Journal of Computational Mathematics, Vol.9, No.4, 1991, 348-359.

A DUAL ALGORITHM FOR MINIMIZING A QUADRATIC
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Absatract

In this paper, we present a dual algorithm for minimizing a convex quadratic func-
tion with two quadratic constraints. Such a minimization problem is a subproblem that
appears in some trust region algorithms for general nonlinear programming. Some the-
oretical properties of the dual problem are given. Global convergence of the algorithm
is proved and a local superlinear convergence result ia presented, Numerical examples

are also provided.

§1. The Problem

In this paper, we present a dual algorithm for minimizing a convex quadratic function
with two special quadratic constraints. The problem has the form:

t R ..]:
min $(d) = g"d + szBd, (1.1)
subject to
Idllz < A, (1.2)
|ATd + cl|2 < &, (1.3)

where g€ R, B e R A e RV™ cec R™,A>0,{2>20and Bisa symmetric ma-
trix. Problem (1.1)-(1.3) is a subproblem of some trust region algorithms for constrained
optimigation (for example, see Celis, Dennis and Tapia, 1985; and Powell and Yuan, 1986).
Some theoretical properties of the problem are presented in Yuan (1987) for general B, but
now we restrict attention to the case when B is positive definite, because we have not yet
found a reliable method for computing the global solution in the general case.

The algorithm, given in Section 3, is based on Newton’s method for the dual program of

the following problem:

1
i = 47 e
min &(d) = g"d+ sz Bd, (1.4)
subject to
Id|j < A%, (1.5)
|ATd + cl2 < &7, (1.6)
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which is equivalent to (1.1)-(1.3).

In the next section, we give some theoretical properties of the dual problem. Then an
algorithm is presented in Section 3, and convergence properties of the algorithm are given
in Section 4. Numerical results are reported in Section 5, and finally a short discussion is
given in Section 6.

§2. Dual Theory

For the dual variables A > 0, 4 > 0 we define the matrix

H(A\u)=B+AI+ uAAT, (2.1)

and the vector
d(A, p) = —H(X, p) " g+ pAc). (2.2)

We also define the function
1 1
¥(2, p) = S(d(A, p)) + SA(14(A, )3 — &%) + Su(|ATd(A, ) + 3 - €3). (2.3)
The dual problem for (1.4)-{1.6) is

r
W{A, ), 2.4
BT (A, 1) (2.4)

where we use the notation Ri = {A 2 0,u > 0}. The relation of the dual problem to
the primal problem is given in Lemma 2.2 below. One advantage of working with the dual
problem (2.4} is that it has only two variables. Moreover, because gradients and second-
order derivatives of W(A, u) can be easily computed, (2.4) can be solved by applying Newton'’s
method. Because the vector (2.2) is the value of d(), u) that minimises the righthand side
of expression {2.3), direct calculations show that

1 ld(2, u)lI3 — A2
P =3{ L ) ’ .
VU ) = — ( d(X, )T H(A, p)"1d(A, p)  d(A, w)TH(A, 8)"2y(A, p) ) | 2.0
A, w)TH(A p) ry(M8) (A, B)TH(A, 5) " 2y(A, )
where y(A, 4) is the vector
y(X, 8) = A(ATd(2, 1) + ¢). | (2.7)

It is easy to see that W(A, i) is a concave function. Another advantage of working with the
dual problem (2.4) is that, as shown in the following lemma, the gradient and the Jacobian
of W(A, u) are both bounded above, even if the constraints (1.2) and (1.3) are inconsistent.

Lemma 2.1. Let d(A, u) be defined by (2.2). Then

d(A, 2.8
{*Elgi (A, #)2 (2.8)

1s finite. Consequently, VU(], u) and VW (), u) are bounded above in R2 .
Proof. The definition (2.2} shows that

la(A, 2)liz < |H (A, 8} gliz + |H(A, 4) "  Ae| 2. (2.9)
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The first term of the right-hand side of (2.9) is bounded above by
1B~ llzligll2- | (2-10)

Using the relation
Ac = AATAc = AAT (AT, (2.11)

it can be shown that
LH(A, u)~tpAcllz < [|(B + pAAT)  pdclz = ||(B + UAAT) (B + pAAT)(AT) e
—(B + pAAT)"1B(A*) )2 < (A7) cllz + |B~laliBllali{A*) ¢ll2-

(2. 12)
Therefore we have

ld(A s)lla < 1B~ zliglla + (4¥) ella + |1 B~Y||z]| Bll2ll(4*)" cll2 (2.13)

for all (X, ) € R3. This completes our proof.
Standard properties of dual problems give us the following results.

Lemma 2.2. Using the notalion

.1'1 — : ATd ; 2;14
» 'frm [|dlﬁl:f{_1& ” 3 c‘"E ( )

we have
1) §f £ = €min, then esther there 13 only one feasible solution of (1.2)1.3), or (1.1)—(1.3)

van be reduced to a simpler problem which has the form of (1.1)—(1.2);

2) #f £ < €min, that ss the original problem has no feassble points, the function WA, ) ss
not bounded above;

3) if £ > Emin, the dual problem (2.4) has a finste solution (A*, ") € R2 , and for any
solution (), u) of (2.4),d(X, i) 13 the unigue solution to the original problem (1.1) —{1.3);

4) if £ > &min ond there is more than one solution to problem (2.4), for any solution

(A*, 4*) the equation
V() p*)=0 (2.15)

holds, and the set of solutions of (2.4) is a line segment of the form

(l)=( l ) 0<a<l (2.16)
1 (1—c)i : - =7

for some A >0 and p > 0.

Proof. 1) is proved in Yuan (1987). 2) and 3) can be shown by applying the standard
dual theory on convex programrning (for example, Rockafallar, 1970). So we only need to

prove 4).
Assume that £ > £min and that (A*,p*)T is a non-gero solution to the maximization

problem (2.4). Due to the uniqueness in 1), it follows from (2.1), (2.2) and (2.7) that
(A—2*)d* +(p—u")y =0 (2.17)

where d&* = d(3*,s%),y" = y(X",u") and (X, ) is any solution of problem (2.4). Because
(X, p) maximizes (2.4), we have

{‘ A(lle* 12 — &%) =0,

18
u(|ATd" +c[lf — §°) = 0. -
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From (2.17), we see that d* = y* = 0 or all solutions (), u) of (2.4) lic on a straight
line. If d* = y* =0and A > 0, our assumption £ > {nin and the relation (2.18) show
that A = g4 = 0, which contradicts the assumption that problem (2.4) has more than one
solution. Thus all the solutions of (2.4) lie on a straight line. Due to the fact € > Emin,
it can be shown that (d*)Ty* > 0. Further, (A, 4) € R2 is a solution to (2.4) if and only
if it satisfies (2.17). Now all solution (A, ) € R3 of (2.17) are vectors in (2.16) if we let
A=A+ pu*(d*)Ty*/|ld*|I3 and & = u* + X*||d*||2/(d*)Ty*. This completes our proof.

When problem (1.1)-(1.3) is a subproblem derived from an algorithm for nonlinear con-
strained optimisation, it is normally true that

£ 2 Emin; (2.19)

and 1t is normally known when £ = £,,1,,. In the latter case, as stated in Lemma 2.2, either
there is only one feasible point of (1.2)—(1.3) or problem (1.1)-(1.3) can be reduced to a sim-
pler problem. The simpler calculation is to minimize a convex quadratic function in a ball,
which can be solved by algorithms in Gay {1981) and Moré and Sorensen (1983). There-
fore, because our work is motivated by the needs of trust region algorithms for nonlinear
constraints, from now on we assume that

‘f > Emin | [220)
Lemma £.3. Condition (2.20) implies that the set
{(A 2)|¥(A, u) > ¥(0,0), (A u)€ R?{-} (2.21)

13 bounded.

Proof. When (2.20) is satisfied, there exists d € R" such that }|d||2 < A2 and |ATd +
c||3 < €*. Since d(}, p) is calculated to minimisze the right-hand side of expression (2.3), we
have the bound

W, k) < B(d) + S (113 - A%) + (14T + ] - ). (2.22)

Hence ¥W(A, u) — —o0 if max|A, 4] — oco. Therefore the lemma is true.
This result tells us that, if an algorithm for solving (2.4) has the property that W( x4,
Bk+1) = W(Ax, pi), then the sequence {(Ax, ux) (k=1,2,8, - -)} remains bounded if A\; =

p1 = 0.

§3. A Dual Algorithm

The algorithm presented below is iterative. At each iteration, an estimate of the solution
(A, ) is known. Then, an acceptable step (6], 5u) is calculated and we let the next iterate

be (A, u) + (62X, 6u).
Our algorithm is based on Newton’s method for the dual problem (2.4). Newton’s step
for (2.4) is the solution (6, 6u)T of the equation

V(A u) + V2E(A, p) ( :i ) -_- ( g ) . (3.1)

When V2¥(}, 4) is nonsingular, this step is
p = —(VPU(\, 1)1 VE(A, ), (3.2)
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but, because the matrix V*¥ (A, 4) may be singular, we use the generalized Newton step
p=—(V2U(A,u)TVEQ,u) (3.3)

as a trial step. Since V2¥(A, i) is a two by two negative semi-definite matrix, its generalised
inverse is easy to calculate. It can be seen that p is the maximizer of the quadratic function

Q(s) = s" V¥(A, p) + %HT‘VE‘I'(A, u)s, s€ R’ (3.4)

when V2¥(), u) is nonsingular. But in the case when V2¥(), ) is singular, the generalised
Newton step p iz only a maximizer of (3.4) in the range space of V3¥(A,p). Further, for
any positive number M satisfying

M 2 — Trace [V2¥(},p)} = a0, w)T H( 1) (A, ) + v )T HO, #) 7y 1), (3:5)

it can be shown that '
Q(3;7¥(.w) > Q) (3.6)

if
1
PrVE(A,u) < HHV‘I’(A.P] 13- (3.7)

Therefore, at every ﬁ:eration, a number M satisfying (3.5) is available and we use a steepest
ascent step .
=37 -
whenever inequality {3.7) holds. It is noticed that (3.7) is satisfied only when the matrix
V3¥(A, u) is singular. Lemma 9 3 tells us that all solutions of the dual problem (2.4) are in
a bounded set. Thus, we also use the steepest ascent step / as a trial step if the generalised

Newton step too large, that 1s
“ﬁ”ﬂ > 3, (39)

where s is a parameter updated.at each iteration.

At the boundary, we search along the boundary if necessary. At a point (0, u)7, if
1d(0, )|z — A? < O (this may s dicate the case when (1.2) of the original problem is
inactive) or the first component of the calculated trial step {either 7 or j) is negative {the
trial step is infeasible), we then use the ‘projected steepest ascent direction’

( 62\ _ 0 ) .10
Sp (|ATd +¢|2 — €2) /25" H 'y |’ '

where d = d()\, p),¥ = y(A\,p) and H = H(X,p). Similarly, at a boundary point (X, 0)7 if
| AT d+cl|3 — 62 < O or if the second component of the trial step is negative, we use the step

( 52 ) _ ( (14l - A3)/24"H'd ) | (3.11)

bp 0

V¥(A, ) (3.8)

A step is truncated if it makes the new point {A+6A g+ §)T infeasible. That is, we
choose the largest t € (0, 1] that satisfies

A 5 2 |
(#)+t(ﬁp)e&+. (3.12)
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Our condition for accepting a trial step is that either

(VEO(X +t6A, p + t6u))7 (ii ) >0 | (3.13)
W(A+t5A, 1 + téu) > W(A, p) + vt[VE(A, u))T ( j: ) (3.14)

holds, where v € (0,0.5) is a pre-set constant. If a trial step 7 is unacceptable, we replace
it by . Then we keep increasing M by twice until the step 5 iz acceptable. It can be seen
that (3.13) holds if
M> Vi¥(), . 3.15
2 i IVEE (A, p)ll2 (3.15)
Due to Lemma 2.1, the right-hand side of (3.15) is finite. Because W(A,u) is concave, if
(3.13) holds but (3.14) fails, for any # such that

P
W(A+t86A, pu-+t06u) > W(A,u)+ vid (VE(A, u))* ( ; ) (3.16)
T
we have \
WA+, p+tou) > WA +t86X, p+t86u). (3.17)
We can easily show (3.16) holds for
2q1-o) |f 62\ 5
-y
§ = v, u)¥ : 3.18

where M satisfies (3.15). Therefore

W(A + t6A, ;s + tp) > T(A, p) + Z‘f'[;; . ( ﬁi )“2 [(?‘I'(A, u))7 ( ji )] . (3.19)

Thus, either (3.14) or (3.19) is satisfied for an acceptable step.
If a trial step {3.10) is unacceptable, it can be shown that

AT d(0,u) +cllf — €% <0 (3.20)

and
IAT d(0, s+ 6ps) + c||Z — €2 > 0, (3.21)

where 64 18 defined in (3.10). Then we set
o e €= IATA(0, 1) +
|ATd(0, s + &) + clif — || AT (0, ) + |3

We can verify that the new trial step (0, 6u)7 satisfies inequality (3.13), because the function
|AT (0, ) + ¢||2 ~ €2 (in u) is convex for all 4 > 0. Similarly, if a trial step (3.11) is
unacceptable, we set

(3.22)

A% — |d(A, 0|12
1d(2 + &, 0)[13 — [ld(2, 0}]|3

and then the new step (5;\, 0)T is acceptable,

BA 1= 6 (3.23)
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Now the details of the algorithm can be given as follows:

Algorithm 3.1.

Step 0. Set Ay =0, iy =0, My > 0,30 >0and k= 1.

Step 1.Factorizse H(Ax, px) = LLT; Calculate d( Az, ).

Step 2. Calculate w; = (||d||3—A%)/2,we = (|| AT d+c||3—£2)/2; Convergence test; if con-
vergence then stop; My = max{My_1,dT H~'d + yT H 'y}; s = max{se-1, \V¥|2/Mx};
If}.;,;=[la.ndw1ﬂﬁgutuStepé;prk=DandwaﬁﬂgntnStep.’fi.

Step 3. Calculate the generalised Newton step and set (6 Ak Spsx)T = P; Set (62 Spx)T =
5 if either (3.7) or {3.9) holds; If A, = 0 and 6Ax <0 go to Step 4; If up = 0 and dux <0
go to Step 5; Go to Step 6.

Step 4. Calculate the step by {3.10) and go to Step 6.

Step 5. Calculate the step by (3.11).

Step 6. Truncate the step if necessary (calculate tx = 1/ max{1, —6Ax/ A, —6px /i });
If either (3.13) or (3.14) holds then go to Step 8.

Step 7. If (62 Sui)T is calculated by (3.10) (or (3.11)) then adjust Sux (or 6Ax) by
(3.22) (or 3.23)) and go to Step 8; Set (6Xx 6ux)T = §; Calculate the smallest nonnegative
integer I(k) such that either (3.13) or (3.14) holds for 2—1(R) (62, 6pax)T; Set (hi bpn)” =
2~ 1) (52 6py)T; Set My = 2TFI My /uy. if I(k) > O.

Step 8. Set }.1,+1'= Ap + tbAk; k41 = B + tedpix; Set k =k + 1 and go to Step 1.

The following lemma shows that I(k) = 0 for all large &; therefore at most two trial steps
are calculated in each iteration when k is sufficiently large.

Lemma 3.2. There are only finitely many k such that I (k) > 0. Consequently, My (k=
1,2,--) is bounded above.

Proof. If there are infinitely many k such that I (k) > 0, we can show

lim M; = oo. (3.24)
k—co
Hence there exists an integer Ko such that My satisfies (3.15) for all k 2 Ko. Therefore §
is an acceptable step, which implies My = Mg, for all k 2 Ko. This contradicts the limit
(3.24). Thus the lemma is true. |

It is easy to see that {A u)7 solves problem (2.4) if and only if
Wi < D, Wa < 0, ‘D‘J1A — 0, Walk = 0, (325)

where w; and w, are defined in Step 2 of Algorithm 3.1. Hence a practical condition for
terminating the algorithm is requiring that (3.25) be satisfied within a prescribed tolerance
error £ > 0.

The reason for us to study problem (1.1)—(1.3) is that it is a subproblem of some trust
region algorithms for nonlinear constrained optimization. To the original constrained opti-
misation problem, {1.1)-(1.3) is only a subproblem appearing in every iteration, so it seems
anwise to solve the subproblem to a very high accuracy. Hence it i8 desirable to have a
relaxation stopping criterion that is suitable for application to trust region methods. We
suggest that the following conditions be used:

{ |d(A, w)|3 — A% < 94,

|ATd(X, ) + cl| — €2 < nlllelz — €] (3:29
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and

d(A,p)llZ — 4% > —paAZ, if A > 0,

_ (3.27)
{ 14%dA p) +ellf - €2 > —nle? ~ €21 ifp>o0
where 7 is a given number in (0, 1/2).

§4. Convergence Properties

For the convenience of our analysis, we define the vector

r(A, u) = V¥(A, u) (4.1)
for (A, u} € R2, except that

e2¢3 V¥(A, 4) if A =0and ||d|j2 - A% < 0,

r(Ap) =¢ e1eT V(A u) if u=0 and |ATd +c||2 — €2 <0, (4.2)
(00)" A =p=0|dlz < A? and [|4Td + 2 < €2,
where ¢; = (I,O)T and e3(0 1)*. And we use the notation
| 2k = [Ir(Ae, pe)f2 (4.3)

for all k. It can be shown that (A )T solves problem (2.4) if and only if r(A, ) = 0. Hence
we need to.prove z; — 0. First we have the following lemma.

Lemma 4.1. Let (5 Sur)T be the step at the k-th steration. We have
ap = wf?'l‘;,/“w;,”g”?\lfkﬂg = min{1, zx /M s, }, (4.4)
where wi = (6Xg §up)T and V¥, = V¥ (Ax, px).
Pr;mf. If the step wy = p, (4.4) is trivial because ar = 1. When the step wy is the
generalized Newton step 7, we have

1
ap 2 —:HV'I‘::H%/ 1221V ¥klla > 2 /Myse, (4.5)

which shows (4.4) is true. Now we assume the step wy 18 defined by (3.10). It can be seen
that either ||d(Ax, ux)l|2 — A2 < 0 or ¢; £ < 0. In the first case, we have

ar = |ez VU|/|IVU||2 = 22 /| VELI[2 > 20 /Mus. (4.6)
If e 5 < 0 and ||d(Ax, ux)[]2 - A2 > 0, it follows that

1
(e2 V¥%k)el 5 = pT VU, — (TVE)eTp = FTVE, — E(”d(}w,#k)ﬂg ~A%)elp

> ﬁTV‘Pk > “?Tk"%ka

{4.7)
Thus, we have the inequality

ax = lez V|/[VUL|2 > |VUL|Iz/)|7ll2 Mk > 2 /Mysy, (4.8)

which implies (4.6). Similarly,

it can be proved that (4.6) is also true when (6Ax 6ux)7 is
defined by (3.11). -
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Using the above lemma, we can prove the global convergence of Algorithm 3.1.

Theorem 4.2. The sequence {(Ax w) Tk = 1,2,3,---} generated by Algorithm 3.1
converges in the sense that

klhn Zp — 0 | (4.9]
and |
klim d(}-kﬂ-‘k) = d*, (4.10)

where d* is the unigque solution of problem (1.1) —{1.3).

Proof. Because ¥(A, i1) is a concave function and W(Ax41,rs1) > YAk, i), it can be

shown that (4.9) is equivalent to
| lim inf 2, = 0. (4.11)

k— 00

First we consider lower bounds for the length of step wx = (6Ax Spx)T. It can be seen
that

lwlla = \V¥x|l2/ Mk 2 21 /M (4.12)
if wy = P, and |
lwi|l2 = (B2 W) Vs [I2/Mie 2 [|VER|2/IV* ¥k llz 2> 2/ V2% l2 (4.13)
if wy = p. For wy defined by (3.10), we have
lwellz = 2 /9 Ak, 25) T H Mk, 1) "yl Ans p6) 2 26/ M (4.14)

if ||d(Ax, px)l|3 — A% £ 0. Otherwise, applying (4.7) and inequality M) > yi H, 'yx, we can
show

lwilla = |2 V¥i|/vF Hi *ve 2 2/ Mi 2k, (4.15)
where we use yi = y(Ax, %) and Ho! = H(Ax, px) 1. Therefore
lwe ]|z = min{l, 2 [ My sy } 21 [ My, (4.16)
if w, is defined by (3.10). If the step (3.10) is modified by (3.22), we can show that
|well2 2 min{1, zx /My sx }2zi | M M), (4.17)

where M = max | AT (0, ) +c||3. Similarly, when (6Ax 511, )T is defined by either (3.11) or

(3.23}, we have
lwpllz = min{1, szfﬂ} min{1, zthkak}zkak, (4.18)

. 2
where M = max (X, 0} |Iz-

If (4.11) is false, there exists a constant 1 > 0 such that _
Zk 2 T (4.19]

for all k. Now (4.12)—(4.19) show for some constant g>0
wellz 2 8 (4.20)

for all k. Since the condition for accepting a step ensures that either (3.14) or (3.19) holds,
we have -

\I’(’\k+1: F’!H-l] 2 T(Aknf‘k)

- bl
+ min {utkzkﬁ‘ min{1, zx /Mxsx }, ZHUM*U]Z" [min{1, z,,,’M;,ak}F} (4.21)
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where M* = jmax V2% (A, ) |l2. Due to (4.19) and (4.21), there exist positive constants
=
B1 and f; such that

W Akt1,br+1) 2 W(Ag, px) + min{B; &, 52} (4.22)
Because W(Ax, ux) (k= 1,2, --) is bounded above,
E min{¢x B, f2} < oo, (4.23)
k=1
which implies .
Dtk < co. (4.24)
k=1

Therefore, since (§Ax §ux)” is bounded, the sequence (Ax pi)T converges, say to (A* u*)7.
(4.24) also shows that min{Ax, s} = O for all large k.. However Ay — Ofux = 0) and
te < 1imply pri1 = 0(Ar41 = 0} for sufficiently large k. Thus (A* #*)T = (0 0)T, which
contradicts the inequality

. V(N 6°) 2 lim (Ax, pe) 2 ¥(Ag, 3) > ¥(0,0). (4.25)

This shows that (4.11) holds. Hence (4.9) is true and

A
lim dist (( . ),H) =0, (4.26)
k—co Pk

where II is the set of solutions of the dual problem {2.4). Now (4.10) follows from (4.26),
the boundedness of IT and d(}, i) = d* for all (A p)t ell.

The local convergence result iz as follows:

Theorem 4.3. Assume {(A; pi)7;k=1,2,3,---} generated by Algorsthm 3.1 converges
to (A* u*}T, furthermore, V2¥(A*, u*) 15 posstive definite if

1) A* > 0,u* > 0; or

2) A* =0,[|d"]|2 — A%2 =0; or

8) u* =0, ||ATd* +¢||2 - £2 = 0.

Then (Ax px)T converges to (A* p*)T Q-superlinearly.

Proof. In case 1} Newton’s step will be taken for all large k; hence Q-superlinear con-
vergence follows.

In Cases 2) and 3), either Newton’s step or a step along the boundary ({3.10) or (3.11})
will give superlinear convergence.

To complete the proof, we now consider the case when A* = 0 and ||d*||2 — A2 < 0 and
the case when u* = 0 and ||ATd"* 4 ¢|j2 — £2 < 0. In both cases, 16 can be easily shown that
the iterates shall converge to the solution along the boundary and the step (3.10) or (3.11)
18 used. In the first case, A* = 0 and ||d*||2 — A? < 0, and the algorithm is exactly the
same as the Newton-Raphson method for solving the equation | ATd{0, ) + ¢c||2 — €2 = 0.
Since the function [[ATd(0, ) + ¢|2 — ¢2 = 0 is convex for all y > 0, Newton’s step gives
superlinear convergence and the iterates converge to the solution monotonically. It can
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be easily shown that a superlinear convergent step shall satisfy condition (3.14). Thus
superlinear convergence of the iterates is proved.

§56. Numerical Results

Our algorithm is implemented in Fortran, and the following problems are solved by the
algorithm. n = 4 and A = 1 in all the problems.

Problem 1. m=1,£ =0.5,g = (0.5,1,1,1)T,B=I,c = —1 and A = (1,0,0,0)7.

Problem 2. m = 2,¢ = v/2, g = (0,-0.5,0,0)7, B = diag [1,2,3,4],¢ = (—2,0)T and
A = (I3x202x2)" .

Problem 8. m=3,£ =086, g =(-3,—4,-5,0)7, B=1I, ¢ = (—0.3,-0.4,—0.5)7 and
A= [Iaxaoaxl)T~

Problem 4. m = 4,£f = /3,9 = (-5,-1,-1,—-1)7, B = diag [1,1/2,1/3,1/4], ¢ =
(1,1,1,—-0.5)T and A = (A;,;}axq where A;; = 1forall¢, 7 =1,2,3,4.

Problem 5. As Problem 4, except that A, ; = 0.1 for all 4 # 1.

The calculations wete done by an IBM 3081 computer. The convergence test is that the
conditions in (3.25) hold within the error e. We set v = 0.01 (see (3.14)) and ¢ = 107'% in
all problems. Step length of one is accepted at every iterations of all the 5 problems. The
results are as follows:

Problem 1 is solved after 8 iterations, the solution found 1is (0.5000000, —0.5000000,
—0.5000000, —0.5000000)T, and the multipliers are A = 1.0000000, x4 = 3.0000000.

Problem 2 is solved after 6 iterations, the solution found is (0.6008422, 0.2058095,
0.0000000, 0.0000000)7, and the multipliers are A = 0.0000000, u = 0.4294314.

Problem 3 is solved after 11 iterations, the solution found is {0.4242641, 0.5656854,

0.7071068, 0.0000000)7, and the multipliers are A = 6.0710678, » = 0.0000000.

Problem 4 is solved after 14 iterations, the solution found is (0.8525473, —0.2878663,
—0.3040365, —0.3128225)7, and the multipliers are A = 2.6337108, 4 = 0.8301400.

Problem 5 is solved after 11 iterations, the solution found iz (0.5827114, -0.4720780,
—0.4955691, —0.4381793)7, and the multipliers are A = 1.1614503, u = 2.2895731.

§6. Discussion

The advantages of Algorithm 3.1 are that it works on a dual program which has only two
variables, and that Newton’s method can be used because the gradients and the Jacobian
of the objective function in the dual program can be easily computed. Since ¥ is concave,
the global convergence and local superlinear convergence results can be also easily proved.

One point that should be mentioned is that eventually there is no line search in the
algorithm. For large k, either Newton’s step or a steepest acsent step will be taken except
that at the boundary maybe a projected newton’s step is used.

The convergence results in Section 4 are based on the assumption £ > Emm If £ = Enin,
it is possible for the set of solutions of {2.4) to be unbounded. Fortunately, when (1.1)—(1. 3)

is a subproblem of a trust region algorithm for nonlinear constrained optimization, it 1s
normally known if £ = &nin.
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One may also be interested in the upper and lower bounds of the final value W(A*, u*) =
P(d*). It is easy to see that W(Ax, ux) < ¥(A*, u*) for all k. We can show that W(A*, u*) <
©(d(A, p}) for any d{A, u) satisfies the constrained condition (1.2)—(1.3). Hence for any k,
if d(Ax, ux) is a feasible point of (1.2)-(1.3), we have W(\*, u*) < ®(d(Ax,sx)). Another
upper bound for W(A*, u*) is ||g|[aA + || Bll2A2%/2 since ®(d*) < [ig]|2A + || B|l2A2/2.
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