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Abstract

We prove in this paper that no consistent and well-defined Runge-Kutta
method is S—stable and point out the errors of the theorems on S-stability in

[1].

1. Introduction

To further study the stability of a general R~K method

Yntl = Yn T z bik;, k= hf(tn + cih, yn + Z ai'.fk.f): ¢ = 1(1)r, (1.1)
=1 =1

which is used to solve a stiff initial value problem

yl = f(t: y): y(tﬂ) = Y0, Yo, y:f = RN}tU <t< T: (12)

A. Prothero and A. Robinson presented in {1] the concepts of S—stability and strong
S—stability, and derived necessary and sufficient conditions for both stabilities (The-
orems 2.1 and 2.2 in [1] ). Then they discussed stabilities of several classes of well—
defined and consistent R—K methods and concluded that these methods are S—stable

or strongly S—stable.
Their work has a great influence on the research of numerical methods of stiff

O. D. E.. The concepts and theorems of S—stability and strong S-stability have
been adopted by many authors (see {2]-[7] ).

Based on the definition of S—stability in [1], we now prove that consistent and
well-defined R-K methods are not S-stable, and therefore not strongly S—stable.

Then we point out the errors in Theorems 2.1 and 2.2 in [1].
For convenience, here we introduce briefly the definitions and some main con-

clusions of S-stability and strong S-stability in {1] and adopt the symbols of [1] as
much as we can.
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2. Definition of S-Stability and Some Main Conclusions in {1}

Definition 2.1. A R-K method (1.1) is said to be S-stable if it 15 applied to
the test equalton

V=My-g(t))+4'(t), 9€G (2.1)

- (where X is a complex constant with Re(A) < 0, and G is the set of all functions
defined in [to,T], which have first bounded-derivative), and for any real positive
constant Ag and any ¢{t) € G, there exists a real positive constant kg, such that

l€ns1] < len], VhE (0,ho), VA with Re(—A) > do, tn,tni1 € [to,T]  (2:2)

provided y, # g(t,), where €, = y, — g9(tn).
Furthermore, (1.1) is said to be strongly S—stable if it is S—stable and

ent+1/En — 0, VR E (0, ko), as Re(—A) — o0, tn,tpt1 € [to, T. (2.3)

Since the solution of (2.1) is y(t) = g(t) + (vo — 9(to))e**~*°) and g(t) is quite
arbitrary, the methods with S—stability and strong S—stability are very satisfactory.
That is why many authors studied the construction of S—-stable and strongly S-

stable methods.
Correspondingly to [1], note z = 1/(Ah). Applying (1.1) to (2.1), we obtain

ent1 = a(2)en + hA(2),

where
a(z)=1- bT(A —zI)7le, A= (ai;),
e=(1,1,---,1)%, b= (by,---,b,)7,
B(z) = —Go + b7 (A — 2I) 7 (5(3 — 9(tn)e) - 24,
Go = (g(tn+1) — 9(tn))/h,
§ = (9(tn + c1h),-+,g(tn + erh))’,
§' = (¢'(tn + c1h), -+, g'(tn + c-h)) .

Lemma 2.1. Assume R = {2|0 < Re(—2z) < z} and Z i3 a real posstive
number. Define

e(z,h,e0) = a(z)eg + hB(2), Veo €C, Vhe(0,h), VzER, (2.5)

where k is a real positive number . Then for any g € G, there ezists a real posstive
number ho = ho(Z,€0) < h, such ;hat

(2.4)

le(z, h,e0)| < |eol, Yeo #0, Vhe (0,ho), VzE€R

if and only sf
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i) |a(z)] <1, Vz€ R, and

i) |8(2)l/(1 - |a(z)]) 18 bounded in K.
Corollary 2.1. A well-defined one-step method (1.1) is S—stable if and only
if it is A-stable, and 8(z)/(1 — |a(2)]) is bounded for all z € R and all g(¢) €G.
Theorem 2.1. A well-defined A-stable one-step method (1.1) s S—stable 3f

‘and only sf

i) |ag| <1 and b is finite or
i) |ao| =1, a1 # 0 and the method is stif fly accurate,

where |
&dp — Lt:—ruﬂ(z}: o1 = Lt,___,ﬂz'_l(l = |a(z)|),

by = LteobT (A — 2I) 1 E(2),

E(z) is an r X r* matriz with elements

— &, C,' — C; — 0,
Eij' = C, Gy = C; #* 0,

0, otherwise,

where * is the number of different abscissae, and {C|j=132,.r+} 18 the set of all
different abscissae. We have, without loss of generalily, an order C; < C} #fi <.

Remark. In the next section , we are going to prove that Theorem 2.1 is
wrong and Corollary 2.1 is right if R 1s replaced by the left half plane H (not includ-
ing the imaginary axis) and “for all g(¢)” by “for any g(t)”. But , for convenience,
we still call them “theorem” and “corollary” respectively.

Theorem 2.2. A well-defined S—stable one—step method (1.1) is strongly
S—stable if and only if the method is L-stable and stiffly accurale.

3. Non-existence of S—Stable R—-K Method

According to the lemma, corollary and theorem in Section 2, Prothero and
Robinson discussed in [1] the S—stability of several classes of R-K methods and
obtained corresponding results. For example, they concluded that an A-stable Euler
method Yntr1 = Yn+hf(tnt1, Yn+1) i8 strongly S-stable. In fact, as a(z) = z/(z—1),
B(z) = 2/(z - V)[g'(tnsr) - Lnttd= 9] p(z) = 1,4 = 1,b=1,C1 = 1,r =
¢* = 1, thus ag = 0,05 = 1, by Theorems 2.1 and 2.2, the method is S-stable
and strongly S—stable. On the other hand, |8(z)|/(1 — la(2)}) = |2|/(]z — 1] - |2|)]
¢'(tns1) — (9(tn+1) — 9(tn))/R|; a8 z — co(z € R) along line z =z + sy(s>2 = —1 and
z is a constant), #(z)/(1 — |a(z)|) is unbounded for any h € (0, ho). By Corollary
2.1 and the remark, the method cannot be S—stable , or strongly S-stable. This
contradicts the results in [1]. '
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To explore this contradiction , we establish:
Lemma 3.1. Suppose Ao, hy are any fized positive numbers,

= {z]z = 1/(Mh), Re(=A)> o, O<h < ho}, H™ ={z|Re(z) <O0}.

Then By = H™. -

Proof. Note D = {z|z= Ah, Re(—Xd)> Xy, 0< h < hg}. We first prove
D = H~. Clearly D ¢ H™; here we only prove H~— C D. Assume 2* € H™ and
take k € (hl;,m) giichy ek Ref—Be) = Ao, Thi o 3 =bi, h*= 1. Cleasly

Re(—A") > o, 0 < h* < hg. and 2z* = A*h* | 30 we have z* € D. Therefore

D > H~. This indicates D = H~. As the transformation z = 1/£ maps D into R,
,and H~ into H™ , we get H; = I-I_

According to the lemma, Definition 2.1 can be replaced by an equivalent def-
inition as follows:

Definition 3.1. A R-K method (1.1} for solving (1.2) is said to be S-atable
if the sequence {¢,} obtained in applying (1.1) to the test equation (2.1) possesses
the followtng properties:

For any g(t) € G, there exists hg > 0 . Whenever g, # 0,

I'Eﬂ"l'l‘ < |Eﬂ‘l Vh E (0, hU)? VE E H_, tn, tn+1 & [tﬂ,T]-

In addition , if €,41/€n — O for Yh € (0,ho) as Re(—A) — oo, (1.1) ia said to be
strongly S-stable. | |

Also, we can establish a lemma corresponding to lemma 2.1:

Lemma 3.2. Define €(z,h,e0) = a(z)eo + hB(z) for all complez eo, all real
h € (0,h) and all z € H~, where h ts some posilive real number . Then for any
g € G , there exists a real positive number hg = ho(eo) < h such that

le(z,h,e0)| < leo|, Veo #0, Yhe (0,ho), Vz€ H™,

if and only if
t) af(z) <1, Vz€ H™ ,and
i) B(z)/(1 — |a(2)|) 15 bounded sn H™.
Proof. The theorem can be demonstrated by using the method used in proving

Lemma 2.1 in [1].

From Lemma 3.2, we can get at once
Corollary 3.1. A well-defined one-step method (1.1) is S—stable if and only

i
i) la(2)] <1, Yze H™, and
ii) forany g€ G, B(z)/(1 -~ |x(2)|) is bounded in H™.
The first condition above is an A-stable condition , so S—stability is merely
A-stability with condition ii). However, we have
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Theorem 3.1. Any well-defined and consistent method (1.1) cannot be S-
stable; neither can it be strongly S-stable.

Praaf From consistency, we conclude that a(z) is a rational approxiation of
exp( ); thus Lt, .ca(z) = 1. As Lt,_.of(z) = Go + b7 §, there exists g € G such
that Lt,_.mﬁ(z) # 0. This indicates that the second condition in Corollary 3.1 is
never satisfied. This yields our theorem:.

Now, we point out the errors in the proof of Theorem 2.1 in [1]. From the
process of the proof we find that the authors of [1] ignored the equivalence of Defi-
nition 2.1 and Definition 3.1 and mistakenly substituted a subset R of H~ for H;
moreover, they did not realize that R is a complex region including infinity whose
upper and lower sides are infinite. For any bounded function @(z) in this region,
the limit of @(2) as z — co must be bounded. However, according to consistence,
we have Lt, ,a(z) = 1. Thus, without any difficulty, under the conditions of
A-stability and |ag| < 1 we infer that (1 — |a(z){)~! cannot be bounded in R. Sim-
ilarly, z(1 — |a(z)|)"! cannot be bounded in R if |ag| = 1, ; # O and the A-stable
condition is satisfied.

Fimally, we’'d like to point out that stability analysis of one-step methods
by using (2.1) as a model equation is of certain significance. How to modify the
definition of S-stability so that one-step methods possessing this property reflect
well the error propagation behaviour in practical computation is still worth further

research.
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