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Abstract

The equiﬁbrium strategy for N-person differential games can be obtained from
a min-max problem subject to differential constraints. The differential constraints
can be treated by the duality and penalty methods and then an unconstrained
oroblem can be obtained. In this paper we develop methods applying the finite
element methods to compute solutions of linear-quadratic N-person games using

duahty and penalty formulations.
The calculations are efficient and accurate. When a {4,1)-system of Hermite cu-

bic splizes are used, our numerical results agree well with the theoretical predicted
rate of convergence for the Lagrangian. Graphs and numerical data are included
for 1llustration.

§1. Introduction

As in Part T and Part II, we consider an N-person differential game with the fol-

lowing dyna.mca

(DE) = :c(t) A(t):t:(t) EB (t)u,(t) f(t) on [0,7],
e
a:gﬁ) o€ R". " | o | (1.1)
The matrix 'a‘.‘nd'"ii*écti:ir functions A(t), f(£), Bi(1), wi(t), = 1,--+, N, satisfy the same
. conditions as in'Pa.rtVI and I1 ([6] and [7]). Each player wants to minimize his cost
JI(‘T" u) Ji(miﬂll'f'iﬂN): '= 11“'1N- (1-2)
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Let

F(z,u; X,v) = F(z,ul,n-,uy;ml,---,J:N,vl,---,ﬂN) |
- i [J;(:r:,u) - J;(mi,vi)] , - . (1.8)
i=1 .

where X = (z},--- 2N, vt o= (g, Uie1y Uiy Yig1,y .,un) and each z* is the solution
of .

(DE); = () — A(t)z(t) - ; B;(t)u;() — Bi(t)vi(t) — f(t)=0, on [U,T],_

j#i
mi(0)= Zo, i=1,---,N. | - (1.4)

Following [6] and [7], we consider the primal and dual problems:
(P) i:_nf sup{F(z,u; X,v)|(z,u) € H} x U subject to (1.1}, (X,v) € [H1Y X U
¥ X,v '

subject to (1.4),i=1,---,N}

(D) sup inf L(Pﬂa p)'r where L(pnip) = L(po, e U R 1?”) = inf Sup L(Poa D
poc L’ pe[LAN _ % X v

z,u; X,v) with the Lagrangian L : L2z[L3N x H;, x U x [H IV x U defined by

N
L(po,p;z,u; X,v) = F(z,u; X,v)+ (pn,:i: — Az — Zﬁjﬂj - f>

j=1

N .
+Z<p;,:i:i—A:ri —ZBjUJ' —B,;v;—f) (1.5)

1=1 i#e :
for =, X satisfying z(0) = 20,X(0) = Xo = (zo,+*+,%o). We inherit the notations
U =TI, U; with U;L%(0,T) from Part I, and the notations of L? and Sobolev spaces

™

H*, HL and H], are the same as in [6] and [7]. We sometimes denote L? = L*(0,T)
without mention of dimensions. |
In this paper, we consider the linear quadratic problem whose cost functionals are

given by
T - .
Kz = 3 [ G0 - 2Ok, + M@ u)mldts  (19)
i=1,---, N, (z,u) feasible

just as in [6], {7]; here we assume that Ci(f) and M;(t) are matrix-valued functions of -
- appropriate sizes and smoothness, and z;(t) is a vector-valued function, Furthermore,

M;(t) induces a linear operator M;: L2, — L7,, which is positive definite: ‘
(Miui,w)s > plluillly . 1<d < N, for some y> 0. (an

In §2, we formally derive the matfix Riccati equation from the duality point of;f

view. §3 is devoted to error estimates and numerical computations. We prove sha}pﬁg
_ error bounds using the Aubin-Nitche trick. We finally present in §4 some numencal‘*%

o
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results obtained by dualty and penalty scheme briefly. These results a,grée well with
the theoretical estimates. '

§2. The Dual Max-Min Problem for Linea;r Quadratic Games

In this section, we give a formal derivation of the dual functional L{pp,p). This
formal derivation will be justified later by assumptions (A3), (A4), and the Primal-
Dual Equivalence Theorem. |

Let the Lagrangian L be defined as in (1.5), using (1.6). We first study

sup {L(po, p; T, 4; .f,v)ql}fbr_(x,v)such that X(0) = Xo}.

For given pg,p,Z, %, L(po, p; ¥, 4; X, v) is strictly concave in v, and concave in X. As-
sume that this maximization problem has a solution (X, #), which depends on (po, p; 7, ).
By a simple variational analysis on z*, we have, necessarily,

~{c1(Ci# - 2),¥) o {pi,¥ - Ag,f)ﬂ_ = 0,C* = adjoint of C, (2.1)
forall ' € HY,,i=1,---,N. The above has a solution X if and only if p satisfies
’ peHLIY. (2.2)
Indeed, (2.2) is a necessary and sufficient condition for
s L(po, p; ,u; X, v) = L{po, p; -'r: u; X, v). (2.3)
X(0)=Xo

(2.1) and (2.2) yield
—(CHCE ~ z)+pi+ A*piyy') =0, i=1,---,N.

Hence

pi = —A"p; — C}(Ci#' — 2). (2.4)
Similar variational analysis on v; gives |

—(M;"f?;‘,W.Z) B (phBiwi) —d 01 Vtﬂi € L?n”

or | .
;= M 'Blp;, i=1,--,N. (2.5)

Note tha.t (j.' , ) is independent of (n:,u) | |
Next, we consider inf («,«) L{po,p;z,u; X, v). For given po € L2,p e [H)N, using

. z{0)=2q ;
the same reasoning as before, we can show that

”

for some (3:1, u) if and oi_lly if

PuEHﬁm : A . (2.6)
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5o = —Apo + Y_Ci(Cig — z), (2.7)
1=1 %

| . o
e M;IB:(pU_+Z p_f) = M7 'Bi(po+Ps— Pi)y Ps = Y pi- (28)
i j=1

1. If the problem sup,, infy L{po, p) attains its max-
(2.6), (2.7), (2.3) and (2.4). Therefore, we obtain

following two-point boundary problem: |
min,e(z2|¥ L{(po,p) 18 attained by (Po, D).

Let L(po,p) be as defined in §

min at (po,P), Po and p satisly
X, 0,%,4,po,p as the solution to the

Theorem 2.1. Assume that maxXp,cr2
Then (o, p) € Hon ¥ [Hon]"
L(po,p) = max min L(po,p) = mpgxﬂignL(m,p;m,u;X;v)

?

pocL? pe[LE]Y
— maxmin min max L(po, p; Z, 4 X, v)
po P (su)EH) xU {X,ﬂ)E[Hé“]N x U
H0)=zo  X(0)=Xo

and z,X = (ml,---,mﬁ),po and p = (p1,-+-,PN) are coupled through

i-«: A D 0 S S] i SN
»
21 0 A 0 Si Sn -0 SN
2 :i‘:N R 0 0 A SN SN SNN
at | o SCiC: O 0 -A" O 0
2! 0~ 0 0 -—A* 0
PN 0 0 -GG O 0 ~A*
il 4
&N f
L P _ (2.9)
Po . 2?:1 Ci 2 %
i) Ciz
pn | | Chew
£(0) =£'(0) == £V (0) = o, po(T) = p(T) = - =pN(T) =0,

& = MBI (po + pa— i), ¥ = —M ' Bipis
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with o *
=Y B;M;'Bj, Si=) B;M;'Bj
j=1 J# . .
Six =8 —(1— 6;)B:MBf —~ BeM['Bi, 6;x = Kronecker’s §. (2.10)

We now study the dual problem. Henceforth, for simplicity, we denote the operators
C*C; and o, CIC; (induced by the ma,tnces Cr(t)Ci(t) and Y CHOC() in L
as C;(1 < i < N) and Cy, respectively.

Several assumptions are needed as we proceed. First, we assume

(A3) each operator C;{1 < i < N)is strlctly positive definite in L2,
From (2.4), we get

Fh e -—C,T'l(ﬁi + A*p; - C? ). - (2.11)
By (A3), Cg is also strictly positive definite. By (2.7), we get
T = CEI (po + A%po + E C'i'"z,-) . (2.12)
t=1 ‘

We now substitute (2.11), (2.12), (2.5) and (2.8) into (1.5). Integrating by parts with
respect to pg and p;(1 < # < N) once, using the end conditions pi(T)=0, 0<¢ <N,
and simplifying, we get

NS VPSP PR
L(PG,P) L(pﬁ P,x u‘l 1”) = _“(Pﬂ + A pU:C{] l(pﬂ *+ A PO))

3 E (i + A"pi, C7 (3 + A*p,)) ~(po + 2 S(r0 +1.))
t...l

=l <P0 + PJ:E Bt'Mi_lBFpi> i (PO + Atpﬂa Cal i C;3i>
=1 . 1==1

N
=3 (i A%, €7CTzY — (po+ pas £) = (Pol0) + 2:(0), 70)

1=1

N
- %(cal(zgc;zj), ):c*zj) e —||z||2 - Z;T (2.13)
= $==
where ||z]|* = N, ||z:l|22, and p, is defined as in (2.8).

It is easy to see that L{po,p) is strictly concave in po for any given p. However,
for any given po, L(po,p) is not necessarily convex in p because of the negative sign in
front of T3. This causes a severe handicap for the duality approa.ch see Remark 2.2
below. To circumvent this, we need the following important assumption:

(A4) The pomtwe deﬁmte operators C; 1(1 < i< N}in LZ are large ermugh so that

e “‘E(P: + A*Pn I(Pt + A*P:)> B ""(Pas SP3>I o

t-—l

+(p,,ZBM*IB* ) > uEupu? e (2.149)

P A -J-‘r--j'- =1
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for some v > 0, and for all p € (L™,

We remark that, even if _C;’l 1< < N, are not large enough, the above a.ssuﬁl]ition
can still be valid provided that T is chosen sufficiently small, because in this case the
first positive definite quadratic form in (2.14) will have a large coercivity coefficient
to absorb L2-norm, when the interval {0,7] is small. This is consistent with the
assumption that ¢; — tg is sufficiently small in [13]. |

Another special case where (A4) holds without requiring C;-'l, 1 < i< N, be large
is when | '

N=2 U =Uy, BiM'Bi=ByM;'B;=B, forsome B2>0.

It ié easily seen that now
5 .
(2.14) =;i; . Jp <ﬁi + A*p;, €7 (pi + A'ﬂi)) - %2(1?,,313;.) f <pnBPs>
t=1

1 2 | .

15 (bt AP €T i+ AR (2.15)
2 t=1 .

so {A4) holds,

Remark 2.2. THe fact that an assumption like (A2) in (7] is indispensable for
the tractahility of the dual problem can be observed as follows: If C;’l,i = Yoo o NG

are not large enough in comparison with B;Mi'IB;-",i: 1,---,N, so as to cause the
existence of some p € [H,l}m]‘“"r satisfying
1 = ~ * = -1/ * 1, =
'2' E{P‘ + A Pis C{ (p: + A pl)} s E(pnsps)
1=1
N |
+ (s, 3 BiM;B}ji) < 0, (2.16)
=1

then for any given po € H{,, we deduce from (2.15) that

k]im L(po,kp) = —oo0 and if}lf L(po,p) = —00

for any given pg € Hy,,. Therefore, the dual problem is rendered completely worthless.
A situation like (2.16) should be avoided to ensure mathematical tractability. For the
computational purpose we will need the uniqueness of p. Thus we take a step further
to assume coercivity and strict convexity of p in L(po, p) in hypothesis (A4) to achieve
this goal. _'
Let us list the above and other usefull properties in the following, which is readily
verifiable. |
" Lemma 2.3. Assume (A3) and (A4); then ;
(1) For each given py € H} , L(po,p) is strictly convez inp forallpc [H&H]N and,
for each given p E_[H&n]N, L{po, p) is strictly concave in po for all pp € Hy o "o
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(i) The following coercivity conditions are ‘sc:ti.sﬁed:

- lim L(PD:P) = O, \4 Do € Hﬂln'r

llpllgga jn—oo

lim  L{po,p)=o00, Vpel[HL]". (2.17)

1 —1O0
tpoll 2

Using the above lemma and the minimax theorem, we conclude

Proposition 2.4. Under (A3) and (A4), the dual problem sup,,, infy L(po,p) has
a unique solution (o, p) satisfying |
L(po,p) = sup  inf = L(py,p)= max min L(po,p)= min ey L(po, p).

r€H;, pe[H},]” Po€Hsn pelH},]" pelH,)" Po€Hon

Theorem 2.5 (Primal-Dua.l Equivalence Theorem). Let Ci(t), 2(t),i = 1,---, N,
f(t) and C;',C71,i = 1,---, N, be sufficiently smooth (as functions and operators,
respectively). Let F(z,u; X 1:) be defined as in (1.3). Assume that there exists (z,u) €
HlxU>(z,v)€[H ]NXUsuchthat

inf sup F{z,u;X,z)= min max F(z,u;X,v) = f(£,%4; X, ) < o0 (2.18)

RS AXd actle feasitls
and that (A2) in [4] is also satisfied, i.e.,
- Y(z,u) = sup F(z,u;X,v) - (2.19)
(X,»)
feasible

is convez in (z,u) for all (z,u) € H} x U, z(0) = zo. Assume that (A3) and (A4) hold
and let (Po, p) be the solution in Proposition 2.4. Then

(i) L(po,p) = max min _ L{po, p)

n PE[HG, 1Y

= maX min min max  L(po,p;z,u;z,v)
po€HG,, pE[H] 1V (sm)eHl xU (X, 0)elH) N
2(0)=zx, x{ﬂ']=Jl.'g

FIII} }I}a;;: F(z,u; X,v) = f(&,4; X, ); (2.20)
Jeanible feasible

(ii) (:E,ﬂ;_.i’,i}) is related to (Po,p) through

F = Cyt (i’iﬁ + A*po + i(}'}'z;), | (2.21)
b = MBI Got o B)y i= 1o I, (2.22)
3 = -c;?(fs,-'_+'A*ﬁ,- 5 e N (2.23)
.ﬁ; = —MBlp, i=1,-,N (2:24)

and (£,4; X,9) mtlsﬁes d:ﬂ'erenttal equations (1.1) and (1 4)

Proof. Because all the assumptions are satisfied, we can apply Theorem 2.1 of [7]
(particularly (2.17) in: the proof) to conclude (i). Note that all the sup’s and inf’s can
be replaced by max’s and min’s due to the quadratic nature of the problem.
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(2.21)-(2.24) are verified in a straightforward way as in (2.8), (2.5) and as in (2.11) |
and (2.12), but now every procedure is justified. | .

oy

To show that (£, @; X, ©) satisfies differential equations (1.1) and (1.4), we pa,fi make
a variational analysis on L(pg,p). Because 3 -

L(po,p) < L(fos$) < L(Po,p), V(po,P) € Hon X [Haal"

we get

0 +
— L( po, = 0. 2.25
_ g (Po P)I,Eﬁ e
This yields the Euler-Lagrange equations
d ; o | N ;
SCT (b + ATB) = ACT! (B + AB) + S+ £4) — 2, BiM; B2,
1=1
2 .. PO
—B; M B*(po + ps) + AC; ' Ciz; — -d—t(ct:,E 1Crz)+ f =0, (2.26)

| pi(T)=0,
| C1(0)[ (0) + A*(0)p:(0)] = —z0 + C7(0)C7(0)2:(0),  for i=1,---, N.
»
From the assumption that C;,C;, 2, f are sufficiently smooth, and that (2.20)-(2.24)

hold, we see that the above equations agree with (1.4). Similarly, from

0 - '
B (PO Plpo=po = 0 - (2.27)
we can also show that (1.1) is satisfied by (2.21)-(2.22).
Note that for a linear-quadratic differential game, ¥(z,u) in (2.19) can be calculated

expticitly and is equal to

. N H
. AR o (S b
¥(z,v) = max F(z,u; X,0) = 3 5{lICiz - zll* + (Miws, wi)

feasible | i=1
— |ICi(Lozo + 3 Lju; + Lnt1 f) — zll°
- i
+(L:C; [C: (Lozo + 3 Lju; + Lvsaf) — 2|,
j;ﬁ :
(M; + L;C7C:Li) 'L C} [Ci(Lozo + 3 Lyju; + L4 £) - z|)}(2.28)

j# -
The reader should refer to Part I, §2, for the notations and derivation of the above.
Corollary 2.6. Consider the linear-quadratic differential game (1.1), (1.6). As-

sume

(AO) {1111}1 A F(z,u; X,v) = 0 holds, so the differential ga,mé has a solution
iul'i:le f-!l:li:l_! oy .

(z,u); e L a ”
" (A2 ¥(z,u) given in (2.28) is convex in (z, %) for (z,u) € Hg, x U, 2(0) = Zo; and

assume also (A3)and (A4). Then '’ there exists a unique (po, p) e HL x [H}.IY such
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that (2.20) holds and the solution (z,u) ﬂf the dlﬁ'erentla.l game can be obtained fram
(po, p) via ' '

T = Cai(pu+ A" 4 ZC"’z,

2= M7UB](Bo+Ba— Bi), i=1,2,+, N,
as given in (2.12) and (2.8). ' |

Remark 2.7. Many evidences seem to suggest that assumptmn (A2) in Corollary
2.6 is redundant because of (A4). Neverth_eless, we are still unable to prove or disprove

this.

§3. The Dual Varlatmnal Problem and Finite Element
Approxlmatlons

In this section we devote nurselves tu _the study of the finite element numerical
method for differential games.. It is fair to say that the methods of solution for N-person

differential games are still very incomplete. More efforts are needed to develop good
analytic and a,pp?oxima.tiﬂn methods to solve them. The finite etement method is a
rigorously established, highly accurate numerical method which is becoming increasing
popularly in recent years. Due to the special minimax structure of differential games,
we are able to apply and generalize the existing theory of finite element analysis to our
own problem to establish rigﬂrous'érfo'r bounds and to obtain numerical solutions.
The unique solution (pg, p) of the max—mm problem satisfies (2.25) and (2.27). From

(2.13), by a simple calculation, we c:bta.m

N
3;,01;(}30,}3).? o _(ﬁo + A% ,CEI(T + Air)} i (ﬁ{} 4 fi,,Sr) + <T, EB{Mi'_lB*Pl?)
N | | |
- (7 + A, C5’ E_q;;;) — (r,f) = {r(0),z0) = 0, Vre Hj,, (3.1)
apL(ﬁmﬁ)_g = Z(ﬁl 4+ A* "".,Ctri(.i 4;.__11*3{)) = <ﬁ0 + Ps, S-Z 3£>

$ (po ¥ p,,ZB M"‘B"S‘) + (Zs.,z B:M;'B} ;)

SF fi

F_Z<S.+A-5” 1(:'-|= ,> (Es,,f) <231(0) a:u> 0,

¢

3

4 - {_

L . 2 T
. 1 -
LA Ry T

V 8.= (31, SN) £ [Hﬂn] t3.2)

The above two relations 1nduce a. bmneg.r form 011 Hﬂn X [J'Fﬂ;;m]ﬂ'Ir for rl,r? € H},
and s' = (51!3‘2 3N)= 4 (311 Q.-J_:‘ N)E [Hcln - |

T’ wm
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(| % )= ;("1 +- Art, G3(r% 4 A"“» : (' + is‘- SI 2y
31 ¥ 32 el 3 . 7 T T ) |
N N . N, N
+ <T2,ZB:‘M,;_IB:3}> +'Z <.§} + A*s}, CT1(ST + A‘"sf)) - <r1 + Zs}, SZ 3?)
1 1 oy i
N N N N i i
L (4 sl L BMBIst) + (el L BMI B st (3.3)
. ! 1 1 1 e R
nd a linear form @: for r € Hj, and 8 = (81,--+,8N) € (LY, |
: ([ ; D = (r+ 3 s )+ {rO+ S 5;(0)z0) + {7 + AR C5 Y Clz) ;-
; ! 1 B

N
= (5 + A"8i, CT'Cl 7).
1

Thus, (3.1) and (3.2) are equivalent to

(LD () venemmmr. e

(po,P) be the finite element method. As in

We are now in a position to compute
{, are nonnegative integers) if,

(1], we say that S} c H?(0,T)isa (t1,12)-system (t1,

for all v € H*(0,T), there exists vy, € S, such that |
(3.6)

v — vallggs < KR [ollgmes, YOSK < min(ko, t2), k€N,
where m = min(t — k, ko — &) and K >0 is independent of h and v.
Let S C HL be a (t,1)-system. We consider
(3.7)

max min L :
po €S pE[Sn]Y (PU,P)

It is easy to see that under (A4), there exists a unique saddle point (Pon,Pr) € Spx[Sa)¥

such that

L{fon,pn) = max min L{po,P)-
(Poks Ph) poC5n pelSIN (o, P)

This point (por,Pr) 18 characterized as the solution to the variational equation

¢ ({ - ] , { . }) . ' ({ . ]) , V{rn,sn) € 5n X [Sh]N- (3.8) -
Dh Sh Sh | g .

If {qﬁi};{:l,{gb}N‘J are basis for Sh,[Sa]", respectively, then (3.8) is a matrix equation

=1

M7 = 85, where the entries of M; a.nd-ﬁh are

[ﬂh]ﬁm([‘“,['ﬁ D 1<4j <N+,
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Proposition 3.1. Under-(A4), the bilinear form a{ ys) satisfies
1 2 - |
; | et T |
12111' sup |a( [ 1 ] , [ _2] )l > 0, . (3.9)
r 7 8 3
2 s!

and the space {5}, satisfies

rihf su [ ],[:;’:l)|=1h>1}0, -~ (3.10)
[3§]

for some y > 0,V 2 > 0.
Proof. In (3.3), for any given (r?,s?) € H}, x [HL ]V, with norm 1, let

rl = —p? gl = &%,

Then the norm of (r!,s!) in H} x [HA ]V is also equal to 1, and

&1 2 3 .2
([ ]a]) =5 e )
(r 4+ A*r?, Col(r? 4+ A” 2))+{r , Sr?)

F(So o BT Bl + Y6+ A, G5+ A7)

1—1 t—I

_<23H52 >+2<Ea,, ZBM“IB )

=1 =1

> (F2 + A*r?, Cg(#* + A™r?)) + (%, 57%) + 2 Z Is?llzz  (by(A4)

l'_l
[ ]
3

for some u’ > 0. So (3.9) also follows in exactly the same way.

Theorem 3.2. Let (fop,Pn) be the solution of (3.7) and let Sy be a (i,1)-system.
Assume that Ci(t),z(t), ¢ = 1,---, N, are sufficiently smooth. Under (A3), (A4), we
have

f /

= H

> p .
Hy XIH3 N

1 ]H S'_- Khm ("ﬁo“ + "fj"[Hr]N) ] (3-11)

o = Boullza + I ~ Pallizape < KA™ (lIAoll g + [ (3.12)
provided (po, P) E [Hgﬂnﬂ"] X [HOHHH;]N, where m = mln(t —t,r—1)and K } 0 is
a constant independent of (o, ). Conseguently,

| (o, §) = L(fon, B)| < thzm("m"m + HP"[Hr]N) (3-13)
-holds for some K3 > 0 independent of (po, P).
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Proof. Because (Poh s Ph) satisfies (3.8) and (o, D) satisfies (3.5), we get

u({”?"f"" ] [”‘ D =0, v(rh,sh)es,;x.[sh]”.
P — Ph ' Sh

Therefurem, by Proposition 3.1, we get

u(ﬁ'ﬂ — Pohs P — ﬁh)"fféﬂx[ﬂan N |
ey
< (14 - inf Ny — ) - ]
< ( £y 7) (rh.sh)é%hx{ S]¥ ([llPu rallgy, +11P 3h“[Hun]N)
pendent of h. Using (3.6),
we use Nitsch’s trick ([8];
g€ L% [Lg]N , we have a unique w(g) € H} x[Hon)
a(w(g),¥) = {9 Yirax(L2) vy € Ho x [Hia)"-
1 n H2N , provided that C;(t) and

we have wig) € [H3, N Az ¥ [H3,
., N, are sufficiently smooth (this w(g) can be obtained explicitly from

It is not difficult to verify that
»

we obtain (3.11).
[15]). By Proposition 3.1 and
N such that

for some ¢ > 0 inde
[1j, for any

To prove (3.12)'

Furthermore,
zi(t),t = 12,4
integration by parts).

! is independent of g. By the very same proof of the Aubin-Nitsche jemmal’l,

sition 3.1, we get

which remains valid under Propo
< ch™ (pollg + IPllpgio)

“ f'D o ﬁOh"L‘? + ll ﬁ Z ﬁh"[[,?]!‘f
ap (10l _nf - lwle) = Gl

LA XL th€Sn XISk

(3.14)

But, by (3.6),

-1—— inf
gl cnesnxISnIY

for some K" >0 independent of g and w(g). Using the above in {
To show (3.13), we note that

somso-sn =i 5] 53 Do 2T

[ pon—po ] [ Pon—1po
+a([ prn— P ]'.[,ﬁh-ﬁ ])

right above is sero because of (3.5). The seco
Herice we get (3.13).

]‘ it W __l_ I f - ! i
Ju(g) - Gl € o K" Alw(ollg < gp¥ hK'|lgll = K'K"h,

3.14), we get (3.12).

The first term on the nd term on the right

can be estimated by using (3.11).
 Corollary 3.3. Let

3, = C5 (fon + A"Pon + Y Cii),

=1

(3.15)
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. % N ‘ ;
@ni = M7UB] (pon + 3 Bag — Bhi)s i=1 N,
g= - -

8 = —Cg'(Bp; + A"Phi — Ciz)y, i=1--,N,
, .
and

Then

-, b

for some K5 > 0 independent of i,ﬁ,ff,'ﬁ,pg and p. .
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(3.16)

(3.17)
(3.18)

(3.19)

(3.20)

The convergence rate (3.19) is-l;he sharpest poss_ible[”]*m. The rate (3.20) is not
optimal. To obtain a faster rate of convergence for z and X, we can use wp and 0p in
(DE) = 0and (DE); =0, i = 1,---, N, and integrate to solve for more accurate z and

X. .

§4. Examples and Compﬂtat‘ion Results

In this section, we apply the finite element method and the penalty method to some

examples and present our numerical results.
Example 1.We consider the following two-person non-zero-sum game:

(1) =z(t) + u1(t) +2u2(t) + 1, tE€ 0,T}, T =rm/4,
z(0) =0,

Hau)= [ 1e(0) + (eost+ 1/2)F + /2 ()t
Jo(z,u) = .[JT[I::(t) _ féin t1% + 2|ug(t)|?)dt.
The Lagrangian L in (2.13) corresponding to this problem is
L(po, p1,2) = —1/260 + Po, 1/2(do + po)) + 1/2[(p1 + 1,51 + 1)

4 {p2 + P2, P2 fm}]i* 1/2{po + pr.+ p2, 4(po +p1 + P2))

4 {Po+ 1+ P2, 291+ 2p2) — (B0 + po, 1/2[(cost +1/2) +sint))

= {1+ 1y cost+1/2)+ (B2 + P2, sint)] = (po+p1+ P2, 1)

" 1'/'-.‘2(1/2[--5(cas_t +1/2) + sint],—(cost + 1/2) + sin t)
+ 1/2f{ cost + 1/2, cost + 1/2)+ (sint, sin?)].

(4.1)

(42)

It Y - e S R il
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In order to apply the theory and analysis in §3 to this example, we need to venfy
that assumptions (A2}, (A3) and {A4) are satisfied, and

(A0) {1111% max F(z,u; X,v) = 0 holds so that the differential game has a solution

feaszible feasible

(2,1
Instea.d of checking (A0)’ directly, we show that the “decision npera.tor“ D as defined

in (2.6) in Part 16] is invertible so that the differential game has a unique solution, so
(A0) is satisfied. But here |

5 My + LiCyCh1n LiCyC1Lg 1 1/21 + LiL4 2L:11,
LiCiCly My + L3C3Calg 9L3L, 2l +4L3L,
beca.use L, =2L; and L} =2L3},and C; = Cy =1, C} = C7 = 1, where

(4.3)

{
L, : U — HY0,2), Lyu= f et~ u(3)ds.
. 0 T

We easily see that D in (4.3) above is symmetric and strictly positive definite, so D is
invertible. Hence (A0)' is satisfied. | ”
To check (A2), we write out ¥(z,u) explicitly:
»

P(z,u) = 1/2{||z(t) + (cost + 1/2)]I* + 1/2||ui (D] 4 Nz(t) - sint]|® + 2[[ua(D)|f’
— lLozo + Lyt + Laf —sint}[® — ||Lozo + 2Lauz + Laf + (cost + 1/2)||*
+ (L}(Lozoe + 2L1ua + Laf + (cost + 1/2)),(1/21 + LiL, )" 1L3(Lozo

+ 2Lyus + Laf + (cost + 1/2))) +_{2L;(Lozg 4+ Liu; + Laf — sint),
(21 + 4LIL;)"12L3(Lozo 4+ Lyu; + ILa f — sint)}, (4.4)

where we have used Ly = 2Ly, L3 = 2L;,C1 =Cy =1, Cy =C3 =1 a_.nd

¢
Lozp = e‘zg, L3 = / et~ f(s)ds.
0

In (4.4), it is easy to see that 4(z,u) is convex with respect to z because ¥(z,u) has
||z]|* as the only quadratic term involving 2. The qua.dratlc terms involving u; and u2
are '

1/2{{[1/2] - LL, + 4L} L1(2I + 4L3L; ) LiLq Jug, uq)
+ {[2] = 4L3Ly 4+ 4L{L1(1/21 + LiL;) " 'LiLs}uz, u2)}
= 1/2{{(2] + 4L{Ly)"Y[1/2I + 4L;L1) — (2I + 4L7L;)LIL,
+ 4(L1L1](L"'L1)]u1,u1) ¥ (21 + 4L3Ly) Y [2(21 + 4L1L1)
— 4(21 + 4L}Ly)LiLy + 16(L3L; )(LL))uz, u2)}
= 1/2{{(2] + 4L3Ly) w1, u1) + 4((21 + 41311 ) iz, ug)}.
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The above is a strictly positive definite quadratic form in %; and uz. Therefore,
¥(z,u) is also convex with respect to u = (ug,uz). In fact, in this exa,mple ¥(z,u) is
strictly convex with respect to z and u. .

It is easy to see that {A3) is satisfied, so only (A4) remains. Tlus can be done
straight forwardly from (4.2) with little work. Hence all assumptions have been verified
and by Theorem 2.5 (£, ) is the solution.

We choose a (4.1)-system of Hermite cubic splines as in [15]. The interval [0, 7] is
divided into N equal subintervals, each with mesh length h = T/N. The matrix M, is
a (6N + 3) x (6N + 3) matrix. We use the IMSL high accuracy subroutine LEQ25 to
solve the matrix equation M7, = 8, with double precision on an IBM370/model 3033
at Pennsylvania State University. '

- Numerical results are plotted in Figures 1-4:

(i) Figure 1. Strategy u, is plotted, using h = (r/4)/4, (v /4)/8, (v [4)/16, (7 [4)/32,
(x/4)/64, respectively. These five curves show no visible difference in gragh. Numerical
results for v; are found to be identical with u;, as indicated in Corollary 2. 716l

(ii) Figure 2. Strategy us is plotted, using h = (7/4)/4, (v/4)/8, (x/4)/16, (x/4)/32,
(x/4)/64, respectively. Numerical results for v; are identical with us.

(iii) Figure 3/ State z is plotted, using h = (x/4)/4, (x/4)/8, (x/4)/16, (x/4)/32,
(x/4)/64. -

(iv) Figure 4. z,2! and z? are plotted, with A = (x/4)/16. Again, we see that the
three curves show no visible difference in the graph. The values of L(po,p1,p2) and
F(z,u; X,v) are found to be

L=F=6520054x10"1°, h=x/4; l=F=122479x 107", h=(n/4)/8;
L=F=2127x10"3, h=(x/4)/16; L=F =16x10""°, h = (x/4)/64.

In Table 1, we list some values of #,,1,%,21,4%,Po,P1 and p; at certain selected
nodal points. For this example, there is no known closed form exact solutions to
compare. Therefore, the only way to show that our numerical scheme works is to
check the rate of convergence (3.13) by a different method; see Example 3. Using the
data, we have plotted the logarithmic error graph in Figure 5. The asymptotic rate
of convergence, which is indicated by the slope of line segment is O(h®?) which is
extremely close to the predicted rate O(h®) in (3.13). Note here that m =4 -1 = 3,
so 2m = 6 in (3.13), provided that (g, d) is at least H} x [H;7)® regular.

Example 2. We consider the following 2-person non-zero-sum game:

(1) = z(t) + costuy () + sintua() + 1, 0 < ¢ < 2r,
20 =0, i "
48 T G
Ja(z,u) = [;. e () + (cost + 1/2) + 1/3ul(2)] dt,

Jo(z, 1) = j; [12(2).- 0.96in 1? + wa(1)] .
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It is not clear to us as to whether conditions (A0), (A2), (A3) and (A4) are satisfied.

The numerical evidence below suggests that the rate of convergence of L to 0 is not

close to O(h®), thus it is likely that Corollaries 2.6 and 3.3 do not hold for this example.

Thus we believe at least one of the conditions (A0)', (A2), (A3), and (A4) is violated.
Using the computational scheme in §3, we obtain .

L=1493x10"Y, h=2r/4; L[=4646x107", h=27/8;
7 =1.267 x 1072, h=2x/16;L = 1771 x 107%, h =2x/32;
L=11755x 10"%, h=2x/64.

The logarithmic error is also plotted on Fig. 5. Here we find that the rate of convergence
is O(h1-93) at best, which is way off the predicted rate O(h®):

1
Table 1. Numerical Values of uy, ug, z, zl, 22, Py, Poand P att = 1%’
1l » 3 « T _
..... ~.and — :
% ‘43 4,3.1:1 4{0rExa.mPlel |
e & T §—=1,%
— 4 4 — 2 4

= i—jlﬁ F: %/321 h = %/64J h=i-_f].ﬁ = %/32 h = %/64

| —2.020419 | 22.078747 | —2.078747 | -1.239453 | ~1.239453 | ~1.239453
uz | 0441072 | 0.441072 | 0.441072 | 0.285282 | 0.285282 0.285282
z | 0.125805 | -0.125896 | —0.125896 | —0.136733 | -0.136733 ~0.136733
1| 0125895 | —0.125896 | —0.125896 | —0.136733 | —0.136733 | -0.136733
2| 0.125895 | —0.125896 | —0.125896 | -0.136733 | -0.136733 | —0.136733

r.

~0.598302 | ~0.598302 | —0.598302 | ~0.334444 | -0.334444 | -0.334444
1039374 | 1.039374 | 1.039374 | 0.619726 | 0.619726 | 0.619726
~0.441072 | —0.441072 | 0.441072 | 0.285282 | —0.285282 | ~0.285282

1=

, § = % ' 8 t= % = T
h=2/16 | h=15/32 | h=7%/64 h=2/16 h=7%/32|h=5/64
T0.562914 | -0.562013 | —0.562913 | 0.0 0.0 0.0
s | 0.131964 | 0.131964 | 0.131964 0.0 0.0 0.0
z | —0.053732 | —0.053732 Z0.053732 | 0.118645 | 0.118645 0.118646
~0.053731 | -0.053732 | -0.053732 | 0.118645 0.118646 | 0.118646
0.053732 | —0.053732 | —0.053732 | 0.118644 | 0.118645 | 0.118646
0149492 | —0.149492 | —0.149492 | 0.0 0.0 0.0
0281457 | 0.281457 | 0.281457 | 0.0 00 | 00
P, | 0.131964 | -0.131964 | 0131964 | 0.0 0.0 0.0

Remark. The numerical values of v;, v are identical, respectively, with u;, tg:

g
o -".":,'-H X,

All entries above are rounded off figures with six decimal place accuracy. " " entrie
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The penalty method developed in §3ican also be combined with finite elements
to do numerical calculations. Analysis of error can be found in [5]. The penalty-finite
element scheme seems to be less stable than the duality-finite element as given in §3, and
its error estimates are hard to verify experimentally. We have successfully cnmputed
Example 1 by the penalty-finite element scheme, as shown below.

Example 3. We consider the very same example as in (4.1). F.(z,u; X,v) is -
given as in [7]. We choose for z, z! and z? approximation spaces S5} which are a
(3,1)-system of quadratic splines, and use a (2,0)-system of piecewise linear elements
as approximation spaces S} for u;, up, v; and vs.

Numerical data for i, 42 and  at selected points are given in Table 2 below, with

= (7/4)/32, uniform meshes for S} and S;, e =€ =e3.
They compare very well with the duality-finite element solutions, which use (4,1)-cubics
and h = (7 /4)/32.
Note that numerical solutions of 21,22, and ¥, also satisfy

Lo "

=, V) =U3, Uz = Uz.

Fur more numerical examples and detailed discussions, see[7].
Table 2. P;: penalty solution with eqg = ¢; = €3 = 1073,
P,: penalty solution with ep = ¢; = e = 10~5.
D: duality solution. B

t = (v/4)/4 | (x/4)j2 [(x/4)(3/4) | 7/4=T

P, | -2.077473 | -1.238577 | -0.562432 | 0.000086

uy | P2 | -2.078433 | -1.239262 | —0.562789 | —0.004539

D | —2.078747 | -1.239453 | -0.562913 00

0.440848 | 0.285103 | 0.131847 | —0.000053

s 0.441103 | 0.285264 | 0.131923 | -0.002366
0.441072 | 0.285282 | 0.131964 | 0.0

Py | -0.125946 | —0.136808 | -0.053823 | 0.118535

uz | Py | —0.125870 ‘ ~0.136707 | -0.053713 | 0.118661

= 2

| D | -0.125896 | —0136733 20.053732 | 0.118645
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