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Abstract

In this paper we consider the necessary conditions of conservation laws of symplectic
difference achemes for Hamiltonian systems and give an example which shows that
there does not exist any centered symplectic difference scheme which preserves all

Hamiltonian energy.

81. Introduction
»

It 18 well known that Hamiltonian systems have many intrinsic properties: preservation
of phase are as and phase volume, conservation laws of energy and momenta, etc. In order
to maintain the first property in numerical solution of Hamiltonian systems, Feng Kang first
introduced in [1] a new notion — symplectic difference schemes of Hamiltonian systems and
developed, with his colleagues, a systematical method — generating function method — to
construct such schemes. This method has been further developed and widely extended 8,
10-12]. Meanwhile, symplectic difference schemes constructed in (2, 4] preserve a kind of
quadratic first integrals of Hamiltonian systems. In particular, any centered symplectic dif-
ference scheme preserves all quadratic first integrals of Hamiltonian systems, But generally
1t can not preserve first integrals other than of quadratic form.

In Section 2, in order to fulfil the requirement of the next sections, we review the con-
struction of the symplectic difference schemes of Hamiltonian systems by the generating
function method developed in [2-4]. In Section 3, we give another proof of a theorem in
15| and prove that the sufficient condition of the theorem is also necessary for first order
symplectic difference schemes. In addition, we give general conditions of first integrals of
Hamiltonian systems and of conservation laws of centered symplectic difference schemes. In
Section 4, we give a simple example. It shows that in general symplectic difference schemes
cannot preserve the non-quadratic first integrals; especially, they cannot preserve the energy

of a nonlinear Hamiltonian system.

82. Review of the Construction of Symplectic Diference Schemes

Let R" be a 2n-dimensional real space. Its elements are 2n-dimensional column vectors
z= (21, 32n, Zn+1, " Z2n)T = (P, " Pnyq1, - ,dn )T . The superscript T stands for
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the matrix transpose. Let C%°(R?") be the set of all real smooth functions on R**. YH €
Co°(R?*"),VH(z) = (H,,, -, H., )T, the gradient of H. Denote

J2“=[—E}n %‘], T =20 = i, (1)

Wwhere 1, and O represent umt and 72e€ro mainx respeciwé‘ly. .\ mapfsmg z — % = gh%xls
said to be symplectic if its Jacobian is symplectic, i.e.,

9; (2)Ig2(2) = J. (2)
Congider the Hamilionian system
j—':=J“1VH[z), z€ R*", (3)

where H(z) € C®(R?") is Hamiltonian. Its phase flow is denoted by g*(z) = g(z,t). It is
a one-parameter (local) group of symplectic mappings. A function F(z) is the first integral
of the Hamiltonian system (3) if and only if their Poisson bracket is equal to zero, i.e.,

{FH} = (VFYTJVH =0. - (4)

A difference scheme approximating (3} is called symplectic if 1ts transition from one
time-step to the next is a symplectic mapping. [4] has proposed a method, called the
generating function method, to construct systematically symplectic difference schemes of
the Hamiltonian system (3). We now review the method. The details can be found in [4].

Let

T =J J 1J(I+VT) I
i 2

a=| 1 1 g e i : (5)

§ E(I-FV) E{I-—V) _EJ(I_VT) I

where VI J + JV =0, i.e., V € sp(2r). Then « defines linear transformations
ML M H M L
w z 2 w :

; |
J(z - 2), d=wt I+ VT,

i.e.,

}

w

1
w=(6+2)+ V(E-2), z=w-J(I-VT)a

If 2 = g(z,t) is the phase flow of the Hamiltonian system (3}, then the equation

1 1
w + —2-J(I+VT)£E:= g(w ~ EJ(f—lﬂ‘)ﬁ:,::) (8)
defines implicitly a time-depednent gradient mapping w — w = f(w,t), i.e., its Jacobian
fuwlw,t) € Sm(2n) everywhere. Hence there exists a scalar function, called the generating
function, ¢{w,t) such that ‘

fw, t‘) = v‘i’[“’! t)' (9)
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This generating function ¢(w,t) satisfies the Hamilton Jacobi equation

3
Etﬁ(w, t) = —H{w + AVd{w, ), (10)
where A = %J(!—i— V™). The phase flow 2 = g(z,t) can be conversely determined by ¢(w,1):

t-z=-0"'4( (242 +oV(E-2),t). (11)

Moreover, if H(z) is analytic, then ¢(w,t) can be expanded as a convergent power series in
t for sufficiently small |¢|:

S = 3 e, (12)

Its coefficients ¢{*¥) k > 1, can be determined by the following recursive formulas:

' (w) = —H(w), (13)

k
$E =2 3 = Y D H(W)(AVHR, -, AV, k> 1 (14)
m=1

m)
kl+"'+km=h
ko> 1

Therefore in this case, the phase flow # = g(z,t) is the solution of the implicit equation

-z =—Zz‘=r1w‘*'(%(ﬁ+z)+ %V(s“g)). | (15)

k=1

Taking 1ts m-th approximant, we then get a symplectic difference scheme with m-th order
of accuracy

PH =28 = TG (S(HHD 4 ) 4 oV (4 ), 1)
=3 g (E(zw + %) 4 SV (- 2R)), (16)
i=1

where 7 > 0 is the time-step. When V = 0, ¢(w, t) is odd in ¢t. Hence the symplectic
difference scheme (16) is of even order (m = 2!)

!
2T gk =Zr[2”Jv¢:ﬁ(%{zk“+zk)). (17)

1=1

§3. On Conservation Laws

Theorem 1%, Iy Flz) = %ETSE',S € Smi2n) s a quadratic first integral of the

Hamaltonian system (3) and
VTS + 8V =o, (18)
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then F(z) 1s also the invariant of the symplectic difference scheme (16), 1.e.,
F(zFtY) = F(z*), k2>0. (19)

For V =0, i.e., the case of centered symplectic difference schemes, (18) is always valid.
So all centered symplectic difference schemes preserve all quadratic first mtegrals of the
Hamiltonian system (3). This result was first noticed by Ge Zhong, Wu Yu-hua and Wang
Dao-liu. For the general case, the result was obtained in [5|. Here we give another proof.
Proof of Theorem 1. Since F(z) is the first integral of the system (3),

It can be rewritten as
(z+2)TS8(z-2) =0 (20)

From (18), it follows that

1
.—;-[V(E ~2))TS(e—2) = (5 - 2)TVTS(E - 2)
»
* = 41(5 -z} T (VT8 +8V)(2-2) =0, Vz ze€ R*".

Combining it with (20}, we have

Using (15), it becomes

(%(E + z) + %V{E — :.:.*'])TS'Jrg1 t-"?qb[i] (%{E + 2} + %V{ﬁ — z}) =Lk

From this we get |
wl §JV N w) =0, V7>1, Ywe R*™

1
Then, when we take w = %{z“”l +2%) + —Z—V(zk"'l — 2¥), we have

wTS(Z*! —2F) =) TwT §IVel) (w) =0.

=1
Since y " .
wT §(zF+1 — 2%) = (E(zkﬂ +2%) 4 E1,;-(2‘,,t=-|~1 - zk)) S(z5+1 — 2%)
- %{zk+1)Tszk+1 5 %(zk)TSzk,

F'(z) is the quadratic invariant of the symplectic difference scheme (16),
We now take ,

1—260)1, 0
V:[( o) -(1——29)1,1]' 1)
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It can be easily verified that VT J 4+ JV = 0, ie., V € sp(2n). Let § € Sm(2n). Denote

A B
S:[BT D],AT=A, DT = D. Then

(1—20) 4 0

VTS +8V =2
0 —(1-20)D |

Hence (18) is equivalent to
(1-20)A=0, (1-28)D=0.

It means that either § = 1/2 or A = D = 0. When § = 1/2, the scheme {16} is centered.
It preserves all quadratic first integrals of the Hamiltonian system {3). When 8 # 1/2, the
symplectic difference scheme (16) only preserves the quadratic first integrals with the form

p” Bg of the Hamiltonian system (3).
Theorem 1 for the first order symplectic difference scheme has a converse. Presicely

speaking, we have the following theorem.

1 ,
Theorem 2. Let F(z) = E:::TS:::, where S € Sm(2n) 1s a quadratic first wintegral of

the Humﬂtnm@n ystem (3), and in some neighborhood of R*™ the Hessian of H,H.., is
non-degenerate. If F(z) ts also an invariant of the first order symplectic difference scheme

2Ft gk = TJ_IVH(%[.Z“H + 2F) + %V{zk“ - z"‘)), (22)
t.e., F(2"+t1) = F(2*),k > 0, then
VIS + sV =o. (23)
Proof. By assumption, F is the first integral of (3); then
{F,H}=2"SJ 'VH(2) =0, V¥ze R%"
Hence

1 1 T
(3 425+ 3V 1) S~ ) = TS IVE@) =0, (24)

1
where w = i(zk‘*'l +25) + %V(zk+1 — z*). By hypothesis, F(z) is also the invariant of (22).
It means
i(zk+1)TSzk+1 = l(zk]TSzk,
2 2
1e.,
1
E(.zr"""'1 +25)75(F ! - z*) =0, (25)

Combining (24) and (25), we get

%(z’“ﬂ - 25) VT85! ~ 2*) = i’(zkﬂ ~ g ST B 4 SV Y~ b =,

*I!
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Because H,, is non-degenerate in some neighborhood of R?7 zkt1 £ 2% for sufficiently small
r. Hence we get the conclusion (23).

Lemma 3. V € sp(2n) such that
VTS + SV =0, VSeSm(2n)n GL(2n)
if and only of V = 0.

Theorem 4. There does not exist first order symplectic difference scheme with the form
(22) which preserves all Hamiltonian energy.
The proof follows from Theorem 2, Lemma 3 and Theorem 6 in the next section.

We now consider the conservation properties of centered symplectic difference schemes
(17). In this case, V = 0. Thus (7} becomes

1 1
§=W+§Jtﬁ, z=w— —J
Set

1 1 &0 1 o) |
Yp = -J?¢;[h](w),k > 1; u= —Jv¢(w’t) g —Jvl?blk}(W)tk _ Zuktk;

2 2 ~t 2 | =

1 . i S .

©° = EJV¢(m](w’T) = ; EJv‘aﬁ(k][lL')Tk o Z ukfk

k=1
Since the generating function ¢(w,t) 1s odd in ¢, ug = 0.

Lemma 5. F{z) is the first integral of the Hamiltonian system (3) if and only +f

k
1 :
2, 7t Y. D'F(w)(uk,, - uk,) =0, Voddk. (26)
j=1,0dd ¥ ki+ - tkj=k
k; >1.0dd

F(z) s preserved by the centered symplectic difference scheme (17) with m-th order of accu-
racy if and only if |

ik
S 1S DIF(w)(u, k) =0, Vodd k. 2

|
j=1,0dd J kpto -tk =k
1<k, £m,odd

Proof. Suppose that F(z) is a first integral of the Hamiltonian system {3}. Then
F(2) = F(z),
l.e.,
F(w+ u) = FP{w — u). (28)
Expanding the left and right hand sides of the equation above, we get

o0 k
Flw+u) = Fw) + Eth}!’i Z D7 Fw)(uk,, ", Uk, ),
k=1 =]

"kt =k
ki=1,0dd

oa k 5 |
F(w—u)*——F(w]+Ztkz(—+1) Z D? F(w){uk,, -, tx, )

7]

k=1 j=I Kyt otk =k
k> 1,044
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Hence (28} is equivalent to
k

Z 1 Z Dj‘F(tu)(uk” Sy ?uk}] = 0, Vi > 1. (29)

]
J=1,0dd J kyt-+k =k
k;2>1,24d

Similarly, the symplectic difference scheme ( 17) preserves F(z) if and only if
Flw+4) = Flw - 4). (30)

It is equivalent to

k
1 .
s E D’F(w)(uk”---,ukj)—-— 0, Yk >1, (31)

7=1,0d4d I Ry 4 thy=k
1<k, €£m,odd

As k 13 even, the second summation of (29) or (31) is empty. So for even k, (29) and (31)
are always valid.
When F(z) is of quadratic form, D™ F = O, m 2 3. In this case, (26) and {27) become
respectively
DF{us) =0, Vk3>1, (32)

and
. DF(up)=0, vYym>k>1. (33)

Of course, (32) implies (33). We thus obtain the conclusjon again: all centered symplectic
difference schemes preserve all quadratic first Integrals of the Hamiltonian system (3).

§4. An Example

We now give an example. It shows that in general, only the first integral of quadratic
form of Hamiltonian systems can been preserved by symplectic difference schemes.

Theorem 8. Let n = 1, and H(p,q) = p2q be Hamiltonian. Then any centered sym-
plectic difference scheme (17) can not preserve H.

Lemma 7. Let H be as above. Then 2N w), k > 1, determined by (13) and (14),
have the expression
é(zk—'”(w} = Ckpzk‘?: k2 1, (34)

where Cp = (—1)}*|Ck|, £ > 1, are determined by the following recursive formula

(—l)k k—1
Cy = -1, = 2 Y ICs] |Cr—y], k> 1. (35)
3=1

Proof. By induction with respect to k.

For k = 1, by (13), ¢!V (w) = —H(p,q) = ~p2q: (34) and (35) are valid. Suppose for
k—~1,k~2-, (34) and (35} are also valid. Then since H is a polynomial of degree 3,
D™H = 0,m > 4. Using the notation above, ug; = 0,

27

uﬁj'—].‘ = lJvé{gJ_ll e lcj [ P

2 2 sz‘pﬂj'-lq ]l jz 1:'”:k:

| 1
D?H (uz;_1, vgr-jy1)-1) = (u2y1)T Hastingo jpqymg = —5 (26 + 1)C;Ce_ sy 1 p? ¥ g,
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Hence by (14),

2k
1 1
¢{2k+1) = — —_— Z DmH(T.U)(Urk g 55y u‘km)
2k +1 m.z=:1 m! bl TR el :
k;>1.0dd
1
— 2(2k + 1) Z D?H(uzj5-1, u2i-1)
F4+i=k+1
1 : 1g
T T2k + 1) ZDQH(HZJ‘—nuz{kH—:'J—l) = EZ Oy Crpt—gt™ T g,
=] =1
L { k .
Cy+1= 7 Y CiCrt1-j = T > (—1)71C5|(—1)* 7 Crgr -5
1=1 =1
(_1)k+1 k
= 4 Z |CJ'| |Ck+1—.f|-
y=1

Proof of Theorem 6. Since H is Hamiltonian, it is of course the first integral of the
Hamiltonian systesi (3). By Lemma 5, we have

1
DH (u) + 5 S DPH(w)(uk,,u, uk,) =0, Vodd k. (36)

: kl +k=+k3=k
k.>1. vdd

But H is preserved by the centered symplectic difference scheme (17) if and only if

1
DH (u) + = Z D° H{w)(uk,, vk, 2k, ) =0, 1< k < m,edd, (37)
kythkotky=Kk
1<k, <m, odd
1
31 Z D? H(w)(uk,, uk,, Uky) =0, k> m,odd. (38)
ky+kat+ky=k

Consider the term of k=m +1=2{4+ 1. By Lemma 7,

1

2042
P
DH(ugt41) = EUH—I(ZPQ:PE) ( ) = —1C11p* T2 # 0.

~2(1 + 1)p¥tiq

Hence (38) is not valid for £k = m + 1. It implies that the centered symplectic difference
scheme {17) does not preserve H(p, q).
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