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Abstract

In this paper, a new step-size skill for a projection and contraction method[10]

for linear programming is generalized to an iterative method[22] for solving nonlin-

ear projection equation. For linear programming, our scheme is the same as that

of[10]. For complementarity problem and related problems, we give an improved

algorithm by considering the new step-size skill and ALGORITHM B discussed in

[22]. Numerical results are provided.

1. Introduction

In [11], an iterative projection and contraction (PC) method for linear complemen-

tarity problems was proposed. In practice, the algorithm behaves effectively, but in

theory the step-size can not be proved to be bounded away from zero. So no statement

can be made about the rate of convergence. Although a variant of the prime PC al-

gorithm with constant step-size for linear programmming has a linear convergence[9],

it converges much slower in parctice. In [10], He proposed a new step-size rule for the

prime PC algorithm for the linear programming such that the resulting algorithm has

a globally linear convergence property, and showed that the new resulting algorithm

works better in practice than the prime PC algorithm. In this paper, we will introduce

a new step-size skill to a projection and contraction method for nonlinear complemen-

tarity and its extensions[22]. In order to obtain this, we first make a slight modification

of the prime algorithm in [22], and then give the new step-size rule. For linear pro-

gramming, our ALGORITHM C discussed in this paper is the same as that of [10].

For the complementarity problem and related problems, we will give ALGORITHM D

by considering ALGORITHM C in this paper and ALGORITHM B in [22]. Both in

theoritical and in computational view point, ALGORITHM D is satisfactory.

Assume that the mapping F : X ⊂ Rn → Rn is continuous and X is a closed convex

subset of Rn, we will consider the solution of the following projection equations:

x− PX [x− F (x)] = 0, (1.1)
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where for any y ∈ Rn, PX(y) = argmin{x ∈ X|‖x− y‖}. (1.2)

Here ‖ · ‖ denotes the l2-norm of Rn or its induced matrix norm of Rn×n. The linear

programming , nonlinear complementarity problem and nonlinear variational inequality

problem can all be casted as a special case of (1.1), see [3] for a proof. For any β > 0,

define

eX(x, β) = x− PX [x− βF (x)]. (1.3)

Without causing any confusion, we will use e(x, β) to represent eX(x, β). It is easy to

see that x is a solution of (1.1) if and only if e(x, β) = 0 for some or any β > 0. Denote

X∗ = {x ∈ X|x is a solution of (1.1)}. (1.4)

Definition 1. The mapping F : Rn → Rn is said to

(a) be monotone over a set X if

[F (x) − F (y)]T (x− y) ≥ 0, for all x, y ∈ X; (1.5)

(b) be pseudomonotone over X if

F (y)T (x− y) ≥ 0 implies F (x)T (x− y) ≥ 0, for all x, y ∈ X. (1.6)

2. Basic Preliminaries

Throughout this paper , we assume that X is a nonempty convex subset of Rn and

F (x) is continuous over X.

Lemma 1[18]. If F (x) is continuous over a nonempty compact convex set Y , then

there exists y∗ ∈ Y suth that

F (y∗)T (y − y∗) ≥ 0, for all y ∈ Y.

Lemma 2[23]. For the projection operator PX(·), we have

(i)when y ∈ X, [z − PX(z)]T [y − PX(z)] ≤ 0, for all z ∈ Rn; (2.1)

(ii) ‖PX(z) − PX(y)‖ ≤ ‖z − y‖, for all y, z ∈ Rn. (2.2)

Lemma 3[2,5]. Given x ∈ Rn and d ∈ Rn, then the function θ defined by

θ(β) =
‖PX(x+ βd) − x‖

β
, β > 0 (2.3)

is antitone (nonincreasing).

Choose an arbitrary constant η ∈ (0, 1) (e.g., η = 1/2). When x ∈ X\X∗, define

η(x) =











max
{

η, 1 −
t(x)

‖e(x, 1)‖2

}

, if t(x) > 0

1, otherwise
, (2.4)

where t(x) = [F (x) − F (PX [x− F (x)])]T e(x, 1).
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For any x ∈ X and β > 0, define

ϕ(x, β) = F (x)T e(x, β), (2.5)

ψ(x, β) = ‖e(x, β)‖2/β. (2.6)

From (i) of Lemma 2, taking z = x− βF (x) and y = x, we have

βF (x)T e(x, β) ≥ ‖e(x, β)‖2. (2.7)

By (2.5)-(2.7), and noticing that for any x ∈ X\X∗, η(x) ∈ [η, 1], we have

Theorem 1. Let ϕ(x, β) and ψ(x, β) be defined as in (2.5) and (2.6), respectively,

then for any β > 0

(i) ϕ(x, β) ≥ ψ(x, β), for all x ∈ X;

(ii) x ∈ X and ψ(x, β) = 0 iff x ∈ X and ψ(x, β) = 0 iff x ∈ X∗.

For x ∈ X\X∗, define

s(x) =











[1 − η(x)]
‖e(x, 1)‖2

t(x)
, if t(x) > 0

1, otherwise
, (2.8)

where t(x) = [F (x) − F (PX [x− F (x)])]T e(x, 1). It is easy to see that 0 < s(x) ≤ 1.

Theorem 2. Suppose that F (x) is continuous over X and η ∈ (0, 1). If S ⊂ X\X∗

is a compact set, then there exists a positive constant δ(≤ 1) such that for all x ∈ S

and β ∈ (0, δ], when s(x) < 1, we have

[F (x) − F (PX [x− βF (x)])]T e(x, β) ≤ [1 − η(x)]ψ(x, β). (2.9)

Proof. Note that for any x ∈ X\X∗ with s(x) < 1, we have

[F (x) − F (PX [x− F (x)])]T e(x, 1) > 0

and

η(x) > 1 −
[F (x) − F (PX [x− F (x)])]T e(x, 1)

‖e(x, 1)‖2
,

which, and the definition of η(x), means that η(x) = η. The rest proof is similar to

Theorem 2.2 in [22].

In [22], we proposed a projection and contraction method (ALGORITHM A) for

solving nonlinear projection equations.

ALGORITHM A

Given x0 ∈ X, positive constants s ∈ (0,+∞), η and α ∈ (0, 1), and 0 < ∆1 ≤

∆2 < 2 (In [22] we just take ∆1 = ∆2).

For k = 0, 1, ..., if xk /∈ X∗, then do

1. Determine βk = sαmk , where mk is the smallest integer m such that

[F (xk) − F (PX [xk − sαmF (xk)])]T e(xk, sαm) ≤ (1 − η)ϕ(xk, sαm)
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holds.

2. Calculate g(xk, βk) := F (PX [xk − βkF (xk)]).

3. Calculate

ρk = ηϕ(xk, βk)/||g(xk , βk)||
2.

4. Take γk ∈ [∆1,∆2] (In [22] we just take γk = γ = ∆1 = ∆2) and set

x̄k = xk − γkρkg(x
k, βk),

xk+1 = PX(x̄k).

When X is of the form X = {x ∈ Rn |l ≤ x ≤ u}, where l and u are two vec-

tors of {R ∪ {∞}}n, we gave an improvement of ALGORITHM A, which is called

ALGORITHM B, in [22]. As a comparision to ALGORITHM D, the iterative form of

ALGORITHM B will be listed out in the last part of section 3.

3. Algorithms and Convergence Properties

If we set

g(x, β) = F (PX [x− βF (x)]), β > 0, (3.1)

then we have

Theorem 3. Suppose that F (x) is continuous and pseudomonotone over X. If

X∗ 6= ∅ and there exists a positive number β such that (2.9) holds for some x ∈ X\X∗,

then

(x− x∗)T g(x, β) ≥ ϕ(x, β) − [1 − η(x)]ψ(x, β), for all x∗ ∈ X∗. (3.2)

Proof. Since X∗ 6= ∅, from [3] we know that for any x∗ ∈ X∗, y ∈ X we have

F (x∗)T (y − x∗) ≥ 0,

which, and the pseudomonotonicity of F (x), means

{PX [x− βF (x)] − x∗}TF (PX [x− βF (x)]) ≥ 0. (3.3)

Therefore,

(x− x∗)T g(x, β) = (x− x∗)TF (PX [x− βF (x)])

= e(x, β)TF (PX [x− βF (x)])

+{PX [x− βF (x)] − x∗}TF (PX [x− βF (x)])

≥ e(x, β)TF (PX [x− βF (x)]) (using (3.3))

= [F (PX [x− βF (x)]) − F (x)]T e(x, β) + F (x)T e(x, β)

≥ [η(x) − 1]ψ(x, β) + F (x)T e(x, β), (3.4)

the last inequality follows from (2.9). Therefore,

(x− x∗)T g(x, β) ≥ ϕ(x, β) − [1 − η(x)]ψ(x, β).

Now , we state our algorithm with new step-size rule.
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ALGORITHM C

Given x0 ∈ X, positive constants η, α ∈ (0, 1) and 0 < ∆1 ≤ ∆2 < 2.

For k = 0, 1, ..., if xk /∈ X∗, then do

1. Calculate η(xk) and s(xk). If s(xk) = 1, let βk = 1; otherwise determine

βk = s(xk)αmk , where mk is the smallest nonnegative integer m such that

[F (xk)−F (PX [xk−s(xk)αmF (xk)])]T e(xk, s(xk)αm) ≤ [1−η(x)]ψ(xk , s(xk)αm) (3.5)

holds.

2. Calculate g(xk, βk) by (3.1).

3. Calculate

ρk =
η(xk)βk‖e(x

k, βk)‖
2

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2
. (3.6)

4. Take γk ∈ [∆1,∆2] and set

x̄k = xk − γkρkg(x
k, βk), (3.7)

xk+1 = PX(x̄k). (3.8)

Remark 1. Theorem 2 ensures that βk can be obtained in finine number of trials

if s(xk) < 1. When s(xk) = 1, (3.5) holds for m = 0.

Remark 2. When F (x) = Dx+ c and D is a skew-symmetric matrix (i.e., DT =

−D), then we have η(xk) = s(xk) = 1, which results that βk = 1 for each step, and

ρk =
η(xk)βk‖e(x

k, βk)‖2

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2

=
‖e(xk, 1)‖2

‖e(xk, 1) −De(xk, 1)‖2

=
‖e(xk, 1)‖2

‖e(xk, 1)‖2 + ‖ −De(xk, 1)‖2 − 2e(xk, 1)TDe(xk, 1)

=
‖e(xk, 1)‖2

‖e(xk, 1)‖2 + ‖DT e(xk, 1)‖2
. (3.9)

So for linear programming (when translated into an equivalent linear complementarity

problem), our ALGORITHM C is the same as that of [10].

Theorem 4. Suppose that F (x) is continuous and pseudomonotone over X. If

X∗ 6= ∅, then for any x∗ ∈ X∗, the sequence {xk} generated by ALGORITHM C

satisfies

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γk(2 − γk)ρkψ(xk, βk). (3.10)

Proof. From (i) of Lemma 2 , we have

‖xk+1 − x∗‖2 = ‖PX(x̄k) − x∗‖2

= ‖x̄k − x∗‖2 − ‖x̄k − PX(x̄k)‖2 + 2[x̄k − PX(x̄k)]T [x∗ − PX(x̄k)]

≤ ‖x̄k − x∗‖2 − ‖x̄k − xk+1‖2

= ‖xk − x∗‖2 − 2γkρk(x
k − x∗)T g(xk, βk) + γ2

kρ
2
k‖g(x

k, βk)‖
2

−[γ2
kρ

2
k‖g(x

k, βk)‖
2 + ‖xk − xk+1‖2 − 2γkρkg(x

k, βk)
T (xk − xk+1)]

= ‖xk − x∗‖2 − 2γkρk(x
k − x∗)T g(xk, βk) − ‖xk − xk+1‖2

+2γkρkF (PX [xk − βkF (xk)])T (xk − xk+1).
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Therefore,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γkρk(x
k − x∗)T g(xk, βk) − ‖xk − xk+1‖2

−
γ2

kρ
2
k

β2
k

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2

+
γ2

kρ
2
k

β2
k

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2

+
2γkρk

βk

{e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]}T (xk − xk+1)

−
2γkρk

βk

[e(xk, βk) − βkF (xk)]T (xk − xk+1),

which means

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γkρk(x
k − x∗)T g(xk, βk)

−‖
γkρk

βk

{e(xk, βk) − βk[F (xk) − F (PX [xk − βF (xk)])]} − (xk − xk+1)‖2

+
γ2

kρ
2
k

β2
k

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2

−
2γkρk

βk

[e(xk, βk) − βkF (xk)]T (xk − xk+1).

Hence from Theorem 3 and the above formula, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γkρk{ϕ(xk, βk) − [1 − η(xk)]ψ(xk, βk)}

+
γ2

kρ
2
k

β2
k

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2

−
2γkρk

βk

[e(xk, βk) − βkF (xk)]T (xk − xk+1)

= ‖xk − x∗‖2 − 2γkρk{ψ(xk, βk) − [1 − η(xk)]ψ(xk, βk)}

+
2γkρk

βk

{−βkϕ(xk, βk) + βkψ(xk, βk) − [e(xk, βk) − βkF (xk)]T (xk − xk+1)}

+
γ2

kρ
2
k

β2
k

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2.

After rearrangement, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γkρkη(x
k)ψ(xk, βk)

+
2γkρk

βk

[e(xk, βk) − βkF (xk)]T [e(xk, βk) − (xk − xk+1)]

+
γ2

kρ
2
k

β2
k

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2

= ‖xk − x∗‖2 − 2γkρkη(x
k)ψ(xk, βk)

+
2γkρk

βk

{xk − βkF (xk) − PX [xk − βkF (xk)]}T {xk+1 − PX [xk − βkF (xk)]}

+
γ2

kρ
2
k

β2
k

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2,
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which, and (i) of Lemma 2, means

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2γkρkη(x
k)ψ(xk, βk)

+
γ2

kρ
2
k

β2
k

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2

= ‖xk − x∗‖2 − γk(2 − γk)η(x
k)ρkψ(xk, βk),

which proves (3.10).

Define

dist(x,X∗) = inf{‖x− x∗‖ | x∗ ∈ X∗}. (3.11)

Since (3.10) holds for any x∗ ∈ X∗, then from Theorem 4,

[dist(xk+1,X∗)]2 ≤ [dist(xk,X∗)]2 − γk(2 − γk)η(x
k)ρkψ(xk, βk), (3.12)

i.e., the sequence {xk} is Féjer-monotone relative to X∗.

Theorem 5. If the conditions of Theorem 4 hold, then there exists x̄∗ ∈ X∗ such

that

xk → x̄∗ as k → ∞.

Proof. For the sake of simplicity, we take γk = 1. Let x∗ ∈ X∗. It is easy to see

that each Féjer-monotone sequence is bounded. Suppose that

lim
k→∞

dist(xk,X∗) = δ > 0, (3.13)

then {xk} ⊂ S = {x ∈ X| δ ≤ dist(x,X∗), ‖x− x∗‖ ≤ ‖x0 − x∗‖} and S is a compact

set. Since S ⊂ X\X∗ is a compact set, then from Theorem 2 there exists a positive

number δ(≤ 1) such that for all x ∈ S with s(x) < 1 and β ∈ (0, δ], (2.9) holds. Hence

for each k with s(xk) < 1, we have

βk ≥ min{αδ, s(xk)}. (3.14)

From the definition of s(xk), we know that if s(xk) < 1, then

[F (xk) − F (PX [xk − F (xk)])]T e(xk, 1) > 0 and η(xk) = η,

and

s(xk) = (1 − η)
‖e(xk, 1)‖2

[F (xk) − F (PX [xk − F (xk)])]T e(xk, 1)

≥ (1 − η)
‖e(xk, 1)‖

‖F (xk)‖ + ‖F (PX [xk − F (xk)])‖
. (3.15)

Since {xk} is bounded and F (x) is continuous over X, there exists a positive constant

M such that

‖F (xk)‖, ‖F (PX [xk − F (xk)])‖ ≤M. (3.16)

From the continuity of F and {xk} ⊂ S ⊂ X\X∗, we know that there exists a positive

constant δ0 such that

‖e(xk, 1)‖ ≥ δ0. (3.17)
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From (3.15)—(3.17), for each k with s(xk) < 1 we have

s(xk) ≥ (1 − η)
δ0

2M
. (3.18)

Substituting (3.18) into (3.14), gives

βk ≥ min
{

αδ, (1 − η)
δ0

2M

}

, (3.19)

for all k such that s(xk) < 1. From ALGORITHM C we know that if s(xk) = 1, we

have

βk = 1. (3.20)

Hence there exists a positive constant δ̄(≤ 1) such that

1 ≥ βk ≥ δ̄ > 0, for all k. (3.21)

From the continuity of F (x) and the boundedness of S,

sup‖e(xk, 1) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖ <∞. (3.22)

Combining (3.17), (3.21)—(3.22) and Lemma 3, we have

inf{η(xk)ρkψ(xk, βk)} = inf
{ η(xk)2‖e(xk, βk)‖4

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2

}

≥ inf
{ η2β4

k‖e(x
k, 1)‖4

‖e(xk, βk) − βk[F (xk) − βkF (PX [xk − βkF (xk)])]‖2

}

= ε0 > 0.

(3.23)

From (3.13) there exists an integer k0 > 0 such that for all k ≥ k0,

[dist(xk,X∗)]2 ≤ δ2 + ε0/2. (3.24)

On the other hand, (3.12), (3.23) and (3.24) gives

[dist(xk+1,X∗)]2 ≤ [dist(xk,X∗)]2 − ε0
≤ δ2 − ε0/2, for all k ≥ k0,

which contradicts (3.13). Therefore,

lim
k→∞

dist(xk,X∗) = 0. (3.25)

From (3.25) and (3.12) there exists x̄∗ ∈ X∗ such that

xk → x̄∗ as k → ∞.

Now the proof is completed.

When X is of the following form

X = {x ∈ Rn| l ≤ x ≤ u}, (3.26)
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where l and u are two vectors of {R ∪ {∞}}n, we can give a modification of ALGO-

RITHM C. For any x ∈ X, β > 0, denote

N(x, β) = {i|(xi = li and (g(x, β))i ≥ 0) or (xi = ui and (g(x, β))i ≤ 0)},

B(x, β) = {1, ..., n}\N(x, β). (3.27)

Denote gN (x, β) and gB(x, β) as follows:

(gN (x, β))i =

{

0, if i ∈ B(x, β)

(g(x, β))i, otherwise
,

(gB(x, β))i = (g(x, β))i − (gN (x, β))i, i = 1, ..., n. (3.28)

As a comparision we will first list out ALGORITHM B[22].

ALGORITHM B (An improvement of ALGORITHM A)

Given x0 ∈ X, positive constants s ∈ (0,+∞), η and α ∈ (0, 1), and 0 < ∆1 ≤

∆2 < 2 (In [22] we just take ∆1 = ∆2).

For k = 0, 1, ..., if xk /∈ X∗, then do

1. This step is the same as 1 of ALGORITHM A.

2. Calculate g(xk, βk) and gB(xk, βk) by (3.1) and (3.28), respectively.

3. Calculate

ρk = ηϕ(xk, βk)/‖gB(xk, βk)‖2.

4. Take γk ∈ [∆1,∆2] (In [22] we just take γk = γ = ∆1 = ∆2) and set

x̄k = xk − γkρkgB(xk, βk),

xk+1 = PX(x̄k).

Now we describe ALGORITHM D.

ALGORITHM D ( An improvement of ALGORITHM C)

Given x0 ∈ X, positive constants η, α ∈ (0, 1) and 0 < ∆1 ≤ ∆2 < 2.

1. This step is the same as 1 of ALGORITHM C.

2. Calculate g(xk, βk) and gB(xk, βk) by (3.1) and (3.28), respectively.

3. Calculate

ρk = max
{ η(xk)βk‖e(x

k, βk)‖
2

‖e(xk, βk) − βk[F (xk) − F (PX [xk − βkF (xk)])]‖2
,
η(xk)ϕ(xk, βk)

‖gB(xk, βk)‖2

}

.

(3.29)4. Take γk ∈ [∆1,∆2] and set

x̄k = xk − γkρkgB(xk, βk), (3.30)

xk+1 = PX(x̄k). (3.31)

4. Numerical Experiments

In the following examples, we take η = α = 0.5, and ∆1 = ∆2 = 1.95 (Numerical

results show that when γk approaches 2, the resulting algorithms behave better. This
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phenomeneon is also observed by He[10] for solving linear programming. The reason

may exist in that some uncertain terms are lost by enlarging the inequalities.) and use

ϕ(x, 1) ≤ ε2 as a stop criteria, where ε is a small nonegative number. In practice, we will

use ALGORITHM D instead of ALGORITHM C, although it is reported in [10] that

for linear programming ALGORITHM C behaves better than the prime algorithm.

For using ALGORITHM B in [22], we use s(xk) and η(xk) to substitute s and η,

respectively. “ALGORITHM B” and “ALGORITHM D” will be abbreviated as Alg.

B and Alg. D, respectively. For Alg. B and Alg. D, the computing cost of each (out)

iteration is nearly the same and the inner iteration takes about half of the computing

cost of the (out) iteration. So the effeciency of Alg. B and Alg. D can be measured by

the sum of the number of iterations and the the half of the number of inner iterations.

Numerical results show that both Alg. B and Alg. D behave effectively, and Alg. D

behaves slightly better than Alg. B does. But one point should be stressed is that

the step-size in Alg. D can be proved to be bounded away from zero under the local

Lipschitzian condition of the mapping F while Alg. B can not have such a conclusion.

So both in practice and in theory, Alg. D is an appropriate choice. Just as a referee

pointed out that it was easy to construct a small example to make the present algorithms

converge very slowly. Nevertheless, we did not find a more effective method under the

conditions given in this paper.

Example 1. This example is discussed in [1, 22], the numerical results are given

by Table 1.

Table 1

Results for example 1 with starting point (0,...,0)

Algorithm Number of iterations (left) and number of inner iterations (right)

n=10 n=50 n=100 n=200 n=500

Alg. B 18 8 20 11 20 11 18 9 20 12

Alg. D 18 9 19 10 15 4 16 6 13 2

where F (x) = Dx+ c, c is a vector and D is a non-symmetric matrix of the form

D =































4 −2

1 4 −2

1 4 −2

· · ·

· · ·

· · ·

· · −2

1 4































.

X = [l, u], where l = (0, ..., 0) and u = (1, ..., 1). We take ε2 = n10−14, where n is the

dimension of the problem.

Example 2. This example is a linear complementarity problem dicussed in [6, 22].
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F (x) = Dx+ c , where c = (−1, ...,−1) and

D =

























1 2 2 · · · 2

0 1 2 · · · 2

0 0 1 · · · 2

· · · · ·

· · · · ·

· · · · ·

0 0 0 · · · 1

























.

We take ε2 = n10−16, where n is the dimension of the problem.

Table 2

Results for example 2 with starting point (0,..,0)

Algorithm Number of iterations (left) and number of inner iterations (right)

n=10 n=50 n=100 n=200 n=500

Alg. B 14 3 22 8 20 2 25 5 31 10

Alg. D 12 2 18 3 23 6 24 4 29 5

Example 3. This example is a 4-dimensional nonlinear complementarity problem

[14, 22]. We take ε2 = 10−16. For starting point (0,0,0,0), the number of iterations and

the number of inner iterations for Alg. B are 63 and 5 respectively and for Alg. D are

64 and 5 respectively.
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