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Introduction

In the present paper, numerical algorithms for calculation of stratified fluids naturally
adapted for parallel computations and allowing one to estimate changes of the river temper-
ature condition downstream of hydroelectric stations according to temperature stratification
of the reservoir and water intake conditions have been described. Practice has shown that
building hydroelectric stations with deep-water reservoirs leads to appreciable changes of
the hydrothermal river condition both up stream and downstream of the waterworks facil-
ity. - In deepwater reservoirs, temperature stratification is established; water temperature
changes appreciably with depth. Theoretical and experimental studies have shown that the
flow pattern of a non-homogeneous fluid in the near dam part depends on the stratification
character, water discharge and position of intake apertures.

Before describing numerical results, we shall briefly review numerical methods of simu-
lation of flows of stratified fluids.

§1. A Review of Works on Numerical Simulation of Flows of Stratified Fluids

Reviws of the theory of stratified flows are given in [1,2). Studies of flows of viscous
incompressible density stratified fluids in a gravitational force field are based on the consid-
eration of a complete set of the Navier-Stokes equations
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Here V is the velocity vector, p is the pressure, p 18 the density, v is the coeflicient
of kinematic viscosity, and g is the gravity force. In describing dynamical processes, use
is made of Oberbeque-Boussinesq model [3,4], according to which only the change of fluid
density is taken account of in buoyancy forces
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where po = comnst. is the characteristic density value. From the view-point of hydrody-
namical theory, Oberbeque-Boussinesq equations differ Little from Navier-Stokes equations
for incompressible fluids. However, the small differences can result in rather appreciable
cfects and sometimes in initiation of motions impossible in the absence of stratification.
Numerical schemes for 3 study of stratified flows retain all specific properties of schemes for
equations of a homogeneous fuid and contain some specific properties associated with extra
calculations of the density field.

At present, a great qumber of numerical methods of solving Navier-Stokes equations
are known [5-9]. Among the methods of computational hydrodynamics, finite-difference
methods are the most common which we shall confine ourselves to. Methods of solving
Navier-Stokes equations can be divided into two main groups. The first is connected with
the introduction of the function of the current ¥ at the vorticity w and transformation of
the initial system of equations to the system of equations relative to (¥,w)

%;4—(?-?)@:1:&{.0,

'&T)b:"_wr (13)
- % .0
T 8y’  fz

Here u,v are the velocity vector projections. The advantage of such an approach is that
there is need to take care of solenoidality of the velocity field (the condition 1s fulfilled
automatically). However, there arise Jifficulties associated with setting boundary conditions
on the stream function and vorticity. Such methods are restricted to the case of two-
dimensional Hows.

The other group is a solution of Navier-Stokes equations in primitive variables “velocity-
pressure”. The main difficulty with such an approach consists 1n defining a boundary condi-
tion for the pressure. Historically the major share of numerical methods has been developed
applicable to a system of equations in Helmholtz {1.3) form. Initially, the methods were
based on using explicit schemes such as a scheme with differences upstream (with donor

cells) [10]
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the scheme “forward in time — central in space” 5,10
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and Lait’s scheme [5,12] (for a transport equation)
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These schefnes possess the advantage that on passing from one temporal layer to the
next one, a simple recount is required. However, the stability condition is rather limited
and, for a number of problems, one has to use too small a time step. The implicit schemes
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3
S (R = pau, At = a1

possess better stability criteria but are complicated since they require handling of tri-
diagonal matrices. With an implicit approximation transport equations with a diffusion
vorticity perturbation at one point instantly influence the whole area. Lately, the most
popular are implicit schemes of the method of variable directions |7, 12, 13| and splitting
schemes [14]. The scheme of the method of variable dircctions for a parabolic equation
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(r is the time step). The splitting algorithm based on the usage of implicit schemes of the
first order of approximation in time, has the form
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where

e
A=) Ay, Aa20, n2>2
a=1

High order of approximation combined with unconditional stability permits one to obtain
good results at large Reynolds numbers with comparatively small expenditures of machine
time.

In the numerical simulation of a system in stream function-vorticity variables, as a rule,
an overlapped grid is used, when all the unknown quantities are determined at the same
points. In [15] use is made of hybrid grids with spaced velocities, which possess somewhat
better dispersion properties [16]. A considerable problem in numerical simulation in variables
of stream-function vorticity is the setting of a condition for the vorticity at the no-slip
boundary which 1s absent in the physical statement of the problem. The condition of the
first order of approximation, first suggested by Thom [17]

w; = 2(%2: i) (1.12)

where A 1s the distance along a normal to the wall from the nearest to the boundary nodal
point 7 + 1 to its projection 7 on the wall, has successfully been used by many researchers.
Conditions of a higher 6rder of approximation are considered in (18, 19,7]
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However, their application is solving some problems resulting in the occurence of insta-
bility. In [7] consideration is given to numerical boundary conditions ehsuring immediate
fulfilment of a no-slip condition at the solid boundary. The idea of this approach is as fol-
lows. Let the sclution of system (1.3} be sought in the region {1p; 1, is the auxiliary region
(3 C o), whose boundaries are one grid interval from the boundary of the main region
{l,. Equations for the vortex are solved mn the region {1, and equations for the stream
function are solved in the region {l3. Boundary conditions for the vorticity at the boundary
of the region {1}; are defined proceeding from the equation for the stream function. The
magnitude of the stream function at the boundary {1; is corrected with a difference analog

J
of the condition ( 3_1:-)1‘ = (. It should be noted that employment of the above boundary

conditions 1n applying implicit schemes leads to a decrease of stability of the main scheme.
For stationary problems an increase of stability 1s achieved by using relaxational formulae for
boundary conditions |7], according to which the magnitude of the vorticity at the boundary
is obtained in the form

witt =af($"*') + (1 — a)w?, (1.14)

where o is the relaxation parameter, varying within the limits 0 < a < 1, and f(y¥"*') is
the dependence between the vorticity at the boundary and the stream function of the form
(1.12) or (1.13).

For an unsteady problem, it 18 necessary to introduce an additional iteration process
according to the boundary condition [7], which considerably increases the amount of com-
putations. Recently a number of boundary procedures {8, 20] have been suggested, retaining
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the advantages of implicit schemes. In [8] a technique based on the employment of Green’s
formula for equation (1.2) is considered. In [20] an operator-difference approach of a numeri-
cal solution of unsteady problems is presented, based on the method of total apporximation.
In realizing thus obtained schemes the restriction on a time step can be stipulated by the non-
linearity of the problem. The principal difficulty in a numerical solution of the Navier-Stokes
equations in natural variables is associated with the calculation of pressure. A significant
stage in the development of equation solving methods of an incompressible fluid is the idea
of introducing an artificial compressibility into the continuity equation [14, 21]. To solve a
steady problem, use is made of the following unsteady system

% ¥ (V . ";")V + Vp = H&V, (1'15)
dq .
_3?-" div V =0, (1.16)

V3 . : ;. ;
where ¢ = p + S org=p. The main technique of obtaining an equation for the pressure
consists in applying the div operator to the conservation of momentum. As a result, one

obtains an elliptic type for pressure
»

. Ap = — div ((V - VIV), (1.17)

whose solution ensures a solenoidality of the velocity vector. Such an approach was consid-
ered in [22] when developing the MAC method and in [6, 23]. In the works [14, 24] it is
suggested using an evolutionary equation for pressure (1.16) {¢ = p), associating a velocity
divergence and a pressure derivative with respect to time, to solve unsteady problems. In
the numerical solution of the Navier-Stokes equations in primitive variables, as a rule, a
grid with staggered velocities is used which allows one to ensure a fulfilment of conserva-
tion laws in a difference form and to use central-difference approximations of the second
order. For equations in primitive variables, one need not define the vorticity at the no-slip
boundary [6]; physical conditions V' = V|p are set at all the boundaries. However, to define
pressure from the equation of an elliptical type, it is required to assign boundary conditions
which are absent from the initial statement. Numerical schemes for equations in velocity-
pressure variables are generalized for a case of spatial flows. Splitting methods are used
widely in solving multidimensional problems [9, 14]. The idea of splitting associated with
handling the pressure forms the basis of the particle method in cells [22, 25]. According to
this scheme, an intermediate velocity field is calculated first from the momentum equation
without accounting for the pressure

pnrt+l/2 _pn

T

(V- V)PT =0 AV (1.18)

Then, this field is corrected to take account of the pressure gradient [15]
Pt = prtli2 _ gy (1.19)

where p 18 the steady-state solution of the equation

g— + div V12 = pAp. (1.20)
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A scheme of fractional steps is suggested in [26] and used in |{24], based on the projection
method, where the idea of the splitting particle method in cells is expounded in the projection
formulation:

Ve -—-Vv» . 1 .
- + (V- V)V* = -ﬁ;a? :
Aph+! = % div?*, (1.21)
rn+1 __ 1/
A . v - Vpitl = 0.

In contrast to the splitting schemes used in the noted methods, in the work [6] is used
an explicit splitting scheme by physical factors, consisting of three stages

PV WP AT+ ],
Ap = -% div V*, (1.22)
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In [6] the following physical interpretation of this scheme is suggested. In the first stage, 1t
s assumed that the transfer of momentum is achieved by convection and diffusion only. The
intermediate velocity field thus obtained does not satisty the incompressibility condition;
still it provides the correct description of the vorticity characteristics. In the second stage,
the pressure is sought from the preliminary velocity field subject to the solenoidality of the
final velocity field. In the third stage, it 18 suggested that the velocity field be advanced
by the pressure gradient only. To increase the stability margin, a variant is considered
which, in the first stage, use is made of an implicit acheme. A difference scheme permitting
computation of the flow of a viscous incompresgible fluid without using a boundary condition
for the vorticity at a solid surface possesses a larger efficiency, other conditions being equal.

In variables of stream function-vorticity for a spatial case, the vector potential is intro-
duced: instead of the stream function,

%?+[V—?)m=(m-?)?+—Rl—e-ﬁm+-F%mt F,

V( div ¢) — Ay = @, (1.23)
V = rot ¢ + Vo,

Ap =10,

Here @ is the vortex vector, v is the vector potential, and ¢ is the scalar potential. With this
formulation there arises a problem of assigning boundary conditions for the vector potential,
which is investigated in [27, 28]. The problem of relation between the vorticity and the vector
potential is considered in [29]. In [30,31] in vector potential-vorticity variables, a problem
of convection in a rectangular space is investigated. In studying stratified flows, as a rule,
use is made of the same difference schemes as in the case of a homogeneous fluid. Sphtting
methods for problem-solving of stratified dynamics are given in |6, 32, 33].

In {6, 34, 35] a collapse process of a homogeneous spot in a stratified fluid is studied. In
(6] the impact of stratification on the character of the low about a sphere with a viscous
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Huid is considered. In [36] a numerical simulation of the flow in a stratified reservoir is
made when warm water is discharging into it. In [37] an algorithm is developed and a study
of a spatial flow about a mountain with a stratified fluid is carried out. A study of the

impact of stratification on the character of flow in a flowing reservoir with the account of
a wind effect is carried out in [38]. In [39] the influence of stratification on the quality of
the water intaken from the reservoir is studied. In the work [40] the process of flow past an
obstacle in a stratified fluid is studied, and the origination of the flow choking effect under
some conditions is noted. In [8] an example of calculation of a laminar flow in a channel
with a stratified fluid is given. It is noted that, beyond the boundary of the jet, the flow is
non-stationary. '

At present, for problem-solving of continuous media there have been developed a large
number of numerical algorithms. An a priori guarantee of the reliability of the numerical
solution is based on two theoretical provisions-approximation by a discrete algorithm of a
differential problem and stability of its linearized model. All algorithms are substantiated
asymptotically only, at sufficiently small values of the discretization parameters, i.e. the
spatial-temporal grid sizes, which are seldom obtainable in practice. Thus, there arises a
problem of constructing difference schemes ensuring an assigned accuracy on realistic grids.

A difference scheme should reflect the main properties of the continuous medium. One
of the natural reguirements is the consistency of difference analogs of the main conservation
laws. The significance of conservation is pointed out in [41, 42]. In [41] the notion of
a completely conservative scheme is introduced, for which not only difference analogs of
the main conservation laws hold, as for conservative schemes, but also extra grid relations
are established, which are necessitated by physical considerations. In the work [42] group
properties of difference schemes for problems of gas dynamics are studied onr the basis of
the first differential approximation. Classes of invariant schemes of a different order of
approximation are constructed. The relationship between invariance properties and the
complete conservation of difference schemes is investigated.

In solving problems of incompressible fluid dynamics, the question of defining the correct
vorticity characteristics is of great importance. In a numerical solution it is necessary to
ensure that the vorticity conservation law holds at a difference level. Approximating levels
of impulses by conservative difference schemes does not always appear to ensure fulfilment of
the noted property. Therefore, to conserve vorticity characteristics at a convective transfer,
it i8 recommend to consider the momentum equations in the Gromek-Lamb form:

v TN I |

T+ otV xV=_—AV+_——F4+VP 1.24
3t Re ™ T Fal Y e
In the framework of the noted approach, computations of an iﬁcumpressible homogeneous
fluid in a cubic pit have been carried out, revealing even on a course grid new structures

characteristic of three-dimensional flows-corner vortices and vortices of the Taylor-Goertler
type.

§2. Simulation of a Selective Water Intake of a Stratified Fluid

Now we shall describe results of the numerical simulation of velocity and temperature
fields in stratified reservoirs under different conditions of water intake. Studies on a selective
water intake from a two-layered fluid have been conducted by a number of authors both
theoretically and experimentally |38, 43, 46|. Flows of many-layered stratified fluids with a
continuous change of density were studied less intensively than of two-layered ones.
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The mathematical model of a2 heavy non-homogeneous fiuid flow used below is based on
the following assumptions [47, 48]:

— temperature regime of the reservoir is known and the influence of heat exchange pro-
cesses may be neglected and density is a function of temperature only;

— flows are laminar and the equations of viscous fluid flow are based on the Boussinesq
approximation;

— surface waves do not affect the flow pattern and a free surface is replaced by a rigid

lad.

2.1, Equations of non-homogeneous heavy fluid flow

A numerical study of viscous incompressible density-stratified fluid flow in the field of a
gravitational force is based on the Navier-Stokes equations with a Boussinesq approximation.
The system of Navier-Stokes equations may be written in two equivalent forms [5,6]. In
primitive variables, “velocity-pressure”:

dp _
= TV -¥)p =0,
Vv 5 1 o 1 (2.1)
TR (V-9 = gl Vpt F) + E;ﬁn?,
. AdivV =o0.

Here (z, y, z) is a rectangular Cartesian coordinate system (the y axis is directed downward);
t is the time; the coordinates are related to the characteristic lengh H (H is the depth of
a reservoir); time is related to H/ug, where uo is a characteristic velocity value; p is the
deviation of density from the characteristic value po, related to Ap(Ap = pmax — Prin )3 P 18
the deviation of pressure from the hydrostatic po{po = pogy), related to ApgH; V = (u,v,w)
is the velocity vector, with u, v, w related to the characteristic velocity ug; F = (0, p,0); Re

u.H . ; : ; :
= is the Reynolds number; Fr = is the Froude number; v is the kinematic
v V9HBp[po
v - " . . ' - 3 = a o 3 T "
viscosity coefficient; g is the acceleration due to gravity; V = il + 5k 7, k are
z Z

the unit vectors of the Cartesian coordinate system. In vector potentiaﬂvﬂrticity variables,
the system of equations {2.1) has the form:
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V = rot ¥ + Vo,
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where (o is the scalar potential, ¢ is the vector potential, @ is the vorticity , @ = rot v,
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In the two-dimensional case, if the flow occurs in the plane (z,y),V = (4,v,0), and ¢ = 0,
the vector potential and the vorticity have one component only: ¢ = (0,0,%),& = (0,0, w).
Then the system of equations in variables of the stream function ¢ and vorticity w for
two-dimensional flows has the form:

ap
3¢ + (V- V)p =0,
Sw 1 dp 1
ekt V . |
3t +1 "F’)w Fr2 3z Reﬁw' (2.3)
Ay = —w,
ey 3y
“= Ay’ YT T8z

Numerical methods for solving two-dimensional problems are available for equations written
in variables of the stream function-vorticity [5,6,7], whose common drawback is the use of
this or another’form of a boundary condition for the vorticity on a solid surface, being
absent from a physical statement of the problem. In solving three-dimensional problems,
the Navier-Stokes equations are mainly used in the primitive variables velocity-pressure.
However, there are works |30, 31, 48, 49], in which for a solution of three-dimensional
problems use is made of equations in vector potential-vorticity variables. In |30, 31, 48]
problems of convection are considered in closed volumes; in {48]| three-dimensional leakage
problems in rectangular regions are studied.

2.2. Numenical simulation of two-dimensional flows of stratified fluid

Consider the problem of the flow of a viscous incompressible fluid with non-homogeneous
density in a two-dimensional region with the boundary I' (we restrict ourseleves to studies
of flows in a rectangular region, shown in Fig.1 ). In the general case of a non-rectangular
region, there exists a non-singular sufficiently smooth transformation of the coordinates,
mapping the studied area into a rectangle for solving equations (2.3}, written in new coor-
dinates. One can use a numerical algorithm constructed for a rectangular region. At the
location I'; the fluid flows in; at the location I'; it flows out. I's 1s the rigid part of the
boundary. With the assumption that surface waves are smali and do not affect the outflow
pattern, the free surface can be substituted by a rigid “hd®. The boundary conditions are
: at I'y are assigned density values, stream and vorticity functions; at I'; ~ values of the

stream function, for the vorticity and density “soft” boundary conditions Tk 0 (n is

Y

the normal to the boundary) are set; at I's no-slip conditions ¥ = const, — = 0 are set.

Boundary conditions for the vorticity on rigid walls are defined from the no—shp condition

dv &
by the relationship w = — — 22, At the initial moment, a density distribution by the

dzx Jdy
depth p(0,z,y) = p°(y) is known, and the fluid is considered at rest: —u = 0,v = 0. To
approximate differential equations by the difference ones, a spatial-temporal grid (t,, :, ¥;)
18 introduced: ¢,4; = ¢, + At, 2,41 = z; + Az, y;41 = y; + Ay,, where At is the time step,
and Az;, Ay, are the sizes of grid steps on spatial variables. Let the fields of the vorticity
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w™, stream function Y™ and density p™ be knn:mfn at some moment of the time ¢, = n-At. To
define the functions sought for at the temporal layer t,,,;, apply an explicit scheme for the
splitting method by physical processes [6], [47, 48]. In the first stage, the diffusion equation
for w 18 solved:

w” —wh 1

B R -

in the second stage, transport equations for p and w are solved:

n+l _ n 3 5
ikl AL Y
At gz ay
(2.5)
w** — w* 4 3up+ Juw s
At oz dy
in the third stage, final values of the vorticity and the stream function are defined:
wn+1 — " 1 apn+1
’ At ~ Fr2 3z ' (2.6)
) ﬂ‘lbn"-l . —Wﬂ'+1.

Consider a finite-difference scheme using a hybrid grid (Fig.2). Values of the stream
function 1 are determined at the mesh points, values of the density p and the vorticity w at
the centres of cells, values of the horizontal component of the velocity vector in the middles
of lateral faces, and values of a vertical velocity component are determined in the middles of
upper and lower faces. With such an approximation of velocities, a numerical analog of an
incompressibility equation is satisfied identically. Further, we restrict ourselves to the grid

uniform along the y axis and non-uniform along the z axis. A numerical analog of equation
(2.4) has the form:

We . =wh. 4+ ﬁtiﬁmi_l(wrﬂi g ”E:‘ B ﬁ‘z*(wz:' - ""'?- LJ‘)
i 2 ° Re Az Az (Az; + Azi_) (2.7)
+WE.1'+1 =~ it Wl g
Ay? :
with the stability condition
Re Az2Ay?
At dif < ' at Az; = Az, 2.8
— 2(Az? + Ay?) ' {8
32 3% _

In the near boundary cells in approximating the derivatives 3—:1_; and -é-yfi-, use is made of

the vorticity values at the corresponding faces coinciding with the solid boundary (2, 7) (Fig.
2).- A difference scheme for a solution of equations (2.5) is constructed on the basis of the
integral conservation law. Applying for integrals an approximation of first order accuracy,
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we obtain in the uniform z grid a scheme with the upwind differences

f:;-l = 1,3 (H‘F)?+1f2,_j (HFL 1/2,5 (EF) .7 +1/2 (UF)EJ'—IJZ-"

At n
iv1/25 5 Yikise,i > O
s B Az
(wF)i1y2, = .c‘.'\t
,+1;2_J :1+1,; Az ”?+1,12,J' =0,
A (2.10)
J+1f2f,.1 Ay’ ”EJ’+1f2 B
[UF]1,1+1f2 S
o &t or, <

(2. fm:(ﬂ;::).

The present explicit scheme is conservative and approximates equation (2.5) with first
order for all variables. A study of stability, conducted for a linear equation by the Fourier
harmonic method and by the differential approximation method [42], has shown that at

»

f =

Ju lmax lulmax —1
Aty 2.11
i ( Ax T &y ) { )

the scheme is stable and also monotonic. In the concluding stage from the solution of
equations (2.6), w™*!, " *! are defined:

at Azl (et — p0) + BZAT — Y

ntl ¥ 2.12
Wii TYisT T2 Az; Az (Az; + Az;_) ( ]

and ¥"1?! is found by the successive over-relaxation method {9):

| ,¢,u+1 i wu s K ﬂﬁyg v
L T I T 9(1 + Ay?/Ax [ Az ) Axi(Az + Azi_y)
2Ay° +l
| ™ v < M v+1 2.13
Az;1(Az; + Azi-y) W Vit ™t '.5',__',_1 L
Ay®
—2{1 Ay? - w;

Here K 1s the relaxation parameter, 1 < K <2 An up'tima.l value of the parameter K
for solving the Dirichlet problem in a rectangular domain with the dimension (I X J)Ay is
determined by the relationship {5, 73]

Kopt = 2/(1++/1—¢%), (2.14)
g = % [cus(#/f] + CDE(?I'/J}] . (2.15)

For large values of / anf J,
: (2.16)

Bopt ~ 17 /(2 +1/J3)/2
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The time step for the whole algorithm is estimated from the condition
At < min(Atg:p, Atir), (2.17)

where Atgy;s is the time step for the diffusion equation, and At, is the time step for the
transport equation.

Boundary conditions for the vorticity w are determined at the cell face adjoining the
wall. A unmerical analog of the boundary condition for the vorticity is obtained from the

relationship w = gv au. For instance, on the vertical wall (¢ = 3/2, Fig.2) the condition
& Y
J _ 3
= =0 satisfied, since at the boundary u = 0. Therefore, w = ZY  Since the values of

dy Az
v are known at all horizontal cell faces adjoining the boundary, and v = 0 at the boundary,

to define w the following relationships are obtained

wslz,j . U2,3'+1{2 : UZ}j_l/'z | O(.&I), (218)

or

9{”2,J‘+1;2 + Uz,_f—l,fz) (U3,3+1,!2 T U3 5 1j2)
6 Ax

Analogous expressidns are obtained for other boundaries. Approximating the rest of the
boundary conditions does not cause major difficulties. Numerical simulation of an incom-
pressible fluid flow in the variables of the atream function-vorticity does not require the
overcoming of difficulties arising in approximating boundary conditions for the vorticity.
There exist different mays of solving this problem {5,7], associated with a representation of
the vorticity through the stream function and using an approximation of the no-slip condi-

dy

tion — = 0. The above approach with the use of a grid with staggered velocities possesses

Waf2 ;= (2.19)

the fnlﬂ::wmg properties:
a) since the boundary value of the vorticity w is determined by the known velocity

projections, there is no need to require the condition — = 0 to be fulfilled which, with

the difference approximation, leads to a zero flow rate be?ween the solid boundary and the
nearest point of the grid, or imposes rigid conditions on the profile of a boundary layer in
the near boundary cells, if known algorithms are used |7];

b} in the works [7, 23| it is noted that the use of approximate boundary conditions for
the vorticity can lead to a decrease of the maximum time step as compared to the time step
obtained from a stability analysis of the linear equations.

For stationary two-dimensional flows of a heavy stratified non-viscous fluid, one can
construct an analytical solution (47, 51| which can be used for a qualitative estimation of
the stratified fluid flow pattern, and also as a test for numerical solutions.

2.3. Numerical algorithm for calculation of three-dimensional stratified flows

Consider the Navier-Stokes equations written in vector-potential vorticity variables. Note
some properties of the equation for the vector potential ¢ from (2.2):

1) for the existence of the solution it is necessary for the condition div @ = 0 to be
satisfied;

2) without violating generality, one can estimate that div ¢ = 0 [59]. Therefore, instead
of the third equation in {2.2) one'can consider the equation

A = —@, (2.20)
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provided div ¢ = 0. If one requires that at the boundary (the surface of I' is supposed to
be piecewise smooth) of the region R div ﬂp = 0, a sufliciently smooth solution of equation
(2.20) with the right side satisfying the condition div @ = 0 will satisfy the equation div @
= 01n R. Indeed, having applied to equation (2.20) the operation div, we obtain the Laplace
equation for div ¢ with a zero condition at the border. In the sequel, instead of the third
equation in (2.2) we shall use equation (2.20) subject to the properties 1) and 2). Note that
equation (2.20) has a solution with div @ # 0, yet this solution will not satisfy the third
equaiton in (2.20).

Set boundary conditions for the fiow region in the form of a rectangle 0 < 2 < X,0< 2z <
Z] with the boundary I' (Fig. 3). In the flow problem the following types of boundaries are
possible: input and output jet boundaries, and solid surface (the free surface iz substituted
by a “solid lid”). At every section of the boundary the normal component of the velocity
vector (V - #i)|r = 4(€), where £ € I, and 7 is the normal to the boundary. From this
condition and the relationship div #|r = 0, one finds conditions at [ for scalar and vector
potentials:

92| =e), €er. (2.21)

dnlr
Oy,

$iilp = ¥ulr =0, | =0, (2.22)

=

where ¢, is the normal component of the vector potential, and ;,,,, are the tangent
components.

To approximate equations (2.2), use is made of a grid with staggered velocities (Fig.4).
Scalar potential, density and pressure are determined at the cell centres, vorticity vector
and vector potential projections are determined at the middle of corresponding edges, and
velocity projections are determined at the centre of faces. Vector velocity components are
approximated by relationships of the form:

TR ['ﬂz)i+1f2.j+1j2,k;y(¢:)i+1;2,,-_1;2,;:

(2.23)
($y)iv1/2,50+1/2 = (By)iv1/256-1/2 . Pit1ik — ik
” & :
Az Az

Analogous expressions are used for v and w. If the fourth equation in (2.2) is solved exactly,
in using approximations of (2.23) to form a unmerical analog of the equation, div ¥V =0 is
satisfied identically. It has been noted above that if instead of the third equations in (2.2},
equation (2.20) is solved, then it is necessary at each step on time to ensure satisfaction of
the condition div &™ = 0. Yet, if the second equation in (2.2) is approximated directly, then
this condition is not identically fulfilled. As a result, the solution of equation (2.20) does
not satisfy the third equation in {2.2).

Consider an algorithm for solving system (2.2), (2.20), which provides the vorticity vector
solenoidality at every step on time, does not require setting boundary conditions for the
vorticity at solid surfaces and consists of three stages:

In the first stage, the intermediate field of the velocity vector

7s -y

A LA ) | A Sy L (2.24)

Re Fr2
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and final density values

pﬂ+1

- pn

= —(V - V)p. 2.25
=7 (V-¥)p (2.25)
are defined. The intermediate velocity field V* has a quite definite physical meaning [6]. If we
apply the operator rot to the second equation in (2.2} and to equation (2.24} and take account
of the fact that rot (Vp) = 0, we obtain @™*! = rot V?*! = rot V*. Therefore, even in
the first stage the intermediate velocity field determines the correct vorticity characteristics

for the flow region under study.
In the second stage, from the equation @"*! = rot V* the vorticity is found by a

relationship of the form

W-, +1,k+1/2 — W'. Wk+1/2 V‘. +1/2,k4+1 — V'. +1/2.k
(wz)ij+1/2.6+172 = —2 "&y AR A e Lo (2.26)

For the vorticity, a numerical analog of the condition div @ = 0 is identically satisfied at all
points within the region. Since the vorticity 13 defined through the velocities, no boundary

conditions for it are required at no-slip boundaries.
In the third stage, vector potential components are found from the solution of a mixed

boundary problem (2.20}, (2.22). The scalar potential iz defined from the solution of Neu-
man’s problem (the fodrth equation in (2.2) and condition (2.21)). Note that for stationary
boundary conditions 1t 1s sufficient to solve this problem once. Finite values of the velocity
vector are defined by formulae of the form {2.23).

The pressure field at any step on time can be foun< from the equation

1 1 o

Ap"™ = Fr? . div —AV" + —— F* —- (V™. V)V. 2.27

F Re = i L P

Solutions of discrete analogs of elliptical equations for vector potential cumpnneﬁts, scalar

potentlal and pressure with corresponding boundary conditions are obtained by the over-

relaxation method. To solve equations (2.24), (2.25), use is made of explicit difference

schemes of (2.7), (2.10) type. The present algorithm is naturally adapted for parallel calcu-
lations.

§63. Numerical Results

Stratified fluid flows in rectangular reservoirs are studied for different values of Reynolds
and Froude numbers using the described numerical algorithm.

For reservoirs whose length 13 much more than the depth, a quasi-uniform grid was
apphed. Computations showed that the main parameter determining the flow pattern is the
density Froude number that characterizes the relation of inertia forces to bouyancy forces.
For laminar flows viscosity has a considerably less influence. Numenrical experiments allowed
one to determine critical values of the Froude number Frcr. With values F'r < Frer for the
case of a surface position of the discharge aperture the flow splits into two characteristic
regions: the upper one involves the flow into the discharge aperture; the lower one consists of
low velocities circulating in the bottom region of the reservoir (Fig. 5). With further decrease
of the Froude number, the thickness of the fluid layer associated with the intake aperture
decreases. As a test, use was made of an analytical solution of a steady-state problem for
a case of a linear density dependent on the stream function [47,51|. A non-homogeneous
fluid flow pattern depends on the nature of the density (temperature) stratification. In the
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presence of a strongly pronounced thermo-clyne, separation of fluid arises in the region of
the largest density gradient. If the temperature of water smoothly changes with depth,
the thickness of the layer associated with the aperture is continuously decreasing with the
decreasing Froude number. The same thickness of the fluid layer flowing into the aperture
in these two cases was observed at different values of the Froude number. For instance,
for temperature distributions with depth, depicted in Fig. 5, the thickness of the intaken
layer is half the depth at Fr = 0.2 for the case “1” and at Fr = 0.26 for the curve “7”
Computations for a problem on a homogeneous viscous fluid fow in the cavity with a moving
upper boundary have been made. The pattern of stream lines with an increasing number of
grid points changed little. The value ., changed appreciably.

With the given algorithm, calculations of spatial flows of a nonviscous stratified fuid
in the reservoir of a rectangular form (Fig. 3) have been carried out. A case with the
position of the water intake near the surface has been considered. At the initial moment,
a distribution of the density p(0, 7, y, 2) = po(y) is assigned; the fluid is considered at rest.
Influence of values of the Froude density number, form and position of the water intake
aperture on the character of the flow in the reservoir have been studied. For finite values
of the Froude number according to the character of fluid involvement in the aperture flows
can be divided into two types:

a) at Fr > (135 1nto the discharge aperture, fluid is involved from all the layers with
depth but at-the bottom region velocity is less the closer the value of the Froude number is
to 0.35;

b) at Fr < 0.3 fluid separates into two regions; the upper one is involved into a discharge
aperture; the lower one circulates with low velocities. The flow pattern is also affected by
the dimensions and position of the intake aperture. If an aperture of a rectangular form
extends throughout the width of the reservoir, then (in a non-viscous case) a two-dimensional
Hlow occurs. When the aperture is considerably narrower than the reservoir width and is
positioned symmetrically to the plane z = 1/2, then at Fr < 0.3 the flow separation in the
vicinity of this plane is more singular than at the periphery. At the lateral walls thickness
of the boundary layer is bigger but flow velocities are less. At the bottom part of reservoir,
a non-stationary circulation flow of a complex structure is formed.

The author expresses his gratitude to V. M. Belolipetsky and V. Yu. Kostyuk for their
assistance in preparing the present paper.
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