ON S-STABILITY *

ZHAO SHUANG-SUO DONG GUO-XIONG QIAO NING (Lanzhou University, Lanzhou, Gansu)

Abstract

We prove in this paper that no consistent and well-defined Runge-Kutta method is S-stable and point out the errors of the theorems on S-stability in [1].

1. Introduction

To further study the stability of a general R-K method

$$y_{n+1} = y_n + \sum_{i=1}^r b_i k_i, \quad k_i = h f(t_n + c_i h, y_n + \sum_{j=1}^r a_{ij} k_j), \quad i = 1(1)r,$$
 (1.1)

which is used to solve a stiff initial value problem

$$y' = f(t, y), y(t_0) = y_0, y_0, y, f \in R^N, t_0 < t \le T,$$
 (1.2)

A. Prothero and A. Robinson presented in [1] the concepts of S-stability and strong S-stability, and derived necessary and sufficient conditions for both stabilities (Theorems 2.1 and 2.2 in [1]). Then they discussed stabilities of several classes of well-defined and consistent R-K methods and concluded that these methods are S-stable or strongly S-stable.

Their work has a great influence on the research of numerical methods of stiff O. D. E.. The concepts and theorems of S-stability and strong S-stability have been adopted by many authors (see [2]-[7]).

Based on the definition of S-stability in [1], we now prove that consistent and well-defined R-K methods are not S-stable, and therefore not strongly S-stable. Then we point out the errors in Theorems 2.1 and 2.2 in [1].

For convenience, here we introduce briefly the definitions and some main conclusions of S-stability and strong S-stability in [1] and adopt the symbols of [1] as much as we can.

^{*} Received October 22, 1986.

2. Definition of S-Stability and Some Main Conclusions in [1]

Definition 2.1. A R-K method (1.1) is said to be S-stable if it is applied to the test equation

$$y' = \lambda(y - g(t)) + g'(t), \quad g \in G$$
 (2.1)

(where λ is a complex constant with $\text{Re}(\lambda) < 0$, and G is the set of all functions defined in $[t_0, T]$, which have first bounded-derivative), and for any real positive constant λ_0 and any $g(t) \in G$, there exists a real positive constant h_0 , such that

$$|\varepsilon_{n+1}| < |\varepsilon_n|, \ \forall h \in (0, h_0), \ \forall \lambda \text{ with } \operatorname{Re}(-\lambda) \ge \lambda_0, \ t_n, t_{n+1} \in [t_0, T]$$
 provided $y_n \ne g(t_n)$, where $\varepsilon_n = y_n - g(t_n)$.

Furthermore, (1.1) is said to be strongly S-stable if it is S-stable and

$$\varepsilon_{n+1}/\varepsilon_n \to 0$$
, $\forall h \in (0, h_0)$, as $\text{Re}(-\lambda) \to \infty$, $t_n, t_{n+1} \in [t_0, T]$. (2.3)

Since the solution of (2.1) is $y(t) = g(t) + (y_0 - g(t_0))e^{\lambda(t-t_0)}$ and g(t) is quite arbitrary, the methods with S-stability and strong S-stability are very satisfactory. That is why many authors studied the construction of S-stable and strongly S-stable methods.

Correspondingly to [1], note $z = 1/(\lambda h)$. Applying (1.1) to (2.1), we obtain

$$\varepsilon_{n+1} = \alpha(z)\varepsilon_n + h\beta(z),$$

where

$$\begin{cases}
\alpha(z) = 1 - b^{T} (A - zI)^{-1} e, & A = (a_{ij}), \\
e = (1, 1, \dots, 1)^{T}, & b = (b_{1}, \dots, b_{r})^{T}, \\
\beta(z) = -G_{0} + b^{T} (A - zI)^{-1} (\frac{1}{h} (\tilde{g} - g(t_{n})e) - z\tilde{g}'), \\
G_{0} = (g(t_{n+1}) - g(t_{n}))/h, \\
\tilde{g} = (g(t_{n} + c_{1}h), \dots, g(t_{n} + c_{r}h))^{T}, \\
\tilde{g}' = (g'(t_{n} + c_{1}h), \dots, g'(t_{n} + c_{r}h))^{T}.
\end{cases}$$
(2.4)

Lemma 2.1. Assume $R = \{z|0 < \text{Re}(-z) \leq \bar{z}\}$ and \bar{z} is a real positive number. Define

$$\varepsilon(z,h,\varepsilon_0)=\alpha(z)\varepsilon_0+h\beta(z),\ \ \forall \varepsilon_0\in C,\ \ \forall h\in(0,\bar{h}),\ \ \forall z\in R,$$

where \bar{h} is a real positive number. Then for any $g \in G$, there exists a real positive number $h_0 = h_0(\bar{z}, \varepsilon_0) \leq \bar{h}$, such that

$$|\varepsilon(z,h,\varepsilon_0)|<|\varepsilon_0|, \ \forall \varepsilon_0\neq 0, \ \forall h\in (0,h_0), \ \forall z\in R$$

if and only if

i) $|\alpha(z)| < 1$, $\forall z \in R$, and

ii) $|\beta(z)|/(1-|\alpha(z)|)$ is bounded in R.

Corollary 2.1. A well-defined one-step method (1.1) is S-stable if and only if it is A-stable, and $\beta(z)/(1-|\alpha(z)|)$ is bounded for all $z \in R$ and all $g(t) \in G$.

Theorem 2.1. A well-defined A-stable one-step method (1.1) is S-stable if and only if

- i) $|\alpha_0| < 1$ and b_0^* is finite, or
- ii) $|\alpha_0| = 1$, $\alpha_1 \neq 0$ and the method is stiffly accurate,

where

$$\alpha_0 = Lt_{z\to 0}\alpha(z), \quad \alpha_1 = Lt_{z\to 0}z^{-1}(1-|\alpha(z)|),$$

$$b_0^* = Lt_{z\to 0}b^T(A-zI)^{-1}E(z),$$

E(z) is an $r \times r^*$ matrix with elements

$$E_{ij} = \begin{cases} -z, & C_i = C_j^* = 0, \\ C_i, & C_i = C_j^* \neq 0, \\ 0, & otherwise, \end{cases}$$

where r^* is the number of different abscissae, and $\{C_j^*|_{j=1,2,\cdots,r^*}\}$ is the set of all different abscissae. We have, without loss of generality, an order $C_i^* < C_j^*$ if i < j.

Remark. In the next section, we are going to prove that Theorem 2.1 is wrong and Corollary 2.1 is right if R is replaced by the left half plane H (not including the imaginary axis) and "for all g(t)" by "for any g(t)". But, for convenience, we still call them "theorem" and "corollary" respectively.

Theorem 2.2. A well-defined S-stable one-step method (1.1) is strongly S-stable if and only if the method is L-stable and stiffly accurate.

3. Non-existence of S-Stable R-K Method

According to the lemma, corollary and theorem in Section 2, Prothero and Robinson discussed in [1] the S-stability of several classes of R-K methods and obtained corresponding results. For example, they concluded that an A-stable Euler method $y_{n+1} = y_n + h f(t_{n+1}, y_{n+1})$ is strongly S-stable. In fact, as $\alpha(z) = z/(z-1)$, $\beta(z) = z/(z-1) \left[g'(t_{n+1}) - \frac{g(t_{n+1}) - g(t_n)}{h} \right]$, E(z) = 1, A = 1, b = 1, $C_1 = 1$, $r = r^* = 1$, thus $\alpha_0 = 0$, $b_0^* = 1$, by Theorems 2.1 and 2.2, the method is S-stable and strongly S-stable. On the other hand, $|\beta(z)|/(1-|\alpha(z)|) = |z|/(|z-1|-|z|)|$ $g'(t_{n+1}) - (g(t_{n+1}) - g(t_n))/h|$; as $z \to \infty(z \in R)$ along line $z = x + iy(i^2 = -1$ and z is a constant), $\beta(z)/(1-|\alpha(z)|)$ is unbounded for any $h \in (0, h_0)$. By Corollary 2.1 and the remark, the method cannot be S-stable, or strongly S-stable. This contradicts the results in [1].

To explore this contradiction, we establish:

Lemma 3.1. Suppose λ_0 , h_0 are any fixed positive numbers.

$$R_1 = \{z | z = 1/(\lambda h), \operatorname{Re}(-\lambda) \ge \lambda_0, 0 < h < h_0\}, H^- = \{z | \operatorname{Re}(z) < 0\}.$$

Then $R_1 = H^-$.

Proof. Note $D=\{z|z=\lambda h,\ \operatorname{Re}(-\lambda)\geq\lambda_0,\ 0< h< h_0\}$. We first prove $D=H^-$. Clearly $D\subset H^-$; here we only prove $H^-\subset D$. Assume $z^*\in H^-$ and take $k\in(\frac{1}{h_0},\infty)$ such that $\operatorname{Re}(-kz^*)\geq\lambda_0$. Then let $\lambda^*=kz^*,\ h^*=1/k$. Clearly $\operatorname{Re}(-\lambda^*)\geq\lambda_0,\ 0< h^*< h_0$. and $z^*=\lambda^*h^*$, so we have $z^*\in D$. Therefore $D\supset H^-$. This indicates $D=H^-$. As the transformation $z=1/\xi$ maps D into R_1 , and H^- into H^- , we get $R_1=H^-$.

According to the lemma, Definition 2.1 can be replaced by an equivalent definition as follows:

Definition 3.1. A R-K method (1.1) for solving (1.2) is said to be S-stable if the sequence $\{\varepsilon_n\}$ obtained in applying (1.1) to the test equation (2.1) possesses the following properties:

For any $g(t) \in G$, there exists $h_0 > 0$. Whenever $\varepsilon_n \neq 0$,

$$|\varepsilon_{n+1}| < |\varepsilon_n|, \ \forall h \in (0, h_0), \ \forall z \in H^-, \ t_n, t_{n+1} \in [t_0, T].$$

In addition, if $\varepsilon_{n+1}/\varepsilon_n \to 0$ for $\forall h \in (0,h_0)$ as $\text{Re}(-\lambda) \to \infty$, (1.1) is said to be strongly S-stable.

Also, we can establish a lemma corresponding to lemma 2.1:

Lemma 3.2. Define $\varepsilon(z,h,\varepsilon_0)=\alpha(z)\varepsilon_0+h\beta(z)$ for all complex ε_0 , all real $h\in(0,\bar{h})$ and all $z\in H^-$, where \bar{h} is some positive real number. Then for any $g\in G$, there exists a real positive number $h_0=h_0(\varepsilon_0)\leq \bar{h}$ such that

$$|\varepsilon(z,h,\varepsilon_0)|<|\varepsilon_0|, \ \forall \varepsilon_0\neq 0, \ \forall h\in (0,h_0), \ \forall z\in H^-,$$

if and only if

- i) $\alpha(z) < 1, \forall z \in H^-, and$
- ii) $\beta(z)/(1-|\alpha(z)|)$ is bounded in H^- .

Proof. The theorem can be demonstrated by using the method used in proving Lemma 2.1 in [1].

From Lemma 3.2, we can get at once

Corollary 3.1. A well-defined one-step method (1.1) is S-stable if and only if

- i) $|\alpha(z)| < 1$, $\forall z \in H^-$, and
- ii) for any $g \in G$, $\beta(z)/(1-|\alpha(z)|)$ is bounded in H^- .

The first condition above is an A-stable condition, so S-stability is merely A-stability with condition ii). However, we have

Theorem 3.1. Any well-defined and consistent method (1.1) cannot be S-stable; neither can it be strongly S-stable.

Proof. From consistency, we conclude that $\alpha(z)$ is a rational approxiation of $\exp(\frac{1}{z})$; thus $Lt_{z\to\infty}\alpha(z)=1$. As $Lt_{z\to\infty}\beta(z)=G_0+b^T\tilde{g}$, there exists $g\in G$ such that $Lt_{z\to\infty}\beta(z)\neq 0$. This indicates that the second condition in Corollary 3.1 is never satisfied. This yields our theorem.

Now, we point out the errors in the proof of Theorem 2.1 in [1]. From the process of the proof we find that the authors of [1] ignored the equivalence of Definition 2.1 and Definition 3.1 and mistakenly substituted a subset R of H^- for H^- ; moreover, they did not realize that R is a complex region including infinity whose upper and lower sides are infinite. For any bounded function Q(z) in this region, the limit of Q(z) as $z \to \infty$ must be bounded. However, according to consistence, we have $Lt_{z\to\infty}\alpha(z)=1$. Thus, without any difficulty, under the conditions of A-stability and $|\alpha_0|<1$ we infer that $(1-|\alpha(z)|)^{-1}$ cannot be bounded in R. Similarly, $z(1-|\alpha(z)|)^{-1}$ cannot be bounded in R if $|\alpha_0|=1$, $\alpha_1\neq 0$ and the A-stable condition is satisfied.

Finally, we'd like to point out that stability analysis of one-step methods by using (2.1) as a model equation is of certain significance. How to modify the definition of S-stability so that one-step methods possessing this property reflect well the error propagation behaviour in practical computation is still worth further research.

References

- [1] A. Prothero, A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. Comp., 28: 125 (1974), 145-162.
- [2] R. Alexander, Diagonally implicit R-K methods for stiff O. D. E. 'S, SIAM J. Numer Anal., 14: 6 (1977), 1007-1021.
- [3] J. R. Cash, Block R-K methods for the numerical integration of initial value problems in ordinary differential equations, II, The stiff case, Math. Comp., 40: 161 (1983), 193-206.
- [4] Zhao Shuang-suo, Xi Yong-qin, Semi-ratio implicit Runge-Kutta methods for solving initial value problems of stiff system of O. D. E., Numer. Math. J. Chinese Univ., 3 (9183), 224-238.
- [5] Zhao Shuang-suo, Zhang Guo-fen, Xi Yong-qin, Semi-ratio implicit R-K methods for solving initial value problems of stiff system of O. D. E., J. Lanzhou University (Natural Science Edition), 21 (3) (1985), 14-23.
- [6] Song Geng, A class of multi-stage hybrid methods, Numer. Math. J. Chinese Univ., 6: 2 (1984), 116-127.
- [7] J. G. Verwer, On generalized linear multistep methods with zero-parasitic roots and an adaptive principal root, Numer. Math., 27: 2 (1977), 143-155.