driven” flow contribution. This is often referred to as Marangoni
convection, or thermocapillary convection when a distinction is to be made in the
case of temperature-induced surface tension variations.

The techniques outlined in the previous sections are directly extendible to
such flows. Temperature dependence is introduced in an identical manner to that
described in the previous chapters. The only modification in the free surface bound-
ary condition is that equation (1c) is modified to,

ft=V,e , z€T (11)

In order to account for temperature-induced variations in the surface tension.

7. Numerical Simulations

Two numerical simulations are presented in this section to illustrate the al-
gorithm outlines in the paper. The first example is the evolution of a drop from
a nozzle. The motion of the fluid is driven by the prescribed movement of a rigid
piston. This forces an efflux of liquid from a small aperture at a rate determined
by mass conservation. This example illustrates the simulation of both a moving
boundary, the piston, and the free surface of the drop. The operation of an ink-jet
printer is very similar to this problem where the piston is usually an electrically
activated crystal. Figure 2 shows the evolution of the drop and the accompanying
movement of the drop surface position superimposed at successive time steps. The
drop tends to be spherordial because of the absence of gravity-in the simulation.

The term roll coating covers a wide variety of processes used to coat a moving
substrate. Fluid is taken up from a bath by a roller which dips into it, and then
transferred, possibly through a trail of rollers onto a web. In this example, the flow
between two adjacent rollers counterrotating at different speeds is modeled. Primary
Interest is focused as the free surface formed by the coating material as the rollers
rotate. The free surface shape is determined by the roller speeds, their radii, the gap
thickness and the physical properties of the liquid. In the presend case, the rollers
have radii 100 units and the gap width is 2 units. The speeds are in the ratio 2 : 1.

The results are shown in Figures 3-5. Figure 3 shows the superposition of the
computed free surface shape and the initial guess. Note the asymmetry in the final
free surface shape; this is due to the difference in roller speeds. Figures 4 and 5
show respectively, the velocity vectors and the streamlines of the flow. The latter
illustrates the presence of a weak recirculation zone near the free surface. The inlet
flow is a linear shear profile, while at the ends of the roller films the velocities are

nearly constant.
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Fig. 1. Moving node position definition
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Fig. 2. Mesh configuration at successive time steps
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Fig. 3. Mesh deformation for double roll coater

Fig. 4. Velocity vector plot double roll coater

Fig. 5. Streamline contour plot for double roll coater
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