Journal of Computational Mathematics, Vol.9, No.3, 1991, 222-228.
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Abstract

In this paper, an algorithm of global convergence is proposed for a locally Lipschitz
function, which is strictly differentiable at almoast all differentiable points, and several
examples are computed on an IBM PC.

§1. Introduction

A great deal of effort has been devoted to nondifferentiable optimization In recent years.
Many researches have gone into implementable algorithms mainly by Wolfe, Lemarechal,
Zowe, Polak, Kiwiel, et al., besides various definitions of subgradient and corresponding first-
order optimality conditions. However, 1n these algonithms the functions are required to be
convex or semi-smooth in order to guarantee global convergence of the algorithms. It seems
that there 15 no globally convergent algorithm for the locally Lipschitz function without
additional condition. In this paper, we propose an algorithm of global convergence for a
locally Lipschitz function, which is strictly differentiable at almost all differentiable points.
In addition, we describe some concepts and properties of the locally Lipschitz function.

Definition 1.1. Let f : R — KR be locally Lipschitz continuous. The generalized
gradient of f at z 18 defined by

3f(z) = ca{uliiﬂlu‘?f(a: + )}

where V f(x) denotes the gradient of f at z, co denotes the convex hull of a set, and v; are
such that Vf(z + v;) exists and llimu Vf{z + v;) exists. We recall that a locally Lipschitz

function f(z),z € R", is differentiable almost everywhere.
Definition 1.2. Let f : B® — R be locally Lipschitz continuous. The generalized
directional derivative of f at z in the direction A is defined by

Pty T LBt o+ 4]
. t

Proposition. Let f : R® — R be locally Lipschitz continuous. Then
1. df(z) exists and is compact at all z € R”,
2. 3f(z) is bounded on bounded sets.
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3. 3f(z) is upper semi-continuous (u.s.c.) in the sense that
{z: — 2,y € 3f(2:) and y; — §} = {§ € 3f(2)}.
4. f°{z; h) exists for all z, h € R*, and

O¢.. -
[z k) = Saax {§;h).

Definition 1.8. For any £ > 0, the e-smeared generalized gradient is defined by

def(z)=col | of(=)}, B(,1)={y:llsll <1}.

z'€Cx+eB(8,1)

9¢ f(z) has properties 1-3 above.

§2. Several Lemmas

In this section,we demonstrate several lemmas concerning the algorithm.
Let f: R™— R be locally Lipschitzian. For any € > 0, we define

he(z) = —Nr(8,f(z)) = —Argmin{||h| : h € 8, f(z)} (2.1)
and € : R — R by
e(z) = max{e € £ : ||h.(z)|? > 6¢} | (2.2)
where
£ ={e:e=1g9v", k€ NT}U{0} (2.3)

and v € (0,1),e0 > 0,6 > 0 are given.

Lemma 1. The function ||h,(z)]|? defined by (2.1) is lower sems-continuous with respect
to x.

Proof. We know that the point-set mapping 9, f(z) is u.s.c. and the set léJA . f(z) is
-

bounded on the bounded set A. Since he(z) = — Argmin {||4|| : h € 3,f(z)} implies that
~he(z) € 3, f(z), it follows that the set {—h,(z)} is bounded. Hence, we can suppose that
—he(x) — ho and ho € 8, f(z0) holds by the upper semi-continuity of 3, f(z). Next, since

E=—+Zo

—he(Z0) € 3¢ f(z0) and —he(2z0) = Argmin {[|h]| : & € 3¢ f(70)}, it follows that [Jhofl >
~ he(zo)|| = [[he(zo)|l. Moreover, since lim —h,(z) = hy implies :En: |hel(z)|| = ||ho|l =

X+ In

he(zo||, it follows that lim |h,(z)}|? > ||h.(z0)]|>. Consequently, lim inf ||k (z)|I? >

X xR0

he(zo}||%, that is, ||h.(z)||® is Ls.c..

Lemma 2. For every T € R™ such that 63 f(Z), there ezists a p(%) > O such that

E(I;J 2 ve(z) >0, for all z; € B(z, p(%))

where B(Z, p(2)) = {z : ||z — 2| < p(2)}.
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Proof. Let % be such that # €3 f(z). Then, since 9, f(z) is u.s.c., there exists an &; >
1
0 such that ||k, (%)]* > §||h..;;.(f)||2 > 0. Moreover, &' < &” implies that |he(Z)[]* >
Ao (Z)]|* by definition of h.(z). Since

e(z) = max{e € £ : |he(Z}||® = be},

(2.4)
£ = {e:e6=¢pv*, ke NT}U{0}

and [lhe, (2)7 2 ZllAo(&)]* = & - Slho(2)?, it follows that if ¢ < min {e,, - lho(2)12},

Oy | Oy |

then [lhe(Z)||Z > e, (Z)i|?, and % |ho{Z)|1° > . Therefore,

[he(Z)? 2 Nlhe, ()17 2 6 - 5= lho(Z)]|* 2 be. (2.5)

o
| e

It follows from (2.4) and (2.5) that
11
e(Z) > max {s € ¢ :e < min {51, ——]|hg(i)|[2}} > 0.
24
Next, since [|h¢(s)]? is 1.s.c. by Lemma 1, there exists a p(z) > 0 such that
||”"t{z](=’-7i)||2 > |{heqa) (2)]|%,  for all z; € B(z, p(2)).
Moreover, since |[h(2)(Z)||* = §¢(Z),

”hu:(z}(mi)ug 2 ”hr{zy(zi)llz 2 llh;{z}(flllz > be(z) 2 Sve(z)

for all z; € B(%, p(Z))-
Hence, by definition of £(z;), one has

e(z;) > ve(Z) > 0, for all z; € B(z, p(Z)).

Lemma 8. Let S' be a compact, convezx subset of a compact convez set § and let

a € (0,1). Let ' = Nr(S') = Argmin{|lh|| : h € §'} and let g € 5 be such that
(g, ") < &llh'||°. (6}
Then h" = Nr{co{g, S'}) satisfies
IR")1* < max{a@?, 1 - (1 - &)*|[A"||*/2¢ HA")|*,
where ¢ > max{|lgll : g€ 5}, 0 < @< 1.
Proof. Since ||h”|| = min{||k|| : A € co{g, S'}} < min{||A|| : A € co{g, h'}}, it follows that
W72 < min f]Ag+ (1 - A)A'[> = min A%[lgl® +2X(1 ~ A)(g, A"} + (1 — A)*|INII°

0<A<1 0<A<1

< s 2.2 i e IERATY- - 21 L2
_ﬂglfgll ¢? 4+ 2x(1 - Na||p'||* + {1 - A)°||A|]

g : 2 _a=lir'li? Fll2yy2 =l L2 _ |2 12
= min (% — 2al|b[[* + [W%)A% + (2] A - 20A*)A + ')

< min, 27(A — (1 - a)[W)?/26%)* — (1 - @RS /2" + AR
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Therefore, as 0 < A = (1 — &)||A’||2/2¢? < 1, we obtain
IR0 < (1= (1= a)?||R'|P /2<% 12,

On the other hand, let g and A’ be collinear. It implies that either (g, k') = ||g] [|A’]| or
{(9,h') = —[lgl| [[*']]. In the case of {g, h') = —|lg|l [|A’]l, we obtain Nr(co{g, S'}) = 6. In
the case of (g,A’) = |lg|l ||R’||, since {g, A"} < a||A’||? implies lg|l < &]||A')}, it follows that
IR 17 < [|gl|® < &2||A')|?, which completes our proof.

Lemma 4. Let f : R® — R be locally Lipschitzian and be strictly differentiable at almost
all differentiable points. Let e, > 0, z; € R™ be such that 0€0¢, f(2:), Y, € 3¢, f(z;) be a
closed convez set and n, = ~Nr(Y,).

(1) Suppose that for any strictly differentiable point z; € 7; + €; B(6, 1) satisfying

(Vf(zi)ns) < —aln|?, «€(0,1) (2.7)
we have
ns € —int{cond,, f(z:))*
and

- f(Ii = ﬁkina) bits f(Ii) < _aﬁki ”’?&”E:

where g% ||n,]| < e, .
(2) ¥ fz:i + B%n,) — flz:) > —af* |n,l|%, 8% ||n.l < &, then there exists a strictly
differentiable point z; € z; + ¢;B(¢,1) and a 6/ > 0 such that for all I; €Ez;+ 6 B(0,1) we

have
(9,70 > ~&lln])?,  for all g € 3f(z:) (2.8)

where & € (a, 1).
Proof. (1) Since any strictly differentiable point z; € z; + €;(6, 1) satisfies
{(VF(z),n.) < -ﬂ”mffﬁ: a € (0, 1}, (2.9)

it follows from 8 f(z) = cof lim Vf(z;)} and (2.9) that

I[_'I

(n,1s) < —a|n,)?, for all 5 € 8,, f(z:) (2.10)

where o € (0, 1), that is, 5, € —int (con 8., f(z;))*.
Moreover, since f{z; + 8% n,) — f(z;) = (£, f*'n,) where £, € Of(z; + uBFn,),u
(0,1), and A% ||n,| < &, it follows from (2.10) that

f(mi s ﬁki’h) i f(Ii) < “{lﬁki ”7?3”2-

(2) If f{z, + B%n,) — f(z:) > —ap* 1m0, B%(|n,]| < &, then by the proof of case (1)
there exists a strictly differentiable point z; € z; + £;B{(#, 1) such that

{?f(z:-], 7}3} > _'a”na”E: @ C [0! 1)' _ (2'11)

Next, by the upper semi-continuity of 3 f(z), for any & > 0, there exists a §! > 0 such

that
z; + 6/B(8,1) C z; + ¢;B(9,1)



226 ZHANG LIAN-SHENG AND TIAN WEI-WEN

and as z; € =} + 6/ B(0,1),
af(z;) c af(zl) +eB(6,1) = Vf(z;) + eB(8,1). (2.12)

Hence
In — V()] <e, for all n € 3f(2:). (2.13)

If we suitably choose an € > 0 and a § > 0, it follows from (2.11) and (2.13) that for ali
I, € x; + 5:.3(9, 1),
(ﬂ:ffs} 2 _'ﬁ“rh”?r for all nc af[il):

where & € (o, 1.

§3. The Algorithm and its Global Convergence

Based on the lemmas in Section 2, we can propose an implementable algorithm for the
locally Lipschitz function, which is globally convergent. |

Algorithm.

Parameters : o > 0,z € (0,1),a € (a,1), 8, v € (0,1) and positive integers s, N are
.given.,

Date : zo € R™.

Step 0: Set 1 = 0.

Step 1: Set € = £¢.

Step 2: Compute Y, C 3. f(z:), a convex hull of s points in 3, f ().

Step 3: Compute n, = ~Nr(Y,).

Step 4: If ||, |l < &, set £ = ve and go to step 2. Else compute k, € Nt such that

fe < B*|n.|| < e

Step 5: If
fzi + BFna) — flz) < —ap™ |, (3.1)
(i) Set h; = n, and compute the smallest k; € N7 such that
fla: + B ki) — flz:) < —aB™ Al (3.2)
(ii) Set zj41 = zi + A% h;, 1:=1+ 1, and go to step 1.
Step 6: Set
5, = 8% |n.ll/2N, e = | — th

[01"*:0111‘]1“'1“)

Step 7: Choice zii‘fi“"’j“} = B(mi+Z(2j;-l)5,e;; §,), where y =0, -, N, | &2 X0 s 0
: _

Step 8: Compute gy (:-:EJ:_:;J"}) = 3f(“’£f:fi’“})
Step 9: If -
(g7 (a7, ma) 2 el (3.3)

set Yy41 = cn{{g;(mgf:f;""'J“l)}UY,}. Set s := s + 1 and go to step 3. Else, set N = 2N
and go to step 6.

| Remark. We use the Grid search method to choose the points mi’:_::"" ) in step 7.

We shall now demonstrate the theorem for global convergence.
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Theorem. Let f be locally Lipschitzian and be strictly differentiable at almost all dif-
ferentiable points. Then

(1) If the algorithm generates a finite sequence {z;}L,, jamming at zx, t.e., with con-
struction stopping and the algorithm cycling in the loop defined by steps 24, or steps 3—9
or steps 6 — 9, then 6 € 8f(zy). |

(2) It the algorithm generates an infinite sequence {z;}52,, then every accumulation point

Z of {z;}2, satisfies 6 € 3 f(z2).

Proof. (1} Suppose that the sequence {z;} is finite with the algorithm jamming up at
zy, cycling infinitely in one of the loops defined by steps 2 to 4 or steps 3 to 9 or steps 6 to

9. Suppose that §&3 f(zy).
(i) Consider the loop defined by steps 2 to 4. Since #€3 f(zn ), by definition

e(zn) = max{c € £ /| hfzn}]|* > 6} > 0

where £ = {e/e = eov*, k € NY}U{0}, h.(zn) = ~Nr(8.f(zn)) = —Argmin{||h||/h €
8. f(zn)} v €(0,1),€0, 6 > 0. Henceforalle < e(zn),Y, € 8, f(zw), |[m.||? = INc(YL)||% >
INE@e f (2 )I* = INPOg(zp) F(2n )% = |Pe(zn)(zn)||? > 6e(zn) > b€, and hence no infinite
cycling can occur in this loop. .

(ii) Considerthe loop defined by steps 3 to 9. If ||n,]| —co > 0, there exists an 3 > 0

such that as s > 30, [Ins|| 2 co — € > 0, where £ > 0 is smaller. Set &' = —n,, and by Lemma
3

I7s+1l* < max{a®, 1~(1-a)?|ln.[/2c*}In, |* < max{a?, 1-(1-a&)%(co—e)?/22}|jn, |12

where ¢ > max{||5]/n € %ﬂf(::hr)} > ¢g. It follows that ||,4m|| — 0, which contradicts
. Ik
”n,” —l!*f:n > Q.
If ||n.]] — 0, the algorithm must go to step 2 from step 4, and hence no infinite cycling
2

can occur in this loop.

(iii) Consider the loop defined by steps 6 to 9. In this case the expression (3.1} does not
hold, and hence by Lemma 4, there exists a strictly differentiable point z; € z; + £; B(4,1)
and a 8] > 0 such that for all Z; € 2/ + 6§/ B(4, 1),

{g,ms) > —@&|n.||%, for all g € df(z;)

where & € (@, 1). Hence no infinite cycling can occur in this loop.

(2) Now suppose that the sequence {z;} is infinite. Suppose that z 'F—fr:'r":} with K ¢C

{0,1,2,- -} infinite, and that §€3f(%). Then, by Lemma 2 there exists an 29 such that for all
1 € K,1 2> 19,€(z;) 2 ve(z) > 0. Consequently, for all i € K, ¢ > i, the expression (3.2) of
the algorithm is satisfied with ||, || > ve(z) by ||n,{| > e(z:), and 8%||n,|| > Be(z:) > Bre(i)
by the algorithm. Hence, by (3.2) for all s € K, > 1,

f(Zi41) — flz:) € —aB™ R < —aB(ve(z))®. (3.4)

Now f(z;) 5 f(Z) by continuity and {f(z;)} is monotonically decreasing. Hence, we must
have f(z;) -+ f(£), which contradicts (3.4). This completes our proof.
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84. Numerical Examples

This section describes the computational results of the algorithm in Section 3. The
algorithm is coded in Fortran 77 on an IBM PC.

Example 1.
5

min f{z) =1+ Z(|a:‘| +127).
i=1
The optimal point is X = (0,0,0,0,0), and the optimal value is 1.

1) We choose an initial point X, = (10,10,10, 10, 10). After 25 iterations, we ob-
tain X*=(2.401899E-004 , 3.978963E-005, 1.479208E-004, ~3.120370E-004, 1.627195E—
004) and the optimal value f* = 1.000904000.

2) we choose Xp = (10, 24,35, 18, —54). After 20 iterations, we obtain X* = [ -
3.102912E-004, -3.664491E-007, 2.227507E-004, 4.288445E-005, 1.320743E-004) and f* =
1.000709000.

Example 2.

5(922 + 16y2)/2,  for z > |y,
minf(g;’y): 91+16y, for0 <z < ly‘,

a

9z + 16ly| — z°, for z < 0.

The optimal point is (z,y) = {—1,0) and the optimal value is —8. We choose an initial point
(Zo, ¥o) = (1.4,0.8). After 26 iterations, we obtain (2%, y*) = (—1.0000680, 3.040496 E-006)

and f* = —7.999951000.
The above examples illustrate that the algorithm in Section 3 is efficient.
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