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Abstract

In this paper we construct a new type os symmetrical dissipative difference scheme.
Except discontinnity these schemes have uniformly second-order accuracy. For calcu-
lation using these, the simple-wave is very exact, the shock has high resolution, the
programing is simple and the CPU time is economical.

Since the paper [1] introduced that in some conditions Lax-Wendroff scheme would
convergent to nonphysical sclution, many researchers have discussed this problem. Ac-
cording to preserve the monotonicity of the soclution preserving monotonical schemes
and TVD schemes have been introduced by Harten, et. According to property of hy-
perbolic wave propagation the schemes of split-coefficient matrix(SCM) and split-flux
have been formed. We emphasize the dissipative property of scheme for conservation
laws and introduced a type of symmetrical dissipative difference scheme, these schemes
are dissipative on arbitrary conditions.

§1. The Symmetrical Dissipative Schemes for Hyperbolic
Conservation Laws

The quasi-linear conservation law is represented by the following equation

du df
'5?'*'5;—0 (1)

where u, f(u) are column vectors with m dimensions. A = f, is coefficient matrix of
equation (1), it has m real eigenvalues

Ay £ X8~ & %

and a complete set of left (right) eigenvectors for all real A;.

Advantages of symmetrical scheme is that formula and programming become simpler,
that the computation cost is law. We shall see that schemes constructed from the point of
view of dissipative property has less severe limitations and often has weaker restriction of
stability condition than that from the point of presevering monotonicity of the solution.

In papers {4] and [3]|, we have constructed the first-order, second-order least dissipative
hybrid schemes of presevering monotonicity of the solution
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where Lau} stands for MacCormack two-step scheme or Lax-Wendroff scheme, we have

defined

L
for |Ac;|+ |Ao;-1] > €0,
i d Balr Bl o Pl el 3

0 for |Acj|+ |Agj-1| < &0

and

Ej' max{ﬁj-, ﬂj‘+1, ﬁ.t}

2
for the single conservation law ¢ = u, for Euler equations, o = p or ¢. Assume that

M= Lo | Aks| (4)
we define o A
0=vz(1-v5;) (5)
and ]
90l = E(q’ + gj+1) (6)
o At At
* Yi+3 = Vi3 Bz (1 - V:+§E;) (7)

3

where Vo 1 is one of the averages of 1/; and vy, .
2
Next we shall construct some new symmetrical dissipative schemes according to the view
of dissipative property.
Scheme 1. MacCormack two-step scheme with #/8 dissipative modification
unttl = L u"!’
3
2 __...)] (8)

n+l _ n+1 o [3n+1 n+l _ un+1 e an-i-l 2(l‘l.'.r1':+1 un.-i-l

Y, +1/2\%5e1 T Yy y=1f J—1

where —
ﬂ;‘_:'llm = max{ﬂ;‘_;_"ll, 6771, 8nAt}.

s (1 e : .
Scheme 2. MacCormack two-step scheme with Eﬂq dissipative modification

n+l n
ultt = Lou?,

1 e S (9)
n+l _ ,,n+l n-+1 n+t n+4+l __ . n+1l ntl gnt+l n+1 n+l
e el [‘1:+1;25;+1f2(“:+1 uit ) — 4711207012 (0] “:'—1)]'

Scheme 3. Diffusive-antidiffusive second-order scheme with the least dissipative.

uitl = Lau} + E['??+1/2(“.1‘+1 —uf) — ¢y ppluf - u?_1)], (10)
10
“J‘+1 - “?H- [q:+1!2[“;‘1-11 “’}H) q?+11 ﬂ(" ks “H)]

Scheme 4. Modihed dlﬂ‘uswe-antldlﬂ'usiv-ﬂ: acheme with the least diffispative

1
“?+ = Lauy + E[‘??ﬂ/z(“?ﬂ = “?] - Q}‘_Uz(u? o “?_1)].

(11)
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where
ey q;}-:-llﬁ? 9;!-:11{2 > B,
q'ilfﬂ = *ZT}ﬁt + — —
4 5. gntl gntl < g (12)
- i+1/20 Yiyif2 =V0

0D<np<l 0<6<1, 6>0.2

Suppose that Gjs represents increment matrix of MacCormack scheme, we have that
mcrement matrices of Schemes 1 and 2 respectively are

G, = [1— ;(l—cua E)]GM, (13)
Gz = [1 — gf(1 — cos E)] Gy (14)
hence if increment matrix Gy of MacCormack Scheme satisfies
|Gl <1
then
||9M||51—2[1—CDEE)<:1 for V& # 0, (15)
|Gzl €1—g8(1 —cosé) <1 forV€#0O (16)
thus, if stability condition of MacCormack scheme
At
Tmiax = TIAX {Mkjl.&z} =Cy <1 (17)

then schemes 1 and 2 are dissipative scheme.

Schemes 3 and 4 are diffusive-antidiffusive form when r < 1, and antidiffusive-diffusive
form when r > 1. By Fourier linear analysis we can obtain that the stability and dissipative
condition is

rmax = CN < 1.5 (18)

consequently when we use with method of shock-fitting maxium time-step of both of these
schemes can reach Cy < 1.5, but 1n calculation of shock-capturing, predicated atep must be
stability, so Cpy < 1.

Remark 1. Scheme 3 is unformly second-order accuracy, but when £y and 8y are large
scheme 1, scheme 2 and scheme 4 is first-order accuracy through discontinuity region, on the

rest, these schemes are added second-order dissipative tegm of third infinite quantity that

T :
the coefficient is Eq&t&zg, consequently are uniformly second-order accuracy.

Remark 2. In constructing previously schemes, we don’t claim that the schemes are
presevering monotonicity, but we claim the schemes are dissipative i.e. statify

|G| < 1-6|¢[* [¢]|#0, r=1lor2 (19)

for || # 0, dissipative scheme is compression operator it decays propagation of error wave
produced in calculating process, |£]| is bigger, decaying is quicker, hence short error wave can
quickly be decreased and becomes zero. The calculating result everywhere no ossillation.
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§2. Classical Example and Dissension of Results

We have calculated following complicated problems by previous five schemes, incident
shock on conical shock interaction flow fields, shock-on-shock refracted flow fields in shock-
tube, incident shock on nose shock of sphere-cone interaction unsteady flow, compution of
unviscous flow around sphere-cone body at angles of attack and around reeniry-airship body.
All calculations use shock-caputuring method and obtain reasonable results, for comparison
of previous schemes, we calculate sod shock-tube example and give the results of time-step
number n = 60, 120 space-step length z = 0.01.

Fig. 1 show result of least dissipative hybrid scheme when Cy = 0.9,n = 60. Fig.2
expresses result of MacCormack two-step scheme with f¢/2 dissipation modification. Fig. 3,
Fig. 4 and Fig.5 denote respectively results of MacCormack two-step scheme with #/8 dissi-
pation modification when C'y = 0.9,0.95, and 1.0, n = 60, as n = 120 the results are show
by Fig. 6, Fig.7 and Fig.8. Fig.9, Fig. 10 and Fig. 11 represent respectively the results of
modified diffusive-antidiffusive scheme with the least dissipation in which Cp 18 0.9, 0.95
and 1; as n = 120 the results are shown by Fig. 12, Fig. 13 and Fig. 14. Fig. 15 stands for
result of diffusive-antidiffusive scheme with the least dissipation, in which Cy 18 0.9, n 18 60,

From Figs.1-15, we obtain that the numerical solution calculated by these schemes
has high accuracy on the simple wave, and resolution on the shock. Modified diffusive-
antidiffusive with the least dissipation and MacCormack two-step scheme with 8/8 dissi-
pation modification have many advantages. Courant number of both of these schemes can
reach 1, the simple wave calculated by the former almostly agrees with theoretical solution,
the transition region of contact discontinuity is narrow and only adds one net-point from
n = 60 to n = 120, the shock has high resolution. The simple wave computed by the latter
also is in agreement with theoretical solution, the shock has high resolution, and the algo-
rithm is very simple, but the transition region of contact discontinuity 13 wider thaxu that of
the former. According to previous analysis we think that both schemes are very well.

Diffusive-antidiffusive scheme with the least dissipation is uniformly second-order accu-
racy, 1t preserves good point of traditional symmetrical scheme, it doeasn’t require judgement
operation, and i3 particularly well adapted for parallel arithmetric, the simple wave i3 very
agreement with theoretical solution, the transition region of contact discontinuity is very
narrow, only shortcoming is that u has down-oscillation, but we still think that it is also a
good method.

The calculating work 1n this paper has been completed by my graduate Luo Wen-cang.
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