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Abstract

The interior Dirichlet problem for Laplace’s equation on a plane polygonal
region ! with boundary I' may be reformulated as a second kind integral equation
on . This equation may be solved by the Nystrom method using the composite
trapezoidal rule. It is known that if the mesh has O(n) points and is graded
approptiately, then O(1/n?) convergence is obtained for the solution of the integral
equation ang the associated solution to the Dirichlet problem at any z € 2. We

present a simple extrapnlatiun scheme which increases these rates of convergence
to O(1/n*).

§1. Extrapolation on Non-Uniform Meshes

In this paper we examine a technigue for extrapolating numerical solutions (ob-
tained by the Nystrdm method) to an integral equation defined on the boundary of a
polygonal planar domain. At the corners of the boundary the integral operator and the
solution suffer from loss of regularity, and the mesh should be graded to compensate
for this. '

We shall show that, even for such non-uniform meshes, extrapolation of the numer-
ical solutions is still possible. For simplicity we shall restrict ourselves to fthe case that
the Nystrom scheme is based on the trapezoidal rule (since this has some computational
advantages), but the results obtained should generalise easily to other commonly used
quadrature rules. |

To motivate the extrapolation procedure, consider first the simple qua.drature prob-
lem for a functmn v over [0 1}. Let I, be an arbltrary mesh 0 =29< 23 <+ "< %n =
1, and let h; = = Z{— :1:1_1 Let T,,v denote the composite trapezoidal rule with respect to
| | apphed to v. Assume v has suﬁicmnt denva.twes Then the Euler-Ma.claurm series

gives

‘T,,v_]u_z;m/ D%+ Ruv, e
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where B is the second Bernoulli number, and where

n T _ | ; ' |

Raol <CY R [ 1D*l @
=1 Ti-1 _ o .

for some C independent of n and i. Now let Il be the mesh obtained by dividing'

each of the sntervals of II,, exactly in half, and let Ty, v be the corresponding composite

trapezoidal rule applied to v. It is clear from (1) that

(4Tpnv — Tav)/3 — ]ﬂ :

Hence, under the conditions that Div is integrablé and h; < C(1/n) for each t, we
have, from (2},

11? = (4R2n‘u o an)f&

1 _
(4T300 — Ta0)/3 - j o| = 0(1/n%). (3)
0
However, under the same conditions, direct use of (1) yields only

[Tav - ]ﬂ l o| = 0(1/2%) :

Thus, one step of Richardson extrapolation has doubled the rate of convergence of
the trapezoidal approXimations to the integral of v. The conditions on v and II,, under
which this result holds may be weakened: Tt is easy to see that (3) remains true provided

Sor [T 1DMl= 001/,

i=1 Li-1

. criterion which naturally leads to the selection of a graded mesh with smaller subin-
tervals where v varies most rapidly. |

In §3 we shall show that the same principle holds for Nystrom-trapezoidal solutions
of boundary integral equations on polygonal domains. It turns out that, provided the

mesh reflects accurately enough the (known) qualitative behaviour of appropriate higher
derivatives of the unknown solution of the integral equation, extrapolation, analogous
to that deseribed above, can be performed.

There has been a long history of interest in extrapolation as a means of acceler-
ating the convergence of numerical solutions of differential and integral equations. In
recent years, considerable progress has been made on the extrapolation of finite ele-
ment solutions of partial differential equations (see e.g., 2], [5), [6] and the references
therein). ' | | | | |

The psé of extrapolation in the solution of integral equations was initiated by -
Baker!l]. who obtained asymptotic error expansions fo;,trapezoidal-Nystrﬁm solutions -
of second kind equations with smooth or Green’s function kernels. Baker then used
his expansions to prove convergence of a defer d correction technique. The results _
of Baker have recently been considerably extended by McLean, who obtained in [8]
asymptotic error expansions for a wide range of Nystrom, collocation, and Galerkin
solutions to smooth equations. | g
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The appma.ches of [5], [7] 9] are different from the above. There the a.uthors snught

circumstances under which one step of Richardson extrapolatmn will lead to accelera-

tion of convergence. They found that they needed only much weaker assumptions on
the integral equation. In particular, the need for asymptotic error expansions could
be avoided. Thus Lin and Liu were able to show in [5], that one step of extrapolation
increases the accuracy of piecewise linear iterated collocation solutions of integral equa-
tions with Green’s function kernels from O(n~ 2Y to O(n~*). In [7], [9] extrapolation of
solution of boundary integral equations was considered for the first time. There diffi-
culties arose when the boundary had corners which led to singularities in the integral
operator and in the solution. Nevertheless, Lin and Xie were able to show in [7] that
for the piecewise constant iterated Galerkin method with a graded mesh on a polyg-
onal boundary, one step of extrapolation increases the convergence rate from O(n™?)
to O(n~4). These results are described in a greater detail in the recent Ph.D. thesis
of Xiel®), where they are also extended to a broader range of collocation and Galerkin
methods for integral equations arising from interior and exterior Dirichlet problems on
smooth and non-smooth domains. In This paper, the techniques of [7], [9] are modi-
fied and used to prove the convergence of extrapolation of the more practical Nystrom
methods which were recently analysed in [4].

§2. A Boundary Integral Equation

Let Q be a bounded domain in IR?, with polygonal boundary I'. For a distribution
u :T' — IR, define the double layer potential:

Wu(z)= [ G'(z.Ou(dr(g), ze R, (4)

Here G'(z,€) = —(2x)71(8/0n(§))(log|z — £|),Z € IR?. £ €T, and @/0n(€) denotes
the autwa,rg normal derivative ﬁ;m i Cons;der the inteéral equation

u(z) - 2Wa(z) + x(z)u(z) = ~29(z), zET )
where x(z) € (—1,1) is such t_ﬁa.t (14 x(z))x is the exterior angle between the tangents
toT at ¥, as ¥ — zx. Equation (5) arises as a reformulation of various harmonic

boundary iralﬁe prohlems on {} and on Q' := IR}\Q. A pa.rticula.r example is discussed
in §4.
| Follnmng the nata.tlcn of [4], suppose I'is a pﬂlygon parameterised by z = z(s)

(s = arc length), whlqh corners at Zg¢ = 2(s9¢), € = 0,--, 1L, where 237, = Zo. For each

¢, let 85y be the mld-p,bmt of [82¢—2,82¢], define I'y = {z(s) 8 € [82¢_1,82¢41]}, and
for any. ¢: T — IR, let ¢ "denote the restriction of ¢ to I';.

It is known that.thesolution of (5) is not smooth at corners of I'. To compensate
for this we use a mesh’ which is.graded near each corner. Specifically, each I'y will be
subdivided by a mesh which jn a nmghbourhmd of 3¢ will be required to coincide with

L e e L L L e e
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points of I' with arc length

s = s9¢ + (i/n)%ay, i=0,1,2,--- } (6)
s =8y — (ifn)b, i=0,1,2,- )

where ag, by > 0 are constants usually chosen by the user to reflect the lengths of
(82041 — S2¢) and (s2¢ — sa¢—1) respectively, and g¢ > 1 will be specified later. Away
from Zg¢, We require only that the width of each subinterval of the mesh should be

oT

uniformly O(1/n), as n — co. -
For any v: I — IR, let Ty n(v) denote the composite trapezoidal approximation to

f v, obtained using the mesh on I’ described above. The Nystrém approximation
[ | | °
| Wy to W (given by (4)) is then defined by

r ERl
Wnﬁb(ﬁ) = ETt,n(Gr(Eﬁ ')QS())! E € IR%. (7)
£=1

It is well known that G'(z, § ) — OO when_g,f both a.pprba,ch the same corner from
different sides, but that G'(z,§) is smooth otherwise. To offset this bad behaviour

we first rearrange (5) slightly before approximating W by W,. For ea'ch ¢, set iy =
(u — u{Zg¢))e. Then (55 may be rearranged as

L
u(z) - 23 Wig + u(Z20W1(2))] + x(2)u(z) = —29(2), (8)
=1

with 1 denoting the function with constant value 1. The integrals W1,(z) are known

analytically, and (z9¢) = 0, for each ¢{. Our numerical approximation to (8), then, is
to seek u, : ' — IR satisfying

L
un(z) — 2 Wailne(Z) + tn(Z2)W1d(2)] + x(2)ua(z) = ~29(2); (9)
=1 ‘

where #,, s is derived from uy, exactly as i, is derived from u. |
(9) was analysed in [4], where it was shown that the stability result (J|4alloo/|lglleo
bounded in n) implies: | |
llu = unlloo < Cn77, (10)

provided gz > 2(1 + |x{Z2¢)]), for each £. Stability, however, has only been established,
in general, provided the method is modified slightly. Modification involves the intro-
duction of an integer parameter ix > 0, and the removal from (7) of all contributions
from #* subintervals on each side of each corner. ‘Then the results of [4] show that there
exists fixed i+ > 1 independent of n which ensgiires-stability, and preserves the rate of
convergence (10). In particular, however, i+ = 0.is usually sufficient to ensure stability.
The results on eéxtrapolation given in this paperrassume that the method is stable with -
s = 0. Identical results for any fixed s+ > 0 follow by direct analogy. s
" To'prove our results, we first rewrite (8) and {9) as systems. Let B denote the vector.

'spa-_ce' ofall v = (v1y--- ,'ﬂL)T, where, for each &, vy is continuous on T'¢ and v(Z2¢) =0.



Extrapolation of Nystrom Solutions of Boundary Integral Equations on Non-Smooth Domains 235

Then define B to be the Banach space B X IRY with norm |

G2 2)7 1= /max loe(-) + vello

where v = (v1,---,11)T.
Equation {8) may now be recast as a 2 X 2 system of equations in the space B. The

second equation in this system is (8) evaluated at each corner point. The first equation
is then obtained by subtracting the second equation from (8). This yields a system

where (i@, #) is derived from u by

= (i1, )7, B = (w(Za), s u(Z2n))”

g

and where § and 7 are obtained from g analogously. § is a diagonal matrix of operators

containing the non-smooth part of 7. In fact, for (v, H)T € B,

-3

ze = (2Woye)e, - £ =1,---, L. (11b)

where

M is a smooth (compact) remainder. Similarly (9) may be written

i i )
Hn - En -2

where iy, = (fin,1, " g L) 4 = (un(Z2),- -','un(:Egl,))T, and where S, and M,, are
obtained from S and M by replacing all the integral operators which operate on by
their corresponding Nystrém approximations using (7). {See [4] for fuller details).

Then T-! is bounded on B and subject to the possibility of i+ > 1 (see [4]), 7.7} is
uniformly bounded on B. Thus, say,

(iime ) = (@ 2)7 = THT = TYEBR)T =TT - T)@ )
CFTINT - BTN ~ T)(@ ) = An+ AL (12)

Equation (12) provides the basis for the extrapolation argument. Let up, be the
solution on the mesh obtained by precisely halving each subinterval of the original
mesh. Then we shall show in the next section that, provided g, the right hand side of
(5), is sufficiently smooth, an appropriate choice of grading exponents {q¢} yields
' lALI = 0(1/n),

-l

and

e Ea= 00/
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These show . .
”(E’: E)T i (4(.@2“: EZH)T & (ﬂ'ﬂ! EH)T)L’}“ =. O(lfndl):

and hence

e — (420 — Un)/3llcc = O(1/n%).

We now give fuller details of this argument.

t3. Extrapolation of the Integral Equation Solution

Let D, denote differentiation with respect to s. Abbreviate this by D when there is
no ambiguity. We shall work in a subspace of B, defined as follows. Suppose (v,»)T € B.
For£=1,---,L,let 1 > f; > 0, and for any integer m 2> 1, set

|9elm g, = sup {|82¢ — 8™ P D7 ve(z(8))] = 3 € [s2e-1, 82\ {s2e}}.
Let é’ = (B1,-*+,P1). Then for any integer k> 1, we deﬁﬁe Bfi to be the completion
of the space: )
{(E,g)T € B:v j,nﬁnitely continuously differentiable on T'¢, I =1,--- v,
under the norm: | |
12, 2)7 e, g 2= max{li(z.2)"ll, |velmg, :m = 1,0,k = 1,02, L}.

Define
af = (1+ (@)™, t=1,,L (13)

It is known [3] that if o, < o for each ¢, then 7! is bounded on B for all £ > 1.

From now on, C will denote a generic constant independent of =. The principal
step of our analysis of (12) involves a detailed study of

(Ta= D@ = (5 = 82 + (M= M) (1) (14)

By (11), |
(S = Sﬂ)(ﬂr H)T == (E - Zns Q)T:

with z given by (11b), and 2, its Nystrom approximant. We shall examine the be-
haviour of a typical component of, say, 2 — Zn, 2¢ — Zn¢. Withont loss of generality we

can assume S¢_1 = —1, 82¢ = 0, 32¢41 = 1. Then (see (3] or [4]), o
, 1 1 o o _ g
" / - (i)"ﬂt(ﬁ(v)) do, s€[-1,0], - (15a) -
where o i 5
SIH(X(EW)I) 3 7, i

K(o) = - ;12_'-1-_1_% fq.wﬁ-(;c(ﬁﬂ)”).
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We shall discuss (15a) and its Nystrém approximant. (15b) nia.y be dealt with by
an identical argument. Recall that the mesh on I' is defined by (6) and the subsequent
discussion. Without loss of generality we can assume the mesh on [0,1} C T'¢ is given
by

i=(@/n), 1=0,--,m. - | (16)
Applying the composite tra.pezmdal rule w1th respect to this mesh to (15a), and recall-
ing that v,(z(0)) := 0, we have

. sx'l : P |
nelz(e)) = 3 wik () Toda(e)), s € 1,0 (a7)
l:--l 1 %
with w; = (hi41 + Ri)/2,4 =1, —1, and w,, = h, /2, where h; = s; — s;_1. Denote
the integral in (15a) by Kﬂg(&) a.nd the sum in (17) by Knve(s). Now, without loss of

generality, bounds on (K — K,)v, yield analogous bounds on (S — 8x)(v,»)?.
To bound (K — Kyp)ve, we shall need some elementary properties of K. First, by
direct calculations,

/' a"‘“P|D'"K(o')|t—if— < 00, . (18)
4 _

forall 0 < p < 1, and all integers m > 0. Next, a simple inductive calculation shows
that, fﬂrallkPOm}O

(sD)eDo) (K (2)3)

ol o
is a linear combination of

(&Y @@L, 5=kowkrmh

and hence, by (18), we have, for all 0 < p < 1,
f (s*~*Dko om+e D) (K ( (2)-)|e < c, sel-10l (19)

with C independent of s.
Lemma 1. For each £, let 0 < o < af, where aj given by (13). Choose q¢ > 1/oy

and set By = o¢ — 2/qe. Then
T - T )(,2) N2, < C=3 ll(” v) 12,0

for all (v, ) € B2

Proof. We wark with the expression (14) for T — 7,,. Without loss of generality,
we estimate the first term of (14) dealing with a typical component using exphclt
expresamns (15) and (17). For k > 0, introduce the operator

&(s), et
» -'--Dﬁ¢¢(3) =‘{ k—ﬁ:Dkﬂs), k> 1.

Then we shall show that fura.ll (v,)T € B2 for all k =0,1,2, and for all s E[ 1,0],

DK --’Cn)vz(s)HC-—ll(z e @)
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By the above remarks, once this is proved, the approepriate bnund for the first term of

(14) follows.
So, let (U,V)T € 32 Observe that by (15a), (17) and the fact tha,t hi = 31,

k | 18,1 i
DS, (K - :;ﬂ)ul(s) -( L K(2)—velz(o)do - ih(;)w(s(sl)))]
_is the error in the trapezoidal rule (with respect o o) applied to

D, (K (2) Zuelz(@))

over [s1,1]. Standard error estimates for quadrature (e.g. {4, Lemma 2), together with
(18) then yield

193 (K — Ka)ve(s)l £ C sup{lve(z())| : @ € [0,51]}

Now, for 0 £ o0 < 81,

ve(2(0))| = lﬂz(m(ﬂ')) ~ v(2(0))] < 81 SHP{lDavc(E(ﬂ'))l :0 €[0,81]}

< 'STI‘W‘I ar & (1!“2)‘”1!‘1.&:: - (22)

by (16) and choice of gz. This bounds the first term of (21) in the appropriate form.
Using essentially the same argument as in (4, Theorem 3}, the second term of (21)

may be bounded by

T o) M e A S ORI

i>2 - p=0" %=1 |
< C max{h}s ™ 2<t<n}n(v ) 2.5 o (29)

where we have used (19) and the fact that B¢ < oz < ap < 1. Now for i > 2, (16) gives

a2 —240¢—Pt _1_ __)20’!-2 :— 1 (— 24-cee—Be)ae
h;s. < C-ﬁ — (———)

1—1 n
1 —24qelae—Be)
gcnz(n) = an, (24)

by choice of B¢ Substitution of (22), (23), (24) into (21) now gives the required estimate
(20).

a smooth kernel, and we omit the details.

Now let us consider an extrapolation procedure. For a given n, let Tn be the
composite trapezoidal a.pprnxlma,tmn to T with respect to the mesh introduced in §2. -
Let T2, be the corresponding approximation with respect to the mesh obtained by;

dividing each of the subintervais of the original mesh into two equal pieces. Let un, u;n:':';'

~ be the corresponding a.pproxima.tmns to u defined using (9).

DDk, (K( )-—-w(z(a}) \da (21)

‘The second term of (14) s easier to estimate, since each of the operators in M has |

s o =
P e P P
g P i Lo G \
R oo Lo
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Lemma 2. For edch t, let 0 < ay < o, and chmse‘ g > 4fay. Thgﬁ |
(T - (4T2n - T2)/3)(2.2) | £ C Il(:.t.a H)||4a,.
for all (H!E)T € B

Proof. Again, we consider (14), and we obtain the required estimate for the most

difficult part _
(S — (452 — Sx)/3)(2,1)" - (25)

The rest of the estimates required for the lemma are analogous, but easier.
Without loss of generality consider the {th compnnent of (25). For s € [~1,0] this

may be bounded, using (1), (2) by
[Kve(s) — (4Kanve(s) — ﬁnvz(ﬂ))ﬂil < Cysup{|ve(z(o))| : o € [0, a1l

+szh?j |
i>2. J%i-1

4 (K (2) Zocta(on) e

a.

Using an almost identical argument to that in Lemma 1, and the fact that g¢ > 4/ay

for each £, it is straightforward to show that
s |Kve(s) — (4K2nve(s) — Knve(s))/3| < C— H(” 1) |l4,a-

An identical argument estimates the £th component of (25) for s € [0, 1], and the lemma

follows.
Theorem 3. Let g € C“(l") and choose q¢ > 4/&; for all £. Then

llu — (4uzn — tn)/3lec < C — (&, )" [[4,0+-

where (@,E)T is derived Jrom u, as in §2.
Proof. A sketch of the proof is given at the end of §2. Here we give more details.
Recall that if 0 < a; < aj for all £, then 71 is bounded on B% for all £ > 1, and hence

(#,#)T € B5. Since T~ is also bounded on B, Lemma 2 then ensures

| | —
(4420 — ARl € C—ll(&: 1) llag < C (@ 1) lla,ge- (26)

Now choose 0 < oy <'n':,: such that gt > 4oy, for each £, and set §; = af - 2/q:.
Then, since q; > 4/&; > 2/ P, we apply Lemma 1 twice to obtain

(T - TYT-XT - T)(& u)Tuwﬂ,n'r-l(f Ta)(E 1)l
< ColT - T g < Cgll@ ) lhg-

Since 71 is umfurmly bonnded on B , we have

LIS < G~ ~11(z, 4 #) |lz,g < C 118 )T la, ioms (27)
Then (26), (27) and the discussion at the end of §2 suffices to prove the theorem..
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4. Extrapolatlun of the Solution of the Interior Dlrlchlet Problem

The problem AU = 0 in , subject to U = g on I', may be solved representmg U as
the double layer potential U = W, provided u solves the boundary integral equation
(5). Suppose we have solved (5) numerically as described in §2, to gel un and won.
Define

L
U, = Z:[Wnﬁn,t + HH(EH)WIA!

=1
L

Uzn = 3 _[(Wantizne + uin(i‘ze)whl-
t._.
We shall show that extrapolation may be performed on Un,Ugn analogously to the
extrapolation of 45, U2n in §3. |

Theorem 4. Under the conditions of Theorem 3,

U(z) — (4U2n(2) - Un(@))/3] < C(2) 73 ll(ﬂ £ lla,g-

for z € Q, where C(z) depends on Z.
Proof. Since U = Wu,

U - U;; Z{[Wﬂg b Wﬂuﬂ,g] = [H(:ﬂgt) = un(mgg)]ng}
=1

so that, by Theorem 3,
L

|U(£) - (4U2ﬂ(£) e UH(E))!3| = Z:[Wﬁt = (4W2n‘ﬁ2n,£ = Wnﬁn,t)ﬂ-]'] + O (%) : (23)
=1 .

1

114

| (. E’)Tllal-,ﬂa)- Now write

Wiig(z) ~ Walin2(2) = W (e — Bng)(2) + (W = Wa)ie(2)

— (W — W) (fie — in,)(Z) ' (29)
and observe that, for z € Q,W 1s an integral operator with a smooth kernel. Hence,

by Theorem 3, the first term of (29) yields O(1 /n4) after extrapolation. Since W, i is
the trapezoidal approximation of Wike, (1), (2) and the same arguments as in Lemma 2
show that the second term may be extrapolated to give 0(1 / n") To deal with the third
term in (29) we proceed as in Theorem 3. Let 0 < oz < af be such that gz > 4/ay,
and set 8¢ = az — 2/ge. Then,

1
(From now on we use O( ) to denote a quantity which can be bounded by C(:-E)',F

I(W Watie — t)(-"*')l < C(*"”) "(“s”)T (“m"n)Tllz ﬁ

:?

< C(_E);;IIT;'I(T_ - n)(g_,g)’ilh.g < Q(E);zll(ii'lj)Tllz.g-

~ Substituting these observations into (28) gives the theorem. ' -
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85. A Numerical Experiment

The above theory has been developed only for-a polygonal boundary, but it is
anticipated that it can be extended without difficulty to a piecewise smooth boundary.
This conjecture is tested by the numerical experiments in this section on a boundary
consisting of a simple smooth curve with a single corner.

We solve (5) when T is given by

z(s) = (sin s cos 31::/4,-sin swsinsr/4), s€[0,1]. - (30)

This is the boundary of a “teardrop-shaped” region, symmetric about z, = tan(r/8)z,,
having s single corner at  with external angle 77 /4 (i.e. x(0) = 3/4). Although s is
not arc lenéth'here; z(s) is smooth on [0,1],}&(s)] > 0 for s € [0,1], and the theory of
the previous sections is perfectly valid for such a parameterisation of I'.

For a given even n, we subdivide I’ into n pieces with break points gwen (cf. (16))

by -
8i = (2t/n)3/2 }i:ﬂ,---,ﬂﬂ | (31)

Sp-i =1—8;

where ¢ > 1 will be chosen below. Whilst u,, denotes the approximate solution of (5)
using this mesh, us, denotes the approximate solution of (5) using the mesh obtained
by subdividing each interval of this mesh into two equal subintervals.

We solve (5) for the particular case when g is the restriction of the harmonic function
U(z) = e coszz to I'. Then Wu is the unique solution to the interior Dirichlet
problem with boundary data g, i.e. Wu = U on Q. The exact solution of an arbitrary
interior Dirichlet problem on @ typically has a (very) weak singularity near 0, but in
this particular test example we have forced U to be smooth. However, this is not an
unrealistic example, since the (unknown) solution u of (5) will in general still have
the typical smgulanty assumed by the theory of §3. Thus, referring to §2, we have
L =1and ay* = (14 |x(0)|)~! = 4/7, and so by Theorem 3 we would expect that the

extrapolated a.pprmﬂmatmn will converge to u with O(1/n?), provided ¢ > 4/a;+ = 7.
The choices ¢ = 3.5,¢ = 7 were compared experimentally. It was found that the results
for ¢ = 3.5 were usually as good and sometimes better than those with ¢ = 7. From
now on we sha.ll discuss only the resuits with ¢ = 3.5. |

Table 1 gwes the errors at Q for u,, u2, and (duzn — u,)/ 3 The (unknown) exact

value u(o) used in calcula.tmg the error was estimated as 0. 88506188, correct to 8
decimal pla.ces 'usmg the “extrapolated solution for n = 256. Table 2 gives the anal-
Ogous errors a.t?.a:(l/i') = (005(11'18), sin(x/8)). In this case we took the exact value
u(x(l{?)) = -2 572980 which is provided, correct to 6 decimal plaices by the extrap-
olated sﬂlutmn “with'n & 256 In both tables u, and uy, converge with O(1/n?) as

‘expected The extrapala.ted snlutwn is much better than either u, or ugm although the
rate of mnvergence ha.a not settled down yet to the O(l /nY) expected by Theorem 3.

Bl ety el el :&?‘F.'i-l: Wur‘hll‘.gd-. R
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In all tables * X 10~ means that the computed solution agreed with the exact solution
up to N decimal places of accuracy. | '

The proof that the exirapolation procedure works depends strongly on the technique
of subdividing each subinterval of the original mesh into two equal subintervals before
computing uz. (see discussion in §1) However, in practice the user is more likely to
compute simply the sequence' u, for, say, n = 2,4,8,16,---, where u,, is the solution
to (5) obtained using the mesh (31). It is interesting to ask whether extrapolation

will work on this sequence. In Table 3 we compute the error |(u — uj)(0)|, where

u* = (4uzn — Un)/3, and in this case uan .« obtained using (31) with 2n points. We
took u(Q) to have the same value as in Table 1. Interestingly the errors in this procedure

are slightly smaller than those given in Table 1 for the extrap olation procedure analysed
in this paper. We have no proof of the performance of this procedure, but the fact that
it seems to work well should be_of interest in practice.

To provide some results relevant to Theorem 4, we choose 3 points in §2 :
z; = vi(cos(x/8), sin(r/B)'), i=1,2,3,

where 71 = 0.1,72 = 0i5’73 — 0.9. We give in Table 4 the errors n UH(E{),UE,;(E{)
and (4032, — Un)(z:)/3. Note that the true values U(z;) are now known since U(z) =
%! cos z7. Although the observed rates of convergence are irregular, they are often much
faster than those predicted in Theorem 4. More remarkable however is the dramatic
increase in accuracy obtained by this simple extrapolation procedure.

Table 1. Error at ( assuming u(g) = —0.88506188

m ] 108 = wn)(@ [ 1w = 52 )(O | [( = (4020 — ) /3)(Q)

8 | 137x107% | 1.98x 107 | 1.92 x 1073
16 | 2.55x 10~° | 4.47 x 1074 2.19 x 10~*
32 | 5.03x10™* | 1.24 x107* 3.0 x107°
64 | 1.26x107% | 3.13X 107> Ll
128 | 3.14 x 1075 | 7.80x107° 1.0 x 10~°
256 | 7.80x 107 | 1.90x 107° « x107°

(% — (4uzn — un)/3)(z(3))]

Table 2. Error at £(}), assuming u(z(})) = ~2.572980
7 1108 — un) @O | 106 — u20)(2(3))

~8 | 644x107? 367x10° | *  264x107°
16 | 1.41 x 1072 5.85 x 1073 3.11 x 103
32 1.03 x 1072 254 x 1073 - 3.6 x10-°
- .64 | . 2.86x 1073 7.07 x 1074 - - 8.0 x107°
128 | 7.24x10°% 1.81 x 10~ 1.0 x10°° il
256 | 1.81x107* 4.60 %1075 ~+ x 1078 | ~
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Table 3. Error in ﬁ: = (4uzn — un)/3, where u,, uon are both defined using (29)

n. | (v —uz)0) -

8 | 1.16 x 1073

16 | 1.81 x 10~4

32 | 29 x1077
64 | 6.0 x107%
128{ * x107%

Table 4 -
| on U= Up )(20) I(U Uan)(2:)l I(U — (4Uz2n = Uyn)/3)(z:)|
i=1] 32 | 1.59x10¢ 442x10°% | 587x10°°
| 64 | 1.00 x 10~* 2.71 x 105 2.70 x 10~
| 128 | 2690%x10~% | 672x10°° | 2.00 x 10710
256 | 6.73 x 10~° 1.68 x 10~° 2.10 x 10711
i=2] 32 | 241x10-% | 5.18x 10~* 1.12 x 10~4
64 | 3.18 x 104 8.06 x 103 - 1.59%10°®
128 | 8.07x10°5% | 2.02x10°° 6.00 x 10~°
256 | 2.02 x 10~° 5.05 x 10~° 3.74 x 1971°
i=3| 32 | 275x10°3 | 364x 10~ | 1.40 x 103
64 | 9.15x10* 2.25 x 10~1 4.55 x 1076
128 | 2.06 x 10~ 5.19 x 10~° 7.00 x 1077
256 | 5.06 x 1075 1.27 x 105 4.36 x 10~8
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