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Abstract

In this paper, first, modified upwind finite element schemes are presented for
two-point value problem, and then a class of modified upwind Taylor finite element
schemes are derived for one dimensional linear hyperbolic equation. The main point
of the paper is how to consider the upwind property to construct base functions to
make the schemes obtained be MmB (or TVD). Numerical experiments are given
to show that the method is efficient to solve the discontinuous solutions.

1. Introduction

Many numerical methods mainly contribute to solve nonlinear hyperbolic conserva-
tion laws and efficiently make the methods to suit for solving discontinuous solutions,
that is, numerical solutions have high resolution, high order accurate and non-oscillatory
properties. Let us recall some methods to treat these things: First of all, we can say that
the development of finite difference method is divided into two steps, the first step is
called classical difference methods, such as, Lax-Friedrichs scheme, Godunov scheme,
Lax-Wendroff scheme and so on; the other is called modern methods, for example,
some TVD type schemes2, MUSCL schemesl®l, ENO (or UNO) schemes®5!, PPM
schemelfl, MmB schemes[7] etc.; The second of the methods should be finite element
method and spectral method, and we can say that both finite element and spectral
methods are far beyond finite difference methods to treat discontinuities for nonlinear
hyperbolic equations, although some schemes, such as, characteristic Galerkin method
[8] and modified characteristic Petrov-Galerkin method [9], discontinuity finite element
method [10], finite element method based on stream lines [11] and so on, have been pre-
sented, and to solve discontinuous solutions, these methods are modified or combined
with modern techniques from the work of finite difference methods.

In order to develop finite element method to be suit for solving nonlinear hyperbolic
equations both widely and efficiently, in this paper a class of modified upwind Taylor
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finite element schemes are constructed for one dimensional linear hyperbolic equation.
The methods is mainly to consider the constructions of base functions: firstly, form a
base function, which depends on the characteristic (or upwind) property of the model;
secondly, modify the base function obtained and give a nonlinear base function. Hence a
nonlinear element is proposed as in [9]. Then we use Taylor expansion in time direction
and finite element method in space direction. So in this paper, modified upwind finite
element schemes are presented for two-point boundary problem in section 2, and in
section 3, a class of modified upwind Taylor finite element schemes are derived for
linear hyperbolic equation; Finally, some numerical experiments are given for Riemann
initial value problems.

2. Modified Upwind FES for Two-Point Boundary Value Problem

Consider the following boundary value problem,

ku _ydu

by _vau—o, we(1 (2.1)
u(0) = wo, u(l) = u. (2.2)

When K/V is sufficient small, problem (2.1) (2.2) belongs to a singular perturbation
problem and the solution of the problem produces boundary layer near point 0 or 1. The
numerical solutions are required to have high resolution and non-oscillatory properties
in the boundary layer regions, and have higher order approximate accuracy in smooth
regions.
Let us see the weak form of (2.1) — (2.2),
du dy v dyp _

u
dx dx dx
Here we choose the following unit linear function as a base function

0, Ve e Co(IR) (2.3)

1+%, T € (wi_l,:c,-)

pr(z) =141 LT ge (aiain) (2.4)
0 else

and set

un(a) = Y ujp5(a).

then we place up () and ¢; in (2.3) and get
K |4
A Wl — 2y 1) = oa (Ui — uio1) = 0. (2.5)
Scheme (2.5) is second order accurate, the solution will produce oscillatory phenomena
near boundary layer when K/V is sufficient small.
In order to eliminate the oscillations, in [12] a modified base function is given by

weighted function as follows,
?; = +akj(z)
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where 3( i )
T —xi)(x—xi_
jAl'Q i1 ) T € (ijfl,l'j),
Fi(x) =< —3(x — x; r—x 2.6
(@) ( K;lg)( ]), v € (zj,T41), (2:6)
0, else,
then the modified schemes are obtained.

(1 + %(a + 1))uj_1 — (2 + 'ya)uj + (1 + %(Oé — 1))Uj+1 =0 (2.7)

here v = VAz/K.
If v > 0, we take a > 0, v < 0; take o < 0, scheme (2.7) can be stable by suitably
adjusting a. Then the upwind scheme is obtained, for example,

a=0, if v<2,
0521_%’ Zf 7227

scheme (2.7) is non-oscillatory.

From the above discussions, we know that it is impossible to get a non-oscillatory
scheme as well as a high order accurate scheme. The reason is that « is a constant. In
this section our main purpose is to choose a so that a scheme is adjustable by means of
changing «. Here we present a modified weighted function, which contains the quantity
of limiter, to unit linear base function mentioned above, that is

3a(l1-Q; 1)(z —x;)(z —xj-1)

A$2 ) T e (xj—lvxj)’
F; = 3a(l —Qj+%)(x—xj)(:n—xj+1) (2.8)
- A.%‘Q ) T E (xj7xj+1)a
0, else.

According to (2.5)(2.8), we derive the following schemes
(14 370l = Q) (us1 — uy)
—(1+ 370(1 = Q; 1) — uj))

~57(uj1 — uj1)
- 0,

_1
2

(2.9)

where
— O(r— . ot
QjJr% - Q(Tj+%a'r'j+%)a

- _ U= Ui + U2 — U4l

r. = " . .
gty Uil — UG itz Uil T U

There are many ways to choose @ for example,

it3’
Q(r~,r") = max(0, min(1,7~,rT)).

It is obvious that @;,1, @, 1 tend to 1 when u(x) smooth enough, then scheme
2 2

(2.9) is a second order accurate scheme (except for % =0), and @1, Q;_1 tend to 0,
2 2

scheme (2.9) is a modified upwind scheme. There are non oscillations in the boundary

layer region.
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From (2.9), we construct the scheme which bases on five points. Here we remark
that it is not our main ends how to solve equation (2.1) (2.2) in this section numerically.
We just give the constructing method, then we shall use the technique to solve an initial
value problem for one dimensional linear hyperbolic equation in the following section.

3. Modified Upwind Taylor FES for a Linear Hyperbolic Equation

Consider the initial value problem for a linear hyperbolic equation,

Gupadl =0,  (2,t)€(0,T)x R, (3.1)
u(z,0) = up(z), z € IR. (3.2)
Firstly, Taylor expansion in time direction gives
ou 10%u
+1 3
u" Tt =" —|—Ata+ il + O(At). (3.3)
Eliminating the term of O(At3), from (3.1), we have
ou 1 0*u
1 2 A 42
"t =" — aAt% +5a At Pl (3.4)
The weak form of (3.4) is written to
nd du™ d
g = [ utpd At/ Y 40— Lare? iy .
/u edx /ugpx+a T 5 — 2 (3.5)
Here we take linear elements ¢; as base functions, then we give the following approxi-
mation,
up =3 5u
n+1 2 2 duh d(p] (36)
Jup cp]dx = fuhcp]dx + aAfuh At f dx.
Then a second order accurate scheme is derived to
GO + ™ ) = Gl + )
At At?
W( Jr1—ujg) + AL oz (U — 2uf +ujy).
(3.7)

When we think the approximation of (3.6) by using lumped mass methods, that is,
J upjdx = uj, a second order accurate Lax-Wendroff type scheme is obtained,

1 1
u;?+1:uj—§u( T~ )+21/( T = 2ug +ugy), (3.8)
where v = ﬁt. Scheme (3.8) is line stable by restriction v < 1. It is well known

that the solution of the scheme produces oscillatory phenomena near discontinuities.
Therefore we take p; to the test function to be a modification of unit linear function
as same as the previous discussions in section 2. Then a second order accurate scheme
is derived to
pjto; 1 Fi(z), @€ (zj,1))
¢j = <pj+aj+%Fj(a:), x € (LL’j,.Tj.H) R (3.9)
0, else
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where Fjj(z) is chosen as (2.6) and «; 1= a(v, QjJr%), and (3.6) is written to

+

n __ n, A
up =5 uip;

fuZHgojdx = [upp;dx + aAfuZd—xj - jaQAtQ S d—xhd—x]dx
Then we have the following scheme,
1 v
U;L—i‘l — u?—iu(u;ﬂrl—u?_l)—l—ﬁ[(u—aﬁ%)(u;ﬂrl—u’;)—(u—aj_%)(u?—u?_l)]. (3.11)

The MmB (or TVD) properties and the approximate accuracy were analyzed in [13]

and [14]. The MmB property shows us how to choose « j+1- There are many choices
2

for example, when a > 0, from the MmB (or TVD) schemes in [2] [7], take

0y = (1=)(Qyyy = 1)

scheme (3.11) can be rewritten to

to Ozj+%,

1
u?+1 =uj —v(uj —uj_q) — 51/(1 - V)[Qj+%(u?+1 —uj) — Qj_%(u? - u;l%)] (3.12)

It is not difficult to prove that the solution of scheme (3.11) satisfies the following

properties,
min(u}, uj_q) < u?“ < max(uj, uj_)
and when a < 0, take
aj 1= —v(1+4+v)(1- Qj+%)

scheme (3.10) can be rewritten to,

1
u;Url =uj —v(uj —ui)+ 51/(1 + V)[Qj+%(u?+1 —uj) — ijé(u? —uj_q)]. (3.13)

The solution of scheme (3.13) has the property,
min(u}, uf ;) < w7t < max(uf, uf ).

From [10] and [12], we know that scheme (3.12) and (3.13) are MmB. In the following
section, we show some numerical examples by using the schemes to solve discontinuous
solutions.

4. Numerical Experiments
In order to check the schemes in section 3, we consider the following discontinuous
initial value problem for the two linear hyperbolic equations,
us +ugy =0

with the initial data
3, =<0

u(x,O):{l x>0’

Here we choose a; 1 in (3.12) as follows,
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(i) a1 := a;;1=0, scheme (3.12) is a Lax-Wendroff type scheme.
2
(i) ag := aj 1 =v+ Qj+% — 1, where QjJr% is a limiter described in [2][9].

(iii) ag := aj 1= (1-— V)(QjJr% -1).

All the calculations are performed via v = 0.9 and time steps n=100. See Tab. 4.1.

T fo%1 Qa9 a3 Zj Q1 0% a3

i=89 | 2.998 | 3.000 | 3.000 | i=101 | 3.299 | 3.000 | 3.000
i=90 | 2.997 | 3.000 | 3.000 | i=102 | 3.187 | 3.000 | 2.999
i=91 | 2.999 | 3.000 | 3.000 | i=103 | 2.878 | 2.999 | 2.998
i=92 | 3.005 | 3.000 | 3.000 | i=104 | 2.433 | 2.998 | 2.936
i=93 | 3.012 | 3.000 | 3.000 | i=105 | 1.961 | 2.751 | 2.331
i=94 | 3.009 | 3.000 | 3.000 | i=106 | 1.561 | 1.249 | 1.552
i=95 | 2.985 | 3.000 | 3.000 | i=107 | 1.282 | 1.000 | 1.141
i=96 | 2.949 | 3.000 | 3.000 | i=108 | 1.121 | 1.000 | 1.032
i=97 | 2.934 | 3.000 | 3.000 | i=109 | 1.044 | 1.000 | 1.006
i=98 | 2.981 | 3.000 | 3.000 | i=110 | 1.013 | 1.000 | 1.001
i=99 | 3.099 | 3.000 | 3.000 | i=111 | 1.003 | 1.000 | 1.000
i=100 | 3.239 | 3.000 | 3.000 | i=112 | 1.000 | 1.000 | 1.000

Tab. 4.1

From the results, we can see that Lax-Wendroff type scheme produces oscillation
near discontinuity, the others using limiters have high resolution and non-oscillatory
properties.

Here we want you to know the differences about the modifications of base functions
between paper [9] and this paper: in [9], we modified the try base function to get
a nonlinear base function, so it was called nonlinear element, and in this paper, we
modify the test base function, so it is called a nonlinear weighted test function space.
We remember that constructing finite element methods depend on the structure of the
model and the properties of the solutions. As the constructions of the modern finite
difference methods, we must consider the discontinuous solutions when we derive the
finite element schemes for hyperbolic equations. It is necessary to present nonlinear
base functions (or nonlinear elements) to solve discontinuous solutions. In [15], we
shall present the discussions of nonlinear finite elements, monotone interpolations and

discontinuous solutions for hyperbolic equations in conservation laws.
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