Journal of Computational Mathematics, Vol.B, No.3, 1890, 202-211.

COMPARATIVE TESTING OF FIVE NUMERICAL METHODS
FOR FINDING ROOTS OF POLYNOMIALS®

Glenn R. Luecke
(Department of Mathematics, Computation Center, Iowa State Unsversity, US.A.)

James D. Francis
(Depariment of Mathematics, Universily of Washington, U.5.A.)

Abstract

This paper summarizes the resulis of the comparative testing of (1} Wilf’s global bi-
section method, (2) the Laguerre method, (3) the companion matrix eigenvalue method,
(4) the companion matrix eigenvalue method with balancing, and (§) the Jenkens-Traub
method, all of which are methods for finding the zeros of polynomials. The fest set
of polynomials used are those suggested by [5|. The methods were compared on each
test polynomial on the basia of the accuracy of the computed roots and the CPU time
required to numerically compute all roots.

» Introduction

F

This paper summarizes the results of comparative testing of five methods that find all
zeros of a polynomial. Twenty-five polynomials were used which were designed to test po-
tential weakness in such algorithms; see {5]. All computer runs were made on a National
Advanced Systems AS/6 computer using the SVS operating system and using the WAT-
FIV FORTRAN compiler in double precision, which means about fifteen decimal digits of

accuracy.

Methods tested

1. The Jenkins—Traub Method (JTM)

A description of this method can be found in [3]. The IMSL Library [2] routine ZRPOLY
was used to implement this method for polynomials with real coefficients, and the IMSL
Library routine ZCPOLY was used for polynomials with complex coefficients.

2. The Laguerre Method (LM)

A description of this method can be found in [1]. The IMSL Library routine ZPOLR is
an adaptation of the program ZERPOL developed by B.T.Smith {7]. This routine will only
find approximations to the roots of polynomials with real coeflicients.
3. The Eigenvalue Method (EM)

It is well known that if A is the n X n companion matrix of a polynomial p of degree
n, then the characteristic polynomial os A is a known scalar multiple of p; see [6]. Thus,
the eigenvalues of A are the roots of p. Since A is an Upper Hessenberg matrix, the IMSL
Library routines EQRH3F (for real A) and ELRHIC (for complex A) were uged to compute
the eigenvalues of A.
4. The Eigenvalue Method with Balancing (EMB)

This method is identical to the companion matrix eigenvalue method mentioned above,
except that the matrix A was balanced (see [2]} before the eigenvalues of A were computed.

 * Received October 4, 1987,

Comparative Testing of Five Numerical Methods for Finding Roots of Polynomials 203

The IMSL Library routines EBALAF (for real A} and EBALAC (for complex A) were used

to balance A.
5. The Wilf Method (WM)

A description of this method can be found in [8]. The computer algorithm for this
method was kindly sent to us by Dr. Herbert Wilf. In the process of testing this routine,
several bugs were found in the FORTRAN code received and appropriate corrections were

made.
Test Polynomiﬁla

Test polynomials used are those suggested by [5]. Each polynomial was designed to test
for a specific potential problem. Even though this report gives some of the test polynomials in
factored form, the factors were multiplied out exactly and the coefficients of the polynomial
in the form ag + a;z + azz* + - - - 6,z were used by each method to determine the roots.
The following is a list of fourteen polynomials p;(2), - - -, p14(2) from which the twenty-five
test polynomials Ezl, - -, Ez25 are derived.

(1) p1(2) = B(z — A)(z + A)(z — 1) with A = 102, B=1(Ex1); A=10° B =1
(Ex2); A=10°, B=1(Ex3); A=2,B=10"% (Ex4); A= 2,B=10° (Ex 5}. p1(2) is
designed to test whether relatively large or small zeros or whether large or small coefficients
cause difficulty fgr the method; see [5].

(2) palz) = (z—1){z —2)(2—3) - - - (z— N) with N = 5 (Ex 6) and N = 10 (Ex7). This
polynomial is ill-conditioned for large values of N in the sense that the magnitudes of the
coefficients vary considerably. The leading coefficient is one while the constant term is N!.
This causes extreme variation of the polynomial between consecutive roots which can affect
the convergence of some methods. N should be chosen small enough so that all coefficients
can be represented exactly. . |

(3) pa(z) = (z— 10~1) {2~ 10"2) .- (2 — 10™N) with N = 3 (Ex 8) and 4 (Ex 9). For
this polynomial the coefficient of 2™ is one and the constant coefficient is 10™"'.p3(2) is
designed to test for underflow in its evaluation and the ability of a method to distinguish
zeros that are close together.

(4) pu(z) = (z — -1)%*(z — .5)(z — .6)(z ~ .7),(Ex 10). This polynomial, along with ps
through ps, have one or more multiple roots and/or “nearly” multiple roots (i.e. distinct,
but nearly equal roots), which can cause convergence difficulties for many algorithms.
C(8) ps(z) =z —.1)*z - .2)%(z — .3)%(2 — .4), (Ex 11).

(8) ps{z) = (z — .1){z — 1.001){z — .998){z — 1.00002)(z — .99999), (Ex 12).

(7) p1(2) = (2 — .001)(z — .01)(z — .1)(z — 1)}{(z — 10)(z — (.1 + As)}(z — (.1 — As)) with
A =0, (Ex13), A = .1 (Ex14), A = .001 (Ex15). This polynomial has a multiple root at 0.1
when A = 0 and a “nearly” multiple root when A is small.

(8) ps(z) = (z + 1)°,(Ex 16).

(9) po(z) = z°—1, (Ex 17). The five roots of this polynomial are equimodular roots which
can cause convergence difficulties, especially for algorithms which use power techniques to
separate such roots. | ‘

(10) piol2) = (2° — A~1)(2% + A) with A = 10° (Ex 18) and 10'° (Ex19).

(11} p1i(z) = (z — A)(z — 1)(z — A™!) with A = 10° (Ex20) and 10° (Ex21). py, is
designed to test the accuracy of methods that compute roots one (or one complex pair) at
a time and then use deflation to calculate the rest.

204 GLENN R.LUECKE AND JAMES D.FRANCIS

(12} pi2(2) = H (z — exp(tkx/2m)) H (z — 9exp(ikx/2m)) with m = 1 (Ex22]

k=1-m k=m
and 2 (Ex23). pi3 is designed to test for deflation accuracy (as was p, 1)

(13} p1s(2) = (z — (1 +¢))%(z — (4 + 3¢))(= — (4 — 3t))(= — (3.999 + 33)), (Ex 24).

(14] P14 [3’) (E - (1 -+ I))EIE e { 1-— 2!))(3 = (1 '—1)) [EJE 25) P13(Z) and Pi4 (E’] have
complex roots and complex coefficients and were included to have some comparisons of the
methods for polynomials of this type. The IMSL routine for Laguerre’s method would not
accept polynomials with complex coefficients.

Results of Testing

Each method produced the correct number of roots except Wilf’s method. Wilf’s method
probably would have produced the correct number of roots for each test polynomial if the
job had not been cancelled due to excessive execution time. Table 1 gives the number
of roots produced by Wilf’s method (W-Roots), the correct number of roots (Roots), the
execution time in seconds for Wilf’s method (W-CPU), and the largest execution time
(CPU) in seconds of all methods excluding Wilf’s method. Only the examples for which
Wilf’s method did not produce all roots are listed.

Table 1. Exampjes for which Wilf'as Method did not produce all roots

W-Roots Roots-CPU CPU

Ex1 0 3 80 035
Ex2 0 3 80 035
Ex4 1 3 80 035
Ex9 2 3 30 056
Ex12 4 5 30 235
Ex20 1 10 90 1.28
Ex21 1 10 90 1.24
Ex22 2 3 60 029
Ex23 0 3 60 021

The exact roots are known for each test polynomials so the absolute and relative error
were calculated for each root. The following tables report the maximum absolute error,
the minimum absolute error, the avera.ge absolute error, and the average relative error for
each method applied to each example. “co® in the chart means that the method did not

produce enough roots to calculate the error. “NA” for some of the Laguerre’s method results
means “Not Appropriate” since the IMSL version of Laguerre’s method could not handle

polynomials with complex coefficients. Recall
“JTM” stands for the Jenkins-Traub Method,
“EM?® Stands for the Eigenvalue Method; = ty -
“EMB” stands for te Eigenvalue Method with Ba.lancmg,
“LM” stands for the Laguerre Method, and

*WM” Stands for the Wilf Method. -
The table titles should be self-explanatory. For example, “maximum absolute error” means
each number reported is the maximum of the absolute errors calculated for each root of the

given test polynomial. All numbers reported are rounded.

Comparative Testing of Five Numerical Methods for Finding Roots of Polynomials

Fx1
Ex2
Ex3
x4
Ex$5
Ex6
Ex7
Ex8
Ex9
ox10
Exl11
Ex12
Ex13
Ex14
Ex15
Ex16
Ex17
Ex18
Ex19

Ex20

Ex21
Ex22
Ex23

Ex24
Ex25

Ex1
Ex2
Ex3
Ex4
Exb
Ex6
Ex7
Ex8
Ex9
Ex10
Ex11
Ex12
Ex13
Ex14
Ex15
Ex16
Ex17
Ex18
Ex19
Ex20
Ex21
Ex22
Ex23
Ex24
Ex25

JTM
1.2 x 107%¢
9.0 x 10~%1
0.0 x 107°
0.0 x 1079
0.0 x 10~Y
1.7 x 1014
3.4 x 10711
1.0 x 10717
1.0 x 10~47
3.6 x 1073
6.5 x 10~
7.7 x 1074
1.4 x 1077
7.1 x 10~ 17
2.4 x 10712
6.0 x 10~8
5.0 x 10~16
23 x 1071®
3.6 x 10—
2.0 x 10~13
3.0 x 10722
2.0 x 1016
1.5 x 10~ 13
0.4 x 10710
8.8 x 10~10

EM
9.9 x 102
6.7 x 10~ 11
1.0 x 107°
8.0 x 10~18
7.0 x 1018
2.4 x 10713
1.9x 10~°
0.2 x 1071®
1.2 x 10~7
6.7 x 10™°
1.4 x 1072
4.0 x 10~°

2.5 x 1079 |

7.6 x 10~ 12
1.6 x 10~11
1.4 x 1073
2.6 x 10711
2.6 x 10710
2.3 x 10}

4.3 e 10732

2.0 x 10710
5.4 x 1071°
1.6 x 10~
5.0 x 1078
1.3 x 10~8

EMB
1.4 x 10715
1.1 x 1071°
1.4 x 10~7
8.0 x 10~1%
7.0 x 1018
1.0 x 1012
1.5 x 1078
3.0 x 10—1°
1.2 x 107
2.0 x 10~°
4.3 x 1074
4.0 x 10~°5
8.9 x 107
7.4 x 1014
1.6 x 10~ 11
7.8 x 104
2.6 x 10711
2.6 x 1010
1.4 x 1071
1.1.5% Jp2d
1.3 x 107°
5.4 x 107 1°
1.6 x 10713
7.1x 10~8
8.0 x 10™°

Table 3. Minimum Absolute

EMB
8.0 x 1028
1.0 x 10721
0.0 x 1079
0.0 x 10~°
0.0 x 197°
9.0 x 1015
4.0 % 1{]‘“;:

Table 2. Maximom Absolute Error

LM
2.0 x 10—16
2.0 x 1018
0.0 x 107°
0.0 x 107°
0.0 x 107°
1.2 x 1013
6.0 x 1010
1.0 x 10~
1.0 x 1017
7.8 x 1077
4.4 x 10™*
4.0 x 104
1.7 x 10~¢
3.1 x 10~%°
6.0 x 10713
2.8 x 1073
2.9 x 10716
3.1 x 10~1%
3.0 x 10714
2.0 x 10—1°
0.0 x 107°
6.0 x 10716

1.5 X 10-13_

NA
NA

205

206

Exl

Ex2

Ex3
Ex4
Ex5
Ex6
Ex7
Ex8
Ex9
Ex10
Exil
Ex12
Ex13
Ex14
Ex15
Ex16
Ex17
Ex18
Ex19
Ex20
Ex21
Ex22
Ex23
Ex24
Ex25

Ex1
Ex2
Ex3
Ex4
Exb
Ex6
Ex7
Ex8
Ex9

Ex10

Exl11
Ex12
Ex13
Exi4
Ex15
Ex16
Ex17
Ex18
Ex19
Ex20
Ex21
Ex22
Ex23
Ex24
Ex25

FﬂrdPﬁhﬂﬂshtchdﬂﬂhl?iHHhiﬂtﬂF*HHNIGEJC§CﬁC}ﬁHh
Hmmmcqﬁmomthpahbh@haocmm
X
P
-

5

JITM
43 % 107"

43 x 107%

0.0 x 107°
0.0 x 1079
0.0 x 107°
7.0 x 10716
1.8 x 101
3.3 x 1018
2.6 x 10~ 18
1.8 x 1078
3.8 x 10~°
3.1x 104
4.4 x 108
1.3 x 10~17
6.7 x 10714
2.5 % 10~8
3.0 x 10~ 16
1.1 x 10~ 16
1.1 x 10-14
6.7 x 10~14
1.0 x 10722

1.6 x 10— 16-

3.8 x 10~ 14
2.2 x 10~10
4.4 x 1010

JTM

x 10~ 19
X 10—”
x 109

x 10~°

X

jmack

3
[y
cn

x 1012

XXX
bk ok ok
1585
bt
3 -3

x 1070

EM
6.6 x 107°

44 % 10~
6.7 x 10~
5.3 x 10718
4.7 x 10~18
1.3 x 1012
6.4 x 10719
6.0 x 1015
6.8 x 10~8
3.4 x 10~8
8.1 x 104
1.6 x 10~°
1.1 x 10™°8
2.4 x 10712
4.5 x 10™°
1.4 x 1073
2.1 x 1011
1.0 x 1071°
1.2 x 101
3.7 x 10713
6.7 x 10711
3.9 x 1010
4.5 x 10-15
1.0 x 108
6.5 x 1079

EM
x 1013
X 10‘5
x 1071
10-—-15
10—15
10—14
10-—11
10~ 12
107°
10~°
103
10~°
x 104
x 10—10
x 1078
x 103
x 10714
x 10—
x 101
10-—15
10—13
x 10~ 1°
0-—-14

10'

KK){XX}(K){

hHthHmMHI—lh!ﬂHHmwmmtﬂmmmm#m
c:uh-mthHuunmmwmmmmqmmmqm.&q

X)(

10~°

GLENN R.LUECKE AND JAMES D.FRANCIS

EMB

4.7x 107

1.5 x 10718

0.0 x 10~8
5.3 x 10~ 18
4.7 x 10~1®
4.4 x 10713
5.0 x 10~°
1.1 x 10-°
6.8 x 108
1.0 x 1078
2.4 x 104
1.6 x 10~%
3.8 x 10~7
1.2 x 10714
2.5 x 1012
7.8 x 1074
2.1 x 10711
1.0 x 10710
2.7 x 10~8
3.7 x 10713
4.3 x 1019
3.9x 10~16
4.5 x 10716
2.0 x 108

4.2 x 10~°

EMB

x 10719
x 10718
x 1016
x 1916

1

1

0

7

3

1 x 1013
0x 1010
0x 1018
2 x 1075
0 x 107°
0 % 10-3
6x 10°5
8 x 10°°
2 x 10716
9x 10710
8
1
1
7
3
5
1
6
A4
0

ml-l:htl:-!—lt-ap-:p:pn:qhuhml—mr-tmba—qwmmnﬂi—-m

x 19—18

Table 4. Average Absolute Error

LM

6.7 x 1071

6.7 x 10”17

0.0 x 107°
0.0 x 10°°
0.0 x 10°°
5.3 x 10714
1.9 x 10~°
4.1x 1018
3.1 % 1018
3.9x 1077
2.2 % 104
1.7 x 104
5.8 x 107
5.2 % 10—1¢
1.7 x 10713
2.3 x 1072

2.1 x 1071€.
9.5 x 1016

8.3 x 10~15
6.7 x 100
0.0 x 107°
4.5 x 10718
3.8 x 1014
NA
NA

Table 5. Average Relative Error

LM
2.0 x 1016
6.7 x 10~17
0.0 x 1017
0.0 x 107°

mnn::qmqwm-qmm-qmtnmc

2.0 x 10718
5.7 x 1014
1.8 x 10~8
56 x 1079

Wi o
X X

[

Ny

&

R N Ny L

Comparative Testing of Five Numerical Methods for Finding Roots of Polynomials

Ex1
Ex2
Ex3
Ex4
Ex5
Ex6
Ex7
Ex8
Ex9
Ex10
Ex11
Ex12
Ex13
Ex14
Ex15
Ex16
Ex17
Ex18
Ex1G #
Ex20
Ex21
Ex22
Ex23
Ex24
Ex25

JTM
1.2 % 107
1.2 x 1072
1.1 x 1072
1.3 x 102
1.4 X 1072
3.9 x 10~2
1.3 x 101
1.2% 10%
2.1 x 1072
4.2 x 1072
1.1 x 10~1
2.8 x 10~2
3.2x10°°
5.6 x 1072
5.7 x 10~2
3.0 x 1077
6.8 x 1072

1.6 x 10~1

1.6 x 10!
1.2 x 10~2
1.2 x 1072
3.5 x 1072
7.5 x 1072

1.5x 107!

1.1 x 10™1

EM
1.0 x 1072
1.6 x 10~2
7.0 x 1072
2.9 x 10732
2.9 x 1072
1.2 x 101
6.8 x 10™1
2.3 % 10~
45x%x 1072
2.7 x 101

9.0 x 101

2.2 % 10~
2 7% 101
2.1 x 1012
2.7 x 1071
3.3 x 107!
2.7.x 1071
1.1 x 107°
8.1x 1071
1.5 x 1072
1.1 x 10~2
7.9 x 1072
3.6 x 1071
8.4 x 1072
5.3 x 1072

EMB
1.9 x 10~2
2.4 x 1072
2.2 x 10732
3.3 x 1072
3.3 x 1072
1.4 x 10~}
8.1x 10!
3.0 x 1072
5.6 x 1072
3.2 x 10~1
1.1 56100
2.4 x 1071
3.4 x 1071
2.6 x 10!
3.3 x 10!
3.1 x 10!
2.8 x 10~
1.3 x 10°Y
1.2 x 107°
2.1 % 1072
2.1 x 102
8.8 x 1072
4.2 x 101
1.0 x 10~1
7.0 x 1072

Table 8. CPU Time in Seconds

LM
3.5 x 102
3.5 x 1072
1.8 x 1072
3.5 x 102
3.5 x 1072
1.0 x 1074
2.8 x 10~
3.5 x 102
5.5 x 10~2
2.1 x 1071
7.6 x 10~1
8.3 x 10~2
1.5 x 10™1
1.3 x 1071
1.9 x 107}
1.7 x 10™1
1.5 x 1071
2.9 x 10~
2.9 % 107!
2.9 x 1072
2.9 x 1072
6.4 x 1072
2.0 x 101

NA

NA

WM
8.0 x 1011
8.0 x 1071
4.6 x 1079
8.0 x 107!
5.2 x 10°9
7.9 x 107°
2.3 x 10+1
6.8 x 10~°
3.0 x 101!
6.3 x 10~°
8.2 % 107°
3.0 x 10*!?
2.9 x 1011
1.7 x 10*?
1.6 x 10+t
6.0 x 10~1
7.7 x 10~°
9.0 x 1011
9.0 x 10711
6.0 x 101
6.0 x 1071
5.1 % 10~°
1.9 x 10+
5.4 x 1070
3.7 x 107°

207

Table 6 reports CPU times in seconds. Many of the CPU times were small compared to
accuracy of the clock used (accurate within a hundredth of a second). In order to accurately
measure CPU time, shorter jobs were iterated several times within a single job run and -
CPU times were computed by dividing total CPU time by the number of iterations. Since
a time sharing system was used, runs were made stand alone at night so that a particular
job stream would not skew the CPU times reported.

Conclusions

When attempting to draw conclusions from the above data, it is important to keep
in mind that the test polynomials used were designed to test for known specific potential
problems that root solving routines, in general, have. Secondly, how one draws conclusions
from the above data may depend on the specific application one wants to make of a root
finding routine. For example, if only a few polynomials need to have their roots found, the
CPU time is likely not to be very important whereas someone needing the roots of thousands
of polynomials of reasonably high degree might be very concerned about efficiency. Clearly
accuracy and efficiency play a joint role in evaluating performance. A generally inaccurate
method is worth little even though it may be very efficient.

One way to compare the relative worth of the five algorithms is as follows. Let k be a
positive integer and define a relative performance index Px,0 < FP; < 1, for each exampie

208 GLENN R.LUECKE AND JAMES D.FRANCIS

problem, as
P = g - (uk/ﬂ'k),_

where |
1, if the average relative error < 10~%,
(a) g =

0, if the average relative error > 107%,

(b) ux is the smallest CPU time of all methods whose average relatwe error is < 10~%
for the given example problem, and

{c) vy i8 the CPU time of the method under consideration.
For example, if the average relative error for algorithms JIM, EM, EMB, LM and WM
were 10710 10711 10-12 1013 and 10~ 4, and if the corresponding CPU times are 1, 2, 3,
4, and 5 seconds {respectively) and if k£ = 12, then the performance indices for these five
algorithms are 1, 1/2, 1/3, 0 and 0, respectively. Thus, if an algorithm cannot achieve small
enough average relative error, then it is given a gero performance index and the remaining
algorithms are evaluated on the basis of relative CPU times. (P; = 0 means poor relative
performance; P, = 1 means best relative performance.)

Tables 7 and 8 list the performance indices (rounded) for k = 10 and k = 4 respectively.
The last row in each table, labelled “Total”, is the sum of the performance indices for the

algorithm listed above it. This “Total® will then give a performance rating of an algorithm
over all examples used.» Since Laguerre’s Method (LM) was not applicable to Ex24 and

Ex25, the “Aver” row is the average (rounded} performance rating, which should be used
to compare the “performance” of the different methods. Notice the relative values of these

averages are roughly the same for Pyo and Pj.

Table 7. Pyo Performance numbers using average relative error

JTM EM EMB LM WM
Ex1 1.00 000 063 034 0.00
Fx2 1.00 000 050 0.34 0.00
Ex3 1.00 000 050 061 0.00
Ex4 1.00 045 039 037 0.00
Ex5 1.00 048 0.42 0.40 0.03
Ex6 026 083 071 100 0.01
Ex7 1.00 0.19 016 046 0.00
Ex8 1.00 052 040 0.34 0.02
Ex9 1.00 000 000 0.38 0.00
Ex10 0.060 0.00 000 0.00 0.00
Exil 000 000 000 000 0.00
Exi2 0.00 0.00 000 000 0.00
Exi3 000 000 000 0.00 0.00
Ex14 1.00 000 022 043 0.03
Ex15 1.00 0.00 0.00 0.30 0.04
Ex16 000 000 0.00 0.00 0.00
Ex17 1.00 025 024 045 0.00
Ex18 1.00 0.15 0.12 055 0.00
Ex19 1.00 000 000 0,55 0.00
Ex20 1.00 080 0.57 041 0.00
Ex21 092 100 052 038 0.00
Ex22 1.00 044 040 055 0.07
Ex23 1.00 021 O0.18 38 0.04
Ex24 000 000 000 -‘NA 000
Ex25 0.00 0.00 000 NA 000
Total 17.18 5.32 5.96 8.24 0.24
Aver 069 021 024 036 001

209

Comparative Testing of Five Numerical Methods for Finding Roots of Polynomials

Table 8. P, Performance numbers using average relative error

22883838885285338888885383&5

-0921ﬁﬂ33mm42ul0m22?2ﬂ3461.4_
LS o i b v B O OO et v L0 LD el OO0 B LS O

IIIIIIIIIIIIIIIIIIIIIIIIII

PO =oOWOOPIP=HO MO
OOO0OMNMOO—OMOIHMQQ M

IIIIIIIIIIIIIIIIIIIIIIIIII

lllllllllllllllllllllllllll

Table 8. Pio Performance numbers using maximum abaolute error

=R2223838338888888888853885

llllllllllllllllllllllll

P ettt = =T = 1=1=1-1-1=T=T=f=l=Yol o] ~{of=f=l=

....................... s
e eoaomeCcao0c0000000000RTINS

22232958983838858388:835883 %

llllllllllllllllllll

lllllllllllllllllllll

210

Table 10. P, Performance numbers using maximum absolute error

~JTM EM EMB LM WM
Ex] 083 100 053 0.29 000
Ex?2 100 075 050 034 0.00
Ex3 1.00 000 050 061 0.00
Ex4 100 045 039 0.37 0.0
Ex5 100 048 042 040 0.00
Ex6 026 008 007 100 0.0
Ex7 100 019 016 048 001
Ex8 100 052 040 0.34 0.00
Ex9 100 047 038 0.38 0.00
Ex10 100 016 0.13 0.20 001
Exi1l 100 000 000 000 0.0l
Exi2 000 100 092 0.0 0.0
Exi13 005 056 044 100 0.01
Exl4 100 027 022 043 0.00
Exl15 100 021 017 030 0.00
Ex16 100 000 000 000 0.00
Ex17 100 025 024 045 0.00
Ex18 100 015 0.2 0.55 0.00
Ex19 100 000 013 0.55 0.00
Ex20 100 080 057 0.41 0.00
Ex21 092 100 052 0.38 0.00
Ex22 100 044 040 0.55 0.01
Ex23 100 021 018 0.38 0.00
Ex24 056 100 08¢ NA 0.02
JEx25 048 100 076 NA 0.14
. “Total 21.10 10.99 899 039 0.21
Aver 084 0.44 036 041 0.01

GLENN R.LUECKE AND JAMES D.FRANCIS

To determine how much effect using “average relative error” has on the relative perfor-
mance indices for these algorithms, we compute a performance index Pi exactly as defined .
above except that we now only use “maximum absolute error” instead of “average relative
error”. Tables 9 and 10 indicate the new values of the performance indices.

Whether one uses average relative error or maximum absolute error seems to have hitle
effect on the overall relative performance of these five methods on this set of test polynomi-
als. In all cases Wilf’s method gave significantly superior performance over the other four
algorithms whether or not one used average relative error or maximum absolute error, and
whether or not one used an error cut-off of 10™4 or 10719

References

1] E. Hansen, M. Patrick and J. Rusnak, Some modifications of Laguerre’s method, BIT,
17 (1977), 409-417.

2] IMSL Library Reference Manual, Vol. I-III, International Mathematical & Statistical
Libraries Inc., Houston, Texas, 1980.

(3] M.A. Jenkin a.nd J.F. Traub, A three—stage a.lgorlthm for real palyncrmmls using quadratic
iteration, SIAM J. Numer. Anal., T : 4 (1970), 545-566.

|4] M.A. Jenkin and J.F. Traub, A three—stage variable shift iteration for polynomial zeros

~ and its relation to generalized Rayleigh iteration, Numer. Math 14 (1970), 252-263.

Comparative Teating of Five Numerical Methods for Finding Roots of Polynomials 211

(5] M.A. Jenkin and J.F. Traub, Principles for testing polynomial zero finding programs,
ACM Trans. Math. Software, 1 (1975), 26-34.

[6] L.W. Johnson and R.D. Riess, Numerical Analysis, Addison—-Wesley, 1977.

[7] B. T. ZERPOL Smith, A gzero finding algorithm for polynomials using Laguerre’s method,
Proc. of the 1967 Army Numerical Analysis Conference (ARO-D Report 67-3, Catalog

No. AD-825 963).
[8] H.S. Wilf, A global bisection algorithm for cnmputmg the zeros of polynomials in the

complex plane, J. AMC, 25 : 3 (1978), 415-420.

	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg

