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Abstract

Iterative Methods are studied for the solution of difference schemes for con-
vection fominated How problems.

¢1. Introduction

The numerical solution of convection diffusion flow problems is of considerable
difficulty. It is well known that when the diffusion coefficient is small (the case of
convection dominated flow), it is hard to obtain accurate difference schemes; the
presence of rapid transitions, or boundary layers, in the solution severely degrades
the accuracy of the approximate solution. One may ask whether difficulties are also
encountered in the numerical solution of the difference equations when the diffusion
coefficient is small. In this paper we consider some difference approximations to
the convection diffusion equation and we treat block Gauss Seidel iterations for the
solution of these problems. We study the effect of the partitioning and ordering
of the unknowns on the convergence of the Gauss-Seidel iterations. We find that,
for convection dominated flow problems, the spectral radius of the iteration matrix
is not an appropriate indicator of the convergence properties of the method; it is
better to use a norm of the iteration matrix. Also, we find that sweeping the mesh
in the direction of the underlying flow enhances the convergence of the Gauss Seidel
iterations. In one dimension it is not hard to devise an algorithm to implement this
idea. In two dimensions, we give a general procedure to automate the partitioning
and ordering phase of the solution process. The general procedure is described using
the graph of the matrix. _

§2 contains some remarks about the Gauss Seidel method. In §3 we discuss the
one dimensional problem. For the basic upwind difference scheme on a uniform
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mesh we find that if the unknowns are swept in the direction of flow, the norm
of the iteration matrix satisfies the inequality [[N| < ce/h® where s = 2 or 3.
Thus while the iterations in any event converge, if ¢ << h, the iterations converge
very quickly. Since, with ¢ << A, the difference equations are basically solving
the reduced problem, which is a first order equation, it may not be too surprising
that the convergence is fast. However we find that this fast convergence also holds
for difference schemes that are especially adapted to the solution of the convection
diffusion problem, such as the exponential scheme of Southwell, Allen, and A.M.
II'in and a difference scheme of Ervin and Layton that has been found to provide
good resolution of interior layers. We have performed numerical tests for these
schemes, and also for discretizations with a refined mesh that is designed to capture
the boundary layer. In the latter case, flow directed iterations do not perform as
well, but they are better than iterating with other orderings of the unknowns. §4
 deals with the basic upwind scheme in two dimensions. Here we find the same
inequality for || V|| if flow directed iterations are used. The difficulty lies in ordering
the nuknowns to implement flow directed iterations. We find an algorithm that
solves this problermy. Tests of this algorithm, aud of other ordering procedures for
two dimensional problems, are not given in this paper.

The conclusion of this study is that flow directed iterations may be a good
way to solve the discrete equations arising from modelling convection dominated
- Hlow. If the boundary or interior layers are captured by refining the mesh, the
convergence properties of the method are not so favorable. Further work on flow
directed iterations must be done to deal with refined meshes, and to develop the
method for nonlinear problems and for the Navier Stokes equations, which contain
a continuity equation as well as equations of convection diffusion type.

In [8], Strikwerda has considered SOR methods for the iterative solution of con-
vection diffusion problems. We describe his approach in §4. Some recent work of
Goldstein on the use of preconditioned conjugate gradients for solving convection
diffusion equations is given in [6].

§2. Some properties of the Gauss Seidel Method

We recall the Gauss Seidel method for solving a linear system Au = f. Let
us write A = D — L — U, where, typically, D is a nonsingular diagonal or block
diagonal matrix and, for some permutation matrix, P, PLP~! and PUP™! are re-
spectively lower and upper block triangular. The Gauss Seidel iterations may be
written Du**t! = LuF*1 4 Uu* 4 f or, solving for w**!, ¥+ = Nu* 4+ (D — L)~ 1¥,
where N = (I — D'L)"1D~1U is the Gauss Seidel iteration matrix. Since D~1L is
typically block triangular, D! L is usually nilpotent. We say that D~!L is nilpotent
of index m if (D~'L)™ = 0, and if m is the smallest index for which this holds. We
shall frequently use the following simple lemma to estimate | N]||.
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Lemma 1. If D is invertible, if D~'L is nilpotent of index k, and if | D7IL|| <
a<1land |D7WU|| < B then

'1--&!1: ,8
IVl < =2 p8< -

T ] — o

—

Proof. Using the geometric series and the nilpotency of D~1L,
~ L1 e k-1 L g
INI I = D77 [P0 < (14 ot -+ ab g = 2%

| This result is valid for an arbitrary matrix norm, but here and in the following
we use only the co norm for vectors, and the corresponding matrix norm, defined

for a matrix A = [a;;] by

141 = [l Alleo = max { 3~ lassl}.

»
fa+p =1and 8 — 0, then ||N|| — 0 and we may obtain a very accurate

‘solution after one iteration. Note that for “reverse” Gauss Seidel iterations, defined
by Du**l = Lok 4 [y kt1 + f, the iteration matrix is N = (I-D YUY 1D-1L and
IN|| - 1as 8 — 0.

It is interesting to note that this analysis of the convergence for small 5 does not
follow from spectral radius considerations. If the matrix A is block tridiagonal (or of
“type A” [9]), both NV and N have the same spectral radius, namely, p(N) = p(N) =
p(N;)Y2 where Ny = D™YL + U) is the Jacob iteration matrix. By a similarity
transformation it is easy to derive the estimate p(N) < 2v/aB/(a + B). Hence
p(Nj) — 0 as B — 0. In this case, the Gauss Seidel method, the Jacobi method,
and the “reverse” Gauss Seidel method, have a fast asymptotic rate of convergence,
in the sense that R, = Lm(|ly*||/||y°|)Y* = p is small, where y* = u — u* is the
error after k iterations. However, the error reduction for the last two methods, as
measured 1n a norm of interest, is not small for a moderate number of iterations.
- We conclude that the spectral radius of the iteration matrix i1s not a good indictor
of the convergence properties of the Gauss Seidel method when 8 is small. We shall
therefore estimate norms, not spectral radius, in our analysis (Conditions which
guarantee that the spectral radius of a matrix N equals either | N||loo of |IN||; have
recently been given by W.T. Tong [10].)

Another conclusion of this analysis is that it is not fruttful to use overrelaxed
iterations for these problems. To see this, again suppose that A is tridiagonal or has
property A. Then as 8 — 0,p(Ny) — 0 and the optimal SOR parameter w; — 1.
Thus, for small 3, optimal overrelaxation is basically the Gauss Seidel method.
In §4 we will seek orderings of the unknowns which produce a small value of 3.
These orderings will result in permuted matrices A which do not necessarily satisfy
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property A, but which nevertheless give rise to very rapidly convergent iterations.
As will be seen, the parameter 3 basically corresponds to the value of the diffusion
in a singularly perturbed convection diffusion equation.

§3. Some Examples in One Dimension

We start with the one dimensional problem
—eu’ +p(2)u +r(z)u= f(z), O0<z<]1, (3.1a)
u(0) = u(1) = 0. (3.1b)

The equation may be interpreted as representing the diffusion and convection of a

solute in a one dimensional medium. u(z) denotes the concentration of the solute,

¢ denotes the diffusion coefficient and p(x) denotes the rate of flow of the fluid. If

p(z) > 0 (< 0) the flow is to the right (left). The term ru represents an absorption

nf solute; we assume that r(z) > 0. We approximate (3.1) on a uniform mesh of size
= 1/(n + 1). We yrite the upwind difference approximation as

bi'ul—l +tajui—cuip1=fi, 1<i<n, wuy= Unt1 = 0. (32)

The coefficients a;, b;, ¢; are given by

E 1 £ 1
b=zt glpltm), a=+(pl-p), ei=bt+c+rh (3.3)
where p; = p(z;),r;i = 7r(z;). The matrix A € R™" is the tridiagonal matrix
corresponding to the difference equation (3.2). We let Ag be the corresponding
matrix with the r; set equal to 0.

We first consider the case when p(z) > 0 on [0, 1]. We decompose A into its
lower triangular, diagonal, and upper triangular parts, A = D — L —U. In this case,
DL and DU are respectively strictly lower and upper triangular matrices with
one nonzero diagonal adjacent to the main diagonal, whose entries a; and 3; are
given respectively by the formulas

e + |pilh £
§ = ; 3.4
2e + |pi|h + A2’ 4 2e + |p;i|h + r;h? (34)
(In this case it is not necessary to write |pi|; we do so in order that (3.4) may
be used in later situations.) Writing Ag = Dy — Lg — Up, we see from (3.4) that
DL < D"ILO, and DU < Dy 10, where the inequalities are meant in an

entrywise sence. It then follows from the geometric series that N < Np, where
Nog = (I — Dg'Lo)™1D5'Uy. We therefore have || N|| < [[No|l. Let # = max |p;], p =

min |p;|, with a similar notation for # and, in §4, ¢,4. From (3.4) we see that

gy —

5
2¢ + ph’

| DG Vol = (3.5a)



Analysis of Flow Directed Iterations 61

z + ph '
5 el | | - (3.5b
Dy " Lol 2% T o (3.5b)
2 £ E
{ Bz Lall = <

We use these formulas and the lemma to estimate || Np||. Since n(1 — )" 1 < non
(0, 1}, we may integrate both sides to get

1-(1-7)"<nr, for 0<r<1. (3.6)
We use (3.6) with 7 = £/ph to obtain
1—||DytLo|l® €1~ (1 —7)" < ne/ph if € < ph.

Hence, using the lemma with k& = =,

ne 2¢ + ph £ ne
.N { . * -'—l-l-n-‘
“ D”"‘"ﬁh R ZetpR - Bk
We thus ﬂbt;ill .
N[ < Vol < Fel (3.7)

If € is sufficiently small, || N|| < 1. We conclude that while the Gauss Seidel iterations
are, in any event, convergent, in the parameter range where ¢ < 2ph?, the error
reduction per iteration as measured in the oo norm is < 1/2.

A similar conclusion is obtained if an “exponential” difference scheme is used.
The Southwell-Allen-A. M. I'in scheme is given by (3.2), where the coefficients
satisfy ;

P pih | pi pi pih  p;

bi:ECchE?+§H’ c.-=§-£cnth 2% — an’
instead of (3.3). (See, for example, [7]). The matrix A is of “positive type’, that
s, b > 0,¢; > 0. Suppose p(z) > 0 on [0,1). Decompose A into its diagonal.
lower triangular, and upper triangular parts, A = D - L - U , and in a similar
way write Ag = Dy — Lg — Uy. As above, we again find that DL D™U, and
N are majorized by Dy ‘Lo, Dy 10U and N, respectively. The matrices Dy 1Lo and
DU, are respectively lower and upper bidiagonal matrices with zero diagonal and
off diagonal entries o and 8? given by the formulas

a; = b; + ¢; + 75, (3.3')

0 _ 1 o _ _ exp(—pih/e) .
‘T 1+exp(-pikfe)’ ' T 1+ exp(—pih/e)’ 3.4)

calculating the norms, we obtain

1
1 + exp{—p;h/fe)’

#

exp(—p;h/e)
1 + exp(—p;h/e)’

| Dy Lo = 15 Us|| =
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S0 2
exp(—ph/e)
1 + exp(—ph/e)

We use (3.6) with 7 = exp(—ph/e) to obtain

1 — || Dg Lol = < exp(—ph/e).

1 — [|Dg ' Loll™ < nexp(—ph/e).
Hence, using the lemma,

L +exp(~ph/c _exp(—ph/e

T Tl e el

| No|| < nexp(—ph/e) -

Since exp(—1) < 77! for 7 > 0, we obtain | No|| < 2ne/ph. Thus, |N| < 2¢/ph?,
and we again conclude that in an appropriate parameter range, the error reduction
per iteration is < 1/2.

We have also considered a difference scheme of Ervin and Layton [4, 5] which does
not require the evalpation of exponentials, which satisfies an O(h?) error estimate
for problems without turning points when ¢ << h, and which in practice reproduces
sharp interior layers in many problems. We have found that flow directed iterations
work very well for the schemes of Ervin and Layton.

We next consider several cases when p has a change of sign. It is convenient
to suppose here that # > 0. Suppose first that p is a decreasing function with
p(0) > 0,p(1) < 0 and with p/(z) < 0 in [0, 1]. In this case, the zero z* of p
corresponds to a sink; the flow is directed towards z* on both sides of *. Motivated
by the preceding discussion, we sweep the mesh in the direction of the flow. To
describe the iterative process, suppose that z* lies in the interval (zg,xg41). Then
we start at ¢ = 1 and perform a Gauss Seidel sweep, successively solving for u; for
i=1,2,.+-,k. Next we solve the n-th equation for u,, and successively solve the
(n — 1)-st equation for u,_1,- -, down to solving to the (k+ 1)-st equation for ug1.
An analysis of the iteration matrix may be given following the proof of Theorem 2
in §4. We obtain

} o

We conclude that while the iterations are in any event convergent, in a suitable
parameter range the error reduction per iteration as measured in the oc norm is
<112,

Finally, suppose p is an increasing function with p(0) < 0,p(1) > 0. and with
p(z) > 0in [0, 1]. In this case, the analysis is more difficult. The zero z* of p
corresponds to a source; the flow is directed away from z* on both sides of £*. Near
each end of the interval the flow is out of the interval, so the sweep must start inside
the interval. Suppose that z* € (zx,Zr4+1). The iterative method will be a block
Gauss Seidel method, where the first block has size 2 and the remaining blocks have

[y g BT EE B (3.11)
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size 1. In a single iterative sweep, we first solve simultaneously the k-th, and (k- 1)-
st equations for v; and vxy;, and we then update the remaining unknowns in the
order vg_j, -, v, V%42, ,V,. With this iterative strategy, the matrix I consists.
of the principal 2 x 2 submatrix of A defined by rows and columns % and k+ 1, and
the remaining diagonal entries of 4. The matrices I and U are defined similarly.
An analysis of the iteration matrix along the lines of Theorem 2 agaln yields (3.11).
Again we obtain rapid convergence of the Gauss Seidel iterations when ¢ and h lie
In a certain range.

It 1s possible to avoid the use of a 2 x 2 block in the case of a source type turning
point by using an alternate ordering of the mesh points. We call this ordering the
FDPI ordering of the mesh points. Further examples of special orderings will be
given in §5. If p(z) is as in the preceding paragraph, with a single zero at a point
" € (Zk, Zk41), in the FDPI ordering we sweep the mesh in the direction left to
right, going from i = k 4+ 1 to ¢ = n, and then we sweep the mesh in the direction
right to let, going from i = &k to i = 1. With this ordering, the flow directed pattern
is broken at a single point, the point i = k + 1. The coefficient linking 1z, with
ug in the (k 4,1)-st equation is an entry of the matrix U, but is not of order &.
In the case’of a general function p(z), the ordering is described in terms of the set
N ={1,---,n—~1}. Let N' = Ng U Ny, where

NE={1:EN:P£EO}; Nw={iEN:pi<D}.

The FDPI ordering consists of the points of Az arranged from left to right, followed
by the points of My arranged from right to left. The following theorem gives an
estimate for the iteration matrix of the method. The theorem suggests that, while we
cannot expect extremely rapid convergence for ¢ << h, we can in any event expect
convergence behavior that does not degrade for small h, provided that ¢ << b.

Theorem 1. Let N be the iteration matriz of FDPI. Suppose max 7' ()| < ¢,
and let the bounds §', , and ¥ be chosen so that ¥ < §',# < p. Then
P P =
N| < — =,

Proof. Let \g={i:1<i<n-1,p;>0,p;_, < 0}. Then for z € A, bothi+1
and ¢ — 1 come after i in the FDPI ordering. so both b; and ¢; are entries on the
row of U corresponding to the mesh point i. Let U = Uo + Uy, where Uy contains
the entries b; of U, for i € ANy, and where U; contains the remaining entries of U.
Let Ny =(D- L) 'U,1 =0,1,50 N = Ny + N; is the FDPI iteration matrix. Each

~ row of D71 contains at most one non-zero entry, so

it _ et]pilh €+ ph
D™'L|} < max & -
I I = i 2 + |pith + rih? — 2 + ph + #h2
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This expression is a decreasing function of € provided p > 7. Hence DL <
p/(p + 7h), so 1 — ||D~LL|| > #h/p, so (I - D7'L)~|| < p/Fh. Each row of U;

.contains at most one non-zero entry, so

£ E

D~y < &

i e+ |p,‘ih + r;h2

Hence ||[Ni|l € (ep/(#°Rh?). To estimate Ny we use the formula Ny = DUy +
D-YLUg+---. D™y, and hence'(D‘lL)"‘D_lUg, has entries only on those columns
corresponding to nodes j € Ay. Each entry of (D~1L)*U, corresponds to a path of
length k in G(L) that terminates in a point j € N, and the value of the entry is the
product of the entries of D~1L corresponding to links on the path, multiplied by b;.
Since there is at most one path in G(L) leading from any point  to a point j € No,
each row of Ny contains at most one non-zero entry. Hence

e+ |p;|h _
INoll < max ST BE e nG),

»

If ; € Ny, p(z) vanishes within a distance h of jk, so |p;| < §'h. Hence

l{ E+ﬁ’h2
= 2¢ + p'h2 + FhZ

|| No!

This quantity is a decreasing function of ¢ if # < p’. Hence, assuming this, | No|| <
P/ + 7). |

" If p has a number of zeros, we may construct an iterative strategy based on a
combination of the above methods. We obtain a norm estimate for the iteration ma-
trix similar to (3.11). If the exponential scheme (3.2), or the Ervin-Layton scheme,
is used on problems with turning points, similar conclusions have been found with
regard to the behavior of flow directed 1terations.

§4. Two Dimensional Problems

We consider the convection diffusion equation in the unit square £ = (0,1) X

(0,1):
—&(Uzz + Uyy) + Pz +quy +ru=f, (z,y) €N, (4.1a)

u(z,y) =0, (=z,¥) € . (4.1b)

The equation may be interpreted as representing the diffusion and convection of a
solute in a two dimensional medium. The vector (p,q) represents the flow of the

solvent. -' |
In [8]. Strikwerda considers the use of SOR iterations to solve the convection

diffusion equation on a square (). The approach is somewhat different than ours, and
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mvolves a refined mesh that is chosen specifically to capture the boundary layers
of the problem. By using a refined mapping, a refined mesh is introduced along
the sides of {2 where the boundary layers of the solution occur. A discretization of
the problem on the variable mesh is used. The overrelaxation parameter 1s taken
to be mesh dependent, and a heuristic formula is developed for the choice of this
parameter. The formula is based on an analysis of the difference equation with
coefficients frozen at the mesh point. The SOR sweeps are made in the usual order;
that is, with out regard to the direction of flow. Heuristic estimates for the spectral
radius of the iteration matrix are found that are iIndependent of £. Strikwerda’s
approach is complementary to ours. It would be interesting to combine his heuristic
formulas for the overrelaxation parameter with our use of flow directed sweeps of
the mesh. |

We approximate (4.1) on a uniform mesh of size & = 1/(n+1). We shall consider
difference approximations to (4.1) of the form

) %
8 Ui-1,5 = Bi i1 — Ci Ui — dijui g teijui; = k2, 1<, <mn, (4.2)

where we set 4; ; = 0if 7 or j is 0 or n. If we use an upwind difference approximation,
for which each of the first derivatives u, and uy 1s differenced according to the sign of
the coefficient p and g respectively, the coefficients in (4.2) are given by the formulas

h
+gij), Gji=e+ E(Ipi,.f\ — i)

h h
a;; =€+ §(|Pi,j| + Pi,j): bi,j = o E(I'?i,j

h
dij =€+ (el — i), e =4e+h(lpi| + lgi;) + ri;R2

From the examples in §3 we conclude that it is wise to use Gauss Seidel iterations
for which the direction of the iteration conforms to the direction of the flow. We first
give an example to illustrate the type of iterations that result from this principle,
and we then formulate a general strategy for constructing a Gauss Seidel iteration
process from a prescribed flow vector (p,q). In our analysis we shall assume, for
simplicity, that »(x,y) > 0. Some of the results can be extended to the case r = 0.

In our example, we assume that p(z,y) > p > 0 in Q. In this case, the flow is
directed from left to right. but the low may go either up or down. It is appropriate
to consider a block Gauss Seidel method, with the blocks corresponding to the lines
t=1,2,---,n. Decomposing the coefficient matrix A = D — I — U in accordance
with this iteration strategy, we see that D, L and U are defined by the equations

(Dz)i; = €ijzi; — bijzij1 — di j2i 41,
(Lz)i,j = Q4,52i{—1,5, (Uz)g,j = € j%5+1,5-
Let E = diag (e;,;), and write D = E— B. Then D— L = E{J — E~1(L+ B)]. Since

. - 2e + pijh + |g; ;|h 2¢ + ph + gh
E YL + B)|| = max & " < P
ol )l 5 A+ pigh + lgiglh + righ? — 42 1 ph + Gh + FR2

< 1;
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we have |
JETN At phghyiN
1 - |E-YL + B)|| — [2¢ + 7h2][4e + ph + gh + 72|’

(D - L)) £

The quantity (4e + ph + gh + 7h?)/(4e + ph + ¢h + #h?) is a decreasing function of
4e + #h?2. Hence, replacing this quantity by 0, we get

R 3
[, Y

=,

T L WL S st 7 A
2¢ +7h p+q =~ pr

Since N = (D — L)~'U, and since, in this case, ¢;; = ¢, so iU|| = €, we obtain

pt+q ¢

IV < el (.4'3)
Hence, for mesh spacings h which satisfy € < bh?/2, where b < p7/(p + 4), the error
per iteration as measured in the oo norm 1s < 1 /2.

We now consider the case of a general flow vector (p,q). It is convenient to
ntroduce some ndtation. We let A denote the set of mesh points P = (ih, jh),1 <
i, < n. We say that two mesh points P = (ih, jh) and @ = (kh,lh) are neighbors
if i — k| + |7 — | = 1. If P and Q are neighbors, we say that the ordered pair (p, Q)
is a @ link if the coefficient of ug in the difference equation (4.2) for up is —e. If
(P, Q) is not a 3 link, we say that (P, Q) is an a link. If (P, Q) is an « link, the flow

" vector (pij,qi;) at P points away from Q in the following sense: if P lies to the left
of Q(i = k- 1), then pi; < 0; if P lies to the right of @, then p;; > 0; if P lies below
Q, then g;; < 0; and if P lies above @, then g¢;; > 0. Of course (P, Q) and (Q, P)
may not be links of the same type. We define a directed graph, or digraph, Go, as
follows. The node set of g is the set N of mesh point. If P,Q € N, then (P,Q) is
a directed link of Gy provided (P, Q) is an « link.

By a partition of the node set N, we mean a collection of disjoint subsets of
N whose union is A/. By an ordered partitions of A’ we mean a partition of N
with the subsets written in a definite order. Each ordered partition Ni, -+, N of
N gives rise to a block Gauss Seidel method in the following manner. We reorder
and partition a vector v of unknowns as v = [v},--+,v™] to conform with the given
ordered partition of A, and in a similar manner, we permute and partition the rows
and columns of the coefficient matrix A. Writing A = D—L-U, with D;, L; ;, and
U; ; the corresponding permuted and partitioned submatrices, 1 < i, ] < m, we may
write the i-th set of difference equations as

Divi = Z L,',j‘iuj = Z Ui'j'v'f = hzfi. (4.4)
<t i>t

The block Gauss Seidel method then consists in first solving (4.4) with ¢ = 1 for
- o1, then updating v' and solving (4.4) with ¢ = 2 for v2,---.,. The corresponding
iteration matrix is N = (D — L)™'U.
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We say that an ordered partition Ai,---, N, of A is admissible provided the
following condition is satisfied: if k < [ if P € N}, and @ € N; and if P and Q
are neighbors, then (P, @) is a 8 link. The following theorem shows that admissible
ordered partitions give rise to rapidly convergent block Gauss Seidel methods.

Theorem 2. If M1, , Ny, is an admissible partition of N , and if N is the
corresponding Gauss Seidel iteration matriz, then

F+ﬁ+@_s
72 h3’

IV] < 3 4.8)

Proof. Write D = F — B, where F is the diagonal matrix of D, and hence the
diagonal matrix of A. Then D — L = E~L — B = E[I - E~(L + B)]. Since
L+ B<L+U+ B in the entrywise sense, we have

¥ . de + |pij|h + |gij|h
EYL+ B < ||E-YL+ B+ U)|| < max ’J £ :

The ratio i3 arfincreasing function of the quantity |p; ;|h + |¢; ;|h, which leads to the

. estimate

de + ph + Gh
+ ph + Gh + 7h2

IEZHL+ B)|| < -

Since ||E~L|| < 1/(4e + #h?), we have

r \ : . 1 4e+ ph + Gh + 7#h?
— 1 { 1 T 1 1{: o + =
1D = L) <N - 1B+ B < T

*

The second factor is a decreasing function of £, so evaluating the ratio at £ = 0, we

obtain
p+q+7+h

reh3 :
Each row of U has at most three nonzero entries, so |U| < 3¢. Combining these
inequalities and noting that 7h < 7, we obtain (4.5).

From the theorem we conclude that for mesh spacings h which satisfy e < bh®/2
, where b < #2/(p + ¢ + #), the error reduction per iteration as measured in the oo
norm 1s < 1/2. We note that (4.5) is less favorable than (4.3), in that the power of
h in the denominator of (4.5) is larger. The reason for the better inequality (4.3) is
that the method uses line Gauss Seidel iterations, and the analysis uses the positivity
of p.
~ To use this result, we must develop a method to find an admissible partition of the
mesh points. To be practical, the partition should also be of such a character that the
corresponding matrices D; are either of small size or of a type (such as tridiagonal)
that the equations (4.4) can be easily solved. The problem of constructing admissible
partitions may be put in terms of directed graphs. For this, we extend the notion

I(D— L) " <
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of a link and 3 link from pairs of points to pairs of subsets of the set A/ of mesh
points. If N' and A" are disjoint subsets of A, we will say that (A, N"} is a 3 link
provided the following condition is satisfied: for P’ € N’ and P” € N, if P’ and
P" are neighbors, then (P, P") is a 3 link. We say that (N'.A") is an o« link if 1t
is not a 3 link. Thus, (N',N"") is an « link if there are a pair of neighboring points
P' € N' and P" € N" such that the flow vector at P’ points away from P”. To any
partition P of N we associate a directed graph G(P) as follows. The nodes of § (P)
are the sets of the partition; (N’, N"') is a directed link of G(P) if (N, N") is an a

link. Then we have

Lemma 2. A partition of N can be ordered to be an admissible partition if and
only if the graph G(P) is acyclic.

Proof. Suppose G(P) is acycilc; that is, G(P) has no closed paths. Then there
is a set N7 in the partition such that for each N, (AN, A"} is not an « link. For
otherwise, given an A1, we could find an A* such that (N 1 N?) is an « link, and
then we could find an A such that (M2, A?) is an a link, and continuing in this
way, we would create a path that comes back to a previously selected node of G(P).
Let A7 = N’ be the first set in the ordering of the partition. The subgraph of G(P)
with A7 removed also has no closed paths, so there is a set Ny such that for each
N" # N, (N2, N") is not an « link. We continue in this way to order the sets of
the partition. Let Ai, N2, -+, Ny be the ordering that has been produced. If k <,
then (Ng, A1) is not an « link, so (Mg, N;) is a 8 link, and hence the ordering 1s
admissible. Conversely, if M1, N3, -+, Ny, is an admissible partition, then a closed
path in G(P) must include a pair (N, N}) with & < 1, and this pair is not an « link,
which is a contradiction. .

Since the partitions are to be used in s block Gauss Seidel method, 1t 1s important
to have partitions with samll block size. The following theorem describes some
admissible partitions in the case of a general flow vector (p,q). The partitions are
“minimal” in the sense that the blocks are as small as possible.

Theorem 3. Let P,, be the partition of N defined by the strongly connected
components of Go. Then G, = G(Pn,) ts acyclic, s0 Py, 18 admzssible . Purthermore,
P,. is a minimal admissible partition, in the sense that if Q 1s another admaissible
partition of N, then for each set N’ of the partition Pp, there is a set M of the
partition Q such that N' C M.

Proof. Suppose P, is not admissible. Then G,, is not acyclic, so there 1s a
eycle of sets of P, Ni, -+, Nk, Ni+1 = N1, such that (N;, N;11) is a link of Gn, for
i =1, k. Hence there are points P; € N;,i = 1,--+,k+1 such that (F;, Fiy1) is a
link of Gg, i =1, ---, k. Since each N is a strongly connected component of G, each
point @ € N; can be connected to P; through a path of points in V;, and also P; can
be connected to each Q@ € N; through a path of points in ;. Hence any two points in
N' = UN: can be connécted by a path of points in A/, so N’ is a strongly connected
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set 1n Gy. This contradicts the assumption that the Af; are the strongly connected
components of Gg. To prove the second assertion, suppose that Q is an admissible
partition, and suppose there is a set N’ of P,,, and two sets M’, M" of Q such that
MNON' ZDQMNN"#0. Pick PPe MNN', P € MNN™. Since N is strongly
connected, there is a sequence of points in N/, P, = P/, B, ---, B, Fryy = P” such
that (F;.F;41) is a link of Gy. Each P; belongs to a unique set M; of the partition
Q, so the sequence M; = M’, My, -, My, Mpy = M” is a path in G(Q) from
M’ to M". Similarly, there is a path in N going from P” to P’, so there is a path
in G(Q) going from M" to M’. Hence there is a cycle in G (@), contradicting the
assumption that € is an admissible partition.

An algorithm for finding the strongly connected components of a digraph G is
given in [1]. We briefly describe the procedure. The algorithm uses a “depth first
search” of the graph G. A depth first search involves selecting a node P of G, a
link of § leading away from P, moving along this link to another node, and so on
until one can go no further. (Returning to p, or to another node in the graph that
has already been reached, is not allowed.) Then one backs up one step from the
last node reached, starts on another link, if there is one, and so on. The purpose
of the depth first search is to determine, for each node of G, how many progeny
the node has. When the depth first search is completed, the “reverse” digraph G,
1s considered, where G, is defined by reversing all the arrows in G. A depth first
search is executed on G,, but this search is started with a node containing the largest
number of progeny among the nodes of G. Whenever this depth first search can g0 No
farther without arbitrarily selecting a new node, a strongly connected component of
G has been obtained. The depth first search is then resumed at one of the remaining
nodes with a largest number of progeny. The links of the acyclic graph G(P,,) are
then formed, and the vertices of the graph are arranged in an admissible order. The
iteration matrix of the resulting block Gauss Seidel method satisfies (3.2). We have
programmed this algorithm and used it to find the minimal admissible partitions
Pm for a variety of flow fields. Some results are given in §6.

£5. Other Flow Directed Schemes

By letting the flow vector guide the ordering of the unknowns, we are led to
other block Gauss Seidel methods that are easier to implement than the methods
described in §4. While these other orderings are not admissible in the sense of §4.
the methods have favorable convergence properties. In this section, we describe
3 iterative methods, denoted FDPI, FDHI, and FDHVI. In the case of FDPI, we
~ give a bound for || V|| in the one dimensional case. For the other two methods, good
estimates for || V|| remain a problem. Numerical results are given for all the methods
in §6. :

To describe FDPI, Flow Directed Point Iterations, we divide the set A/ of mesh
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points into 4 subsets as follows:

Nne={(,7) :pi; 2 0,qi;; =2 0}; Naw ={(¢,7) : pij <0,q;; > 0};
Nse ={(,7) : pi > 0,q;; <0}; Nsw = {(4,7) : pi; <0,q:; <0},

We use a Gauss Seidel iteration, ordering the unknowns in the following way. We
first sweep through the unknowns in Nyg, from left to right and from bottom to
top. Next, we sweep through the unknowns in AMyw, from right to left and from
bottom to top. In the third step we sweep through the nuknowns in Ngg, from left
to right and from top to bottom. Finally, we sweep through the unknowns in Ngw
from right to left and from top to bottom. These 4 steps constitute an iteration of
FDPI. In the one dimensional case, FDPI is analysed in Theorem 1 of §3.

The iterative scheme FDHI (Flow Directed Horizontal Iterations) is a variant of
line Gauss Seidel. Let A; denote the mesh pcunts on the vertical line z = th. We
divide N; into two subsets:

Nig ={(5,7) : pij 20}, Naw = {(i,5) : pi; < 0}.

The FDHI partitioning and ordering of the unknowns consists of the subsets Nig,
arranged in order of increasing i, followed by the subsets A, arranged in order
of decreasing i. Since the difference equations on each of the subsets Mg or Nyw
are a collection of tridiagonal systems, and FDHI iteration is not expensive. By
considering the mesh points A; on a horizontal line y = jh and dividing A; into
subsets Njn,N;s, we may construct a similar iterative scheme FDVI. We designate
by FDHVI the iterative scheme consisting of alternate iterations of FDHI and FDVL
Note that in the course of one iteration of FDHVI, the unknown at each mesh point
has been updated twice; we have taken this into account in our evaluation of the
method.

It would seem that there is a close relation between the methods described above
and the symmetric Gauss Seidel method. Let us denote by SHI the symmetrized
version of line Gauss Seidel, where the lines are vertical mesh lines, and the iterations
are first, left to right, and second, right to left. The principal difference between
FDHI and SHI is that in FDHI, on the rightward sweep, only those unknowns
for which the flow vector points to the right are updated, whereas, with SHI, every
unknown is updated on each sweep. The numerical results in §6 include some results

with SHI.

§6. Numerical Results

To illustrate some features of the methods discussed above, we consider four
problems. Since the analysis suggests that low directed iterations are at their worst
when used with flow fields containing sources, the flow fields of the four problems
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will be chosen to exhibit various types of sources. The four flow fields are given on
the unit square by the following formulas. In each case we take r(z,y) = .5.

Problem 1. p(z,y) =3z —y — 1,¢q(z,y) = 1.

Problem 2. p(z,y) =3z —y— 1,¢q(z,y) = —x — 3y + 2.

Problem 3. p(z,y) = 2(z —.5) — ply — .5),q(z,y) = p(z = .8) + 2(y — .B),p =
(= — 5) + (y — .5)2]1/2.

Problem 4. p(z,y) = —2(z — .5) — p(y — .5), q(z,y) = p(z — .5) — 2(y — .5),

p= [(z = .5)% + (y — .B)*J/2.
The stream lines of the flow fields in Problems 3 and 4 are expanding spirals p = 20
(for Problem 3) and contracting spirals p = —26 (for Problems 4), where (g, ) are
polar coordinates centered at the point (.5,.5). Schematic illustrations of the four
flow fields are given in Figures la—4a.

The first set of results are not numerical. Rather, they show the minimal admis-
sible partition P,, on a 5 X 5 mesh, in each of the four cases. We display, in Figures
1b—4b, the 5 x 5 mesh, with the (schematic) direction of the flow vector. We also
show the partition of the mesh points into the subsets of P,,. In Figures 1c-4c, we
show the nodgs and links of the reverse digraph G,(P,,). In perusing these figures,
notice how the ordering of the partitions follows the direction of the flow, and notice
also how aggregating the mesh points into the sets of P, handles the problem of
flows emanating from groups of mesh points. In Problem 3, the source of flow at
the center of the expanding spiral requires a large block of points (8 points) in the
second set of P,,. There is no guarantee that the block size remains bounded as
the mesh spacing becomes finer. The flow field of Problems 4, which represents a
contracting spiral, does not have this problem of large block size.

The next set of results is contained in Table 1-4. They show the error in the
solution, for Problems 1-4, on a 20 x 20 mesh, after 10 iterations, for various values
of e. The methods FDPI, FDHI, FDHVI, and SHI are discussed in §5. We have also
included two more methods, denoted HI and MPPI. By HI (Horizontal Iterations)
we mean the line Gauss Seidel method where the line are the vertical lines 3 =
constant, and where the lines are swept in the usual left-to-right order. By MPPI
(Minimal Partition Point Iterations) we mean the point Gauss Seidel method in
which the points are ordered in the manner given by our program that provides the
minimal partition P,,. Note that the analysis of the Gauss Seidel method arising
from P,, says nothing about what would happen if the ordering given by P, is used
to generate a point Gauss Seidel method. Nevertheless, the numerical results show
that MPPI performs quite well. |

The concept of what constitutes an “iteration” needs to be explained to under-
starid the tables. We have counted as one “iteration” a sweep of the mesh in which
each unknown is changed once. Thus a complete step of FDHVI counts as two it-
erations. The same holds for a complete step of SHIL. It should be emphasized that
the various iterations may not take the same amount of work per iteration. The
way FDHI has been programmed, for example, requires a calculatiqn for each mesh
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point and an update only at the mesh points for which the flow vector points in
the appropriate direction. We may note that HI performs very poorly, especially for
decreasing e. The other methods perform well, and FDHVI seems to perform the
best. In Problem 4, the blocks of the minimal admissible partition P,, are all of
gize 1. This means that for this problem, the method MPPI satisfies the hypotheses
of Theorem 2. In the Tables we see that MPPI performs very well for Problem
4. Note, however, that MPPI performs well for the other problems, even though
the hypotheses of Theorem 2 are not satisfied. It seems that the ordering provided
by the minimal admissible partition is a good one to use for point Gauss Seidel

HAN HOU-DE, V.P. II'IN, R.B. KELL.LOGG AND YUAN WEI

iterations for a variety of flow fields.

Problem 1. Error After 10 Iterations

Plz,y)=3z—y—1, ¢g(z,y) =1, r{z,y)=.5

eps HI FDPI FDHI FDHVI SHI MPPI

N 7.55E-02 | 9.34E-01 | 8.25E-01 | 7.80E-01 | 7.96E-01 | 9.32E-01

1-1 | 1.60E-01 | 2.24E-01 | 2.40E-02 | 2.17E-02 | 8.39E-02 | 2.25E-01

1-2 | 1.235-01 | 3.33E-06 | 1.57B—07 | 3.27E08 | 1.02E05 | 3.85E-06

1-3 | 7.64E-02 | 1.00E-10 | 1.29E09 | 1.16E-13 | 1.97E-09 | 5.11E-10 -

1-4 | 7.05E-02 | 2.34E-12 | 5.97E-10 | 1.03E-18 | 5.02E-10 | 4.46E-11

1-5 | 6.97E02 | 1.25E-12 | 5.50E~10 | 1.01E-23 | 4.37E-10 3.11E~*111

Problem 2. Error After 10 Iterations
Plz,y) =3z—y—1, glz,y)=—x—3y+2, r(z,y)=.5

eps HI FDPI FDHI FDHVI SHI MPPI
0.1 7.10E-02 | 9.03E-01 | 7.75E-01 | 6.85E-01 | 7.25E-01 | 9.02E-01
0.1-1 | 9.36E-02 | 2.44E-01 | 6.10E-02 | 3.52E-02 | 1.09E-01 | 2.38E-01
0.1-2 | 2.24E-01 | 4.10E-04 | 6.78E-05 | 1.52E-06 | 1.07E-03 | 3.5TE-04
0.1-3 | 5.41E-01 | 1.71E-08 | 1.18E-08 | 2.06E-12 | 1.31E-05 | 1.59E—08
0.1-4 | 6.26E-01 | 1.31E-09 | 4.87E-10 | 3.34E-17 | 1.07E-05 | 3.69E-10
0.1-5 | 6.35E-01 | 9.96E—-10 | 4.40E-10 | 2.23E-21 | 1.05E-05 | 2.59E-10

Problem 3. Error After 10 Iterations
Spiral with a = 2, center = (.5,.5),r(z,y) = .5

eps HI FDPI FDHI FDHVI SHI MPPI
0.1 2.60E-02 | 9.53E-01 | 8.87E-01 | 8.93E-01 | 8.49E-01 | 9.52E-01
0.1-1 | 5.17E-02 | 6.44E-01 | 4.20E-01 | 4.48E-01 | 4.57E-01 | 6.50E-01
0.1-2 | 1.96E-01 | 5.45E-02 { 6.39E-03 | 9.47E-03 | 1.99E-02 | 5.91E-02
0.1-3 | 4.56E-01 | 4.50E-06 | 6.49E-08 | 1.83E-07 | 2.37TE-05 | 6.54E-06
0.1-4 | 5.25E-01 | 1.91E-11 | 1.09E-12 | 5.63E-13 | 8.26E-07 | 9.69E-10
0.1-5 | 5.32E-01 | 1.49E-13 | 1.06E-13 | 1.52E-17 | 5.92E-07 | 1.04E-10
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Problem 4. Error After 10 Iterations

Spiral with a = —2, center = (.5, .5),r(z,y) = .5

eps

HI

FDPI

FDHI

FDHVI

SHI

MPPI

0.1

8.37E-02

8.45E-01

5.56E-01

3.66E—01

6.61E-01

8.48FE—01

0.1-1

1.66E-01

1.42E-01

9.94E-03

1.24E-02

4.61E-02

1.46E-01

0.1-2

4.65E-01

2.35E-06

4.10E—-09

3.30E-09

1.48E-05

2.50E-06

0.1-3

6.14E—-01

2. 7915

2.19E-18

7.09E-19

3.88K-10

2.06 E-15

0.1-4

6.33E-01

9.10E-25

6.10E-28

4.86E—-28

4.44F-15

2.18E-25

0.1-5

6.35E-01

7.53E-34

4.41E-37

2.84E-35

4.51E-20

2.18E-35
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