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MONOTONE PIECEWISE CURVE FITTING ALGORITHMS*V
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Abstract

A piecewise cubic curve fitting algorithm preserving monotonicity of the data
without modification of the assigned slopes ig proposed. The algorithm has the
same order of convergence as Yan'’s algorithm!®) and Gasparo-Morandi’s a.lgnrithmlﬁ]
for accurate or O(h?) accurate given data, but it has a more visually pleasing curve
than those two algorithms. We also discuss the convergence order of cubic rational
interpolation for O(h?) accurate data.

. 1. Introduction

»

A D I N T S v

The problem of monotonicity preserved interpolation has been considered by a num-
ber of authors. Fritsch and Carlson!¥ have obtained necessary and sufficient conditions
for a cubic Hermite interpolant to be monotone on an interval. Eisentat, Jackson and
Lewisl® derived a fourth-order accurate algorithm which is a modification of Fritsch
and Carlson’s algorithm. Beatson and Wolkowicz!!! considered monotone interpolation
schemes of the fitting and modifying type, and gave the optimal order error properties
of their algorithms. Gregory and Delbourgol® gave an explicit representation of a piece-
wise rational quadratic function; they also gave an explicit representation of a piecewise
rational cubic function!?: both explicit representations produce monotone interpolation
for given monotone data. Yan!®! gave a piecewise cubic curve fitting algorithm without
modification of the assigned slopes through inserting two knots to construct a horizontal
line on a non-monotone interval. Gasparo-Morandi’s algurithm[5l is a modification of
Yan’s algcrrithm[BI . which inserts two knots to construct a slope line on a non-monotone
interval.

Our algorithm which inserts two knots to construct two quadratic curves on a non-
monotone interval is also a modification of Yan's algorithm!® and Gasparo-Morandi'’s
algorithm!®. An O(h*) convergence result is obtained when the exact function and
derivative values are available; otherwise, an O(hP) (p = min(4, g)) convergence is
obtained for an O(h9) accurate function and derivative values. The proof process of
the main result is similiar to that in Yan!® and Gaspa.ro—Mﬂra,ndi[E] . We also discuss
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the convergence order of cubic rational interpolation with the O(h9) accurate function

and derivative values, and an O(hP)
The paper begins with a definition
~onditions, and construction of our algorithm. The convergence an

alysis of cubic rational

rithm is discussed in 3. The convergence an
data is discussed in 4. Finally, in 5, examples app

O(h?) accurate
interpolation methods and comparison are given. 1

convergence is obtained. g
of cubic interpolant, necessary and sufficient
alysis of the algo-
interpolation fm;

=

lied with various.

2. The Algorithm

Let f(z) € C'[a,b] be a monotone increasing function. Let m: a = 21 < T2 <

... < z, = b be a partition of the interval I = [a,b]. Suppose that and d; are

approximate values of f(z) and f'(x) at the partition points i respectively. Let hi =2
Tir1 — Tis Ay = Ykl = yi, Di = Ay;[hi,t = 1,2,---, % In particular we suppose thaﬁ_’r
there exists an integer g > 0 such that . 3

y; = f(=i) + O(hY), d; = f'(zi) + O(h7),

i}. Now, we construct a piecewise cubic funct

1= 11 23 SR L (2‘1)
where i = max{h ion s(z) € C'[I] such
that
3($i) == Ui Sl(mi) = d, g 0%, T (22) .i

s(x) is defined by
0o 3A; i
d: d;:l +38% ) ) + diz —zi) + i (2.3) 3

notonicity is that .
(2.4)

In each subinterval I; = [z, Zis1),
a; + diry — 24
si(x) = ;;; (z —x;)° -
i

It is clear that a necessary condition for mo
sgn (d;) = sgn (di41) = s&n (Ai)-

constant) on I; if and only if =
(2.4) is satisfied.

Furthermore, if A; = 0, then s(z) is monotone (i.e.

d; = di+1 = 0. The remainder of this section assumes that A; # 0 and

Let a; = di/ A, Bi = dit1 /Ai. Then we have the following lemmas!¥.

Lemma 1. Ifa; +8i—2 < 0, then s(z) is monotone on I; if and only if (2.4) is

satisfied.
Lemma
if and only if one
(i) 20; + Bi +3 £ 0,
(i) ;i +26; —3 <0, or
3)%/3(a + 8 — 2)-

where ¢(a, B) = & — (2a+ 5 =
In general, s;(z) has the following form: sj(z) = a(z — 7)? + w, where Z is the.

extreme point of s(z). We denote p, 7, w as pp =T — Tiy 1
clear that s(z) is not monotone on I; if and only if

B 1 W and Aiw <0,

2. Ifai+Bi—2>0, and (2.4) is satisfied, then s(zx) is monotone on I,.

of the following conditions is satisfied:

L}
=l '.f_ gy /

L |
T W

*

= x4y — T, w = 8i(Z). I¢ is

(2.5)
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5 Let ¢; < & < ¢g be three inserting points on subinterval I;. Let g; () =(Z—2x)/(Z— c1),
~ g(z) = (2—2)/(Z—cz). A new interpolant 3(z) on I; will be taken to have a derivative
. () of the following form: |

ﬂ](:E — 61)2 S$o.0. 2 ks -[:171'161] 3

cqy(x), z € [e1, T
| E:(m) — gl( ) f_l : : (2,6)
E—I ng(il;'), T € I, C2],

32(13 -t 62)2 N :Cg,Ii+1]

where 7z is the extreme point of s'(z) on I;, and the constants a;, a2 and c and the
additional points ¢; and ¢y must be determined in such a way that 3(x) satisfies all
interpolation and monotonicity requirments. Two special cases of §'(z) are given by
Yan with g1(z) = 0, g2(x) = 0 and by Gasparo and Morandi with gi(z) =1, ga(z) = 1.
From (2.6), we must choose ¢ such that cA; > 0. Let

~

[ = C1 — Ty and ﬁ = Ii41 — C2. (2'7)
The derivative interpolation conditions can be expressed as
s +c=d; and e’ +c=diq1. (2.8)

Based on the derivative interpolation conditions, we have actually infinitely many
choices to determme ai,as,c1,¢2,¢. By integrating §;(z) and sj(x) on [z;, zi41], and
letting they have the same integrating value, we obtain the folowing equation:

3 f " | |
pd; + ndi41 + 5(311; + pu+n) = 3Ay;. . (2.9)
By letting :
E=E (2.10)
n n

we obtain two equations that have three unknown variables. Let ¢ be a free variable.
We can determine g and 7 (i.e. ai,az,c,c) from (2.9) and (2. 10). In fact, the
linear system (2.9)—(2.10) has a unique solution if and only if its determinant D;
—(d;p + di41m + chi/2) # 0. In this case we obtain the following solution:

p=p(c)p and 7= p(c)n (2.11)

where p(c) = 3(A; — £)/(6 + §), and 6 = (dip + di1n)/hi- In order to ensure that
z; < ¢1 <% < ¢y < Tiv1, we must determine c such that 0 < p(c) < 1 and cA; > 0. For
this purpose, by integrating si(x) on I; and using interpolation properties we obtain
the relation

dip+ digan 4+ 2whi =30y, . (212)

For increasing data, we have w < 0 < A; < 24; < 3A; < 9 and p(c) is a monotone
decreasing function such that 0 < p(c) < 1 for c € [0, 2&,] For decreasing data, we
also obtain 0 < p(c) < 1 for ¢ € [24;,0]. -

- In conclusion, &'(z) can be determined in the following way. 'We choose a value of
¢ in the interval [0, 24A;] or [24;, 0] for increasing or decreasing data respectively. Then
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b f:'latermine a1, a,c1,cz from (2.6) and (2.7) and §(z) is obtained. Finally, by . 3
integrating &.(z) on I;, §i(z) can be obtained. 3

3. The Convergence Order of Cubic Inf;erpﬂlant

We shall show that the algorithm described in Gection 2 gives an O(hP) convergence -
order. We discuss only the case when f(z) is ~ondecreasing. Let || - || denote the =
uniform norm on I. Let m(z) be defined by

i(z), si(z)]} I;, v
i) f (z), si(z) is monotone on (31)
3i(x), otherwise 5
for ¢ € [:z:;._,:n;“], i =0,1,---,n. We have the following convergence theorem. : -_Q f

Theorem 3.1. Let f(z)e C*la,b] and p = min(4,q). If (2.1) holds and the variable
c in 3;(x) satisfies
0 < ¢ < min(| w |,24;), - (32) &
then for each interval I;, we have | f(z) — m(z) ||= O(hP). |

Proof. Let t(x) be a cubic interpolant for exact f(z;), f'(zi) on I;. It 1s well-knownl®
that 2 3

| f=tl=0(k*,  If-tl= O(h?)- (3.3)

Note that both t(z) and s;(z) are cubic polynomials. By using the triangular inequality
we have !

Nf-sl=0®"), Nf-sl= O(h*™). (3.4)
If m(zx) = si(x) on I;, we complete our proof. Now let m(z) = §;(z) on I;, we have |
| f—ml=ll f—5 <l f—sill +] si — i || - (3.5)

From (3.4), we need to estimate || s; — i ||. For this purpose, we have

T Ti+1
||Si-3£|1ﬂf | 8 — & |l dyS[ |8, — 8| dy<hillsi—35|l- (3.6)
o i

Let us find the super value of | s;(z) — §(z) | on [x;,Z]. (For the same reason, we can
find the super value of /| sj(z) — §\(z) | on [& zit1]). Let D(z) be defined by D(z) =
sh(z) — 8j(z), =€ [z, ], because s;(z) can be expressed as si(z) = a(z — z)? + w,
where a € R such that |

ap’ +w = d;. (3.7)
D(z) has the following form
i gl S AL . by
D = a(_:c :rj)z-l—w ai(z | c)?—¢c, ZE [:c,,cbl], (38)
a(z — ) +w — cqr(2), z € [e1,Z] - _

Firstly, we consider the values of D(z) on [e1,%]. From (3.8), we know that D(z) €
C|zi,Z]. Then D(z) has its oxtreme values on [z;,Z]. Because w < 0, (3.7) means
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2> 0. Let D(z) = a(z — z)*+ | w | +cgi(z)- | D(x) |<I D(z). D(z) has an inf value
‘on R. Let D'(z) = 0. We obtain the extreme point of D(x) as # = % + ¢/(2a(Z — c1))-
| Because Z > Z, Z is located on the right side of subinterval [e;, 2:] D(z) is monotone
decreasing on [c1,Z]. Its extreme points are the end-points of subinterval [c;,&]. For

tht end-point Z, we have
D(z) =|w|. (3.9)

. Thé estimation of | D(c1) | will be discussed after the estimation of the supervalue of
.| D(z) | on subinterval [z;, ¢;] is discussed.

. . Because D(z;) = 0, we assume that the maximum value of | D(z) | on [zi,c1] is at
0, where zo € (z;,¢1). We have the following relation:

- s = i " = 5 = = -
2 5

a(zg — T) —ay(zo — c1) = 0. (3.10)
Fs From (3.7) and (3.10), we have
| D(zo) |<|w | +e+ (dit |w]) [Z—cr | /n. (3.11)
It is obvious that 0 < -’—"—;,_—El < 1. We have
T—oc —2wh; + 2ch; (2¢ — 2w)h; ‘ (3.12)
’ 7 dip + diy1m +chi/2  dip+digan
If 0 <d; <d;y1, we have
| dip f ::ia+m g d.-(uh;ﬂ) - i g
[fd,—Zdi.I.le,wehaveUﬂnS%iﬂuand
dip +h‘di}17i ii % ik
From (3.13) and (3.14) we have |
|m;c1|22\2c‘;2w|£4c+;|wl_ (3.15)
From (3.12) and (3.15) we have
| D(0) |5 |w | +5c+4 |w] (|w | +)/di. (3.16)
If d; >| w | +c, we have | | |
| D(z0) |9 | w | +5¢ <9(| w | +¢). (3.17)
Ifd; <|w | +c, we have ’
| D(@) |<| 8(2) | + | si(e) |< max(e,ds) + ds < 2| wl+e).  (3.18)
From (3.16) and (3.18) we have | 3
' |8 — 3 <9 w]|+e), z € [zi,a1)- (3.19)
~ Now, we discuss the estimation of | D(e1) |. From (3.15) we l;g.ve *
| D(c1) || w | +c+16((| w | +¢)*/di+ | w | (| w | +¢)/dk)?). (3.20)
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If d; >| w | +c, we have
| D(c1) |<|w | +¢+16(2 |w | +¢) < 33(|w | +¢). - (3.21)

L
%

If d; <| w | +¢, we have . , - .

| D(er) |<] 8i(er) | + | si(en) [ 2(|w [ +e). (3.22)
From (3.9), (3.19) and (3.22) we have
[ D(z) [¢98(|w|+e) 2 €[], (3.23) |

We have | w |=| 54(2) |<] si(z) — f(=) |<]] s. == O(h?~1) and ¢ <|w [< O(h?™1).
From (3.23), (3.6),(3.5),(3.4) and the definition of D(z) we obtain | st— 3. ||I= O(h?"~ 4
| s; — 8i ||= O(h?) and complete the proof of Theorem 3.1. .

4. The Convergence Analysis of Cubic'Rationa] Interpolation
for an O(h?) Cccurate Function and Derivative Values

We take the code of Section 3 and assumptions (2.1) and (2.4). Furthermore, let__',:_
> —1. A piecewise cubic rational interpolation z(z) for the exact function

F oLk s
E rﬂ -
‘ri_ 'll_"'-':'F"

parameter 7;

and derivative values on’I..- is defined by 2
p(0)

zlz) = T € |Ti,Ts 4.1) =

@) =5g =cloml (1) -

where 0 = (2 — 2:)/hi, p(0) = firr0® + (rifirs — hifiy1)0(1 — 6) + (rifi + haf0)0U1 7

0)* + fi(1 - 9)3, q(8) = 1+ (ri — 3)9(1 — 6). A piecewise cubic rational interpolation :
z(x) for the O(h?) accurate functicun and derivative values on I; is defined by %
() = B .

z(:’ﬂ) s q(f?) T € [-"'-71.,:-'-71-1-1] . (4_2) }

n

where p(0) = yi+16° + (rivi+1
Furthermore z(z) and Z(z) have the following interpolation properties:

o= o aan)= fvte | PE R, L) = fr |

Z(xi) = i, Z(Tit1) = Yi+1, EI(Ii) = di, E'(a:,;“) = dit1- (44)

When r; 2 N diH, z(z) is ‘monotone increasing[2]. We observe that the cubic

rational interpolatiion z(x) and Z(z) will degenerate into cubic interpolants s(z) and
(z) when r; = 3. In the remainder of this section we discuss the limit behavior of

f(z) — z(z) when h — 0. Firstly, we give a lemma from [6]. Then we introduce our *
two lemmas. Sl

. Lemma 4.1 Let f(z) € C%[a,b]. If (4.3) holds, then
| f() — 2(z) |<{RE I FD I QI ri =31 /4) 4] ri= 3] (A BARE B

+ 382 || £ 1)}/3840; 2 € [zi,2en] (45)
y
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where

| Lemma 4.2. Under the assumption of Lemma 4.1, if ri—3 = O(k;), then || f—z ||=
t O(hT"), where m = min(4,[ + 2).
" Lemma 4.3 If (2.1) holds and r; — 3 = O(h), then || z — Z |= O(h9).

Proof. we can express (2.1) as

w=fite, e=0H),. d=fi+e, ¢e=0(h%). (4.6)

. Then,

| 2(z) — 2(z) |<{] €1 | +2 | 7 || €isa | /9 +2hi | €541 | /94 | i || e | /8
+hi | €| /8+ | e |}/a(0) (4.7)
:-E Fina.lly,
| 1-(3-m)/4, if-1<ri<3,
| 4:i(0) |= { N e (4.8)

3 »

. Combining (4.6),(4.7) and (4.8) complete the proof of the lemma.
From Lemma 4.2 and Lemma 4.3 we have
Theorem 4.1. Let r; — 3 = O(h}). If (2.1) holds, then

| f - 2 l|l= O(h), (4.9)

where p = min(4,q,l + 2).
A direct consequence of Theorem 4.1 which is similiar to Theorem 3.1 is the following

| corollary.
Corollary 4.1. Let r; — 3 = O(h?). If (2.1) holds, then

| f -2 ||= O(R?), (4.10)

where p = min(4,q).

To ensure that r; — 3 = O(h?), a suggested selection is r; = 1 + di +dit1 in [6].

5. Numerical Examples and Conclusion

3 In this section, we compare the results of the method described in Section 2 with
" those of Yan’s algorithm, Gasparo-Morandi’s algorithm and cubic rational interpolation
'~ for two of the typical data sets considered in the literature. The derivative values
'~ are approximated by a four point formula in [8]. In order to satisfy (3.2) we choose
¢ = 0.95min(| w |,2A;) on non-monotone subintervals. Figures are drawn by GS

system[9] on IBM4341 computer.
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The first data set, used in Figs. 14, is from Akima in [4], namely

=10 12 13 Fs>Fg¥ls 1o 1121 14] 15
0l10/10/10]10| 10105 15|50 | 60|85

& m[ 86.0

86.00 88.00

8B.00 3.0

0.0 0.0

41.00r 41.!:!][

X.00r T M+

2.0r | 23 (0 e *

S.00

ey T G —" - R I S E RS e " 3 1
0020 40 6.0 6.0 10.0 RO 16.0 0020 40 6.0 6.0 1.0 2.0 14.0 :

: 0 3
14.00¢ ’ 14.::}[ / T
i

Fig.1. Yan’s algorithm Fig.2. Gasparo-Morandi’s algorithm
6.0 8B.0r
ﬂm[ T1.00F
8.0 EE.EDI»
|.00+ B0+

41.00
2.0

23.00

- 14.00

S-m TATRE 1 & WL [ : : i ]
- 0020 40 600 8.0 0.M 1200 KM 0.02M <400 6.0 8.0 10.00 1200 4.0 —

f‘ig,& ‘The algorithm _ Fig.4. Cubic rational interpolation s bt

-———— e i
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The second data set, used in Figs. 5-8, is from RPN14 in [4], namely

z | 7.99 | 8.09 8.19 8.7 oY =
v |0 | 2.76429E-5 | 4.37498E-2 | 0.169183 | 0.469428

e st SR L Sz el 2

7.399.43 10.99 12.43 13.30 15.482 16.90 1642 19.8 7.99.40 10.98 12.8 13.9 15.42 698 16.43 19.€

Fig.5. Yan’s algorithm Fig.6. Gasparo-Morandi’s algorithm

»

Y-

- 0.
- 0.5}

. 080}

. 0.

. 0D

-~ 0.15

E 0.0 1 IR AN Sl it SoF SRl bt
| 1989940 109 128 139 154 ¥B.9 1840 199 7.39.4 109 124 139 154 BB 18.68 199

Fig.7. The algorithm Fig.8. Cubic rational interpolation

z | 10 12 15 20
| ¥ 0.943740 | 0.998636 | 0.999919 | 0.999994

- For'those two typical data sets, we see that both the algorithm and cubic rational
interpolation produce visually pleasing curves.” When the slopes of the data change
-abruptly, the graphs of the algorithm are similiar to cubic rational interpolation, but
the graphs produced by other methods are not. From this character and the good error
'bounds, we can say the algorithm is better. ' A successful application of the algorithm
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for variate generation has been given in {10].

™
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