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Abstract

The main purpose of this paper is to develop and simplify the general conditions

for an s-stage explicit canonical difference scheme of q-th order, while the simplified

order conditions for canonical RKN methods which are applied to a special kind

of second order ordinary differential equations are also obtained here.

1. Introduction

In [5–8], explicit canonical difference schemes up to the fourth order are con-

structed for separable Hamiltonian systems (i.e., systems with the Hamiltonian function

H(p, q) = U(p)+V (q)). But unfortunately, we can not find the general order conditions

for this method whether sn algebraic or Lie method is used to get order conditions for

some scheme of a definite stage number. In this paper, we will use P-series introduced

in [4] and tree methodology used by Sanz-Serna in [2] to get the general order condi-

tions for the explicit canonical method and then simplify these conditions to get much

more independent ones.

In [12], we have already omitted some redundant order conditions for canonical RKN

methods, but there are still some order conditions dependent on each other because of

the canonicity of the methods. In this paper, we will drop out these order conditions

and get much simpler ones.

In Section 1, we give some definitions and notations about graphs and trees; they

are the basis of understanding the later derivation in Sections 2 and 3. Section 2 is

about general order conditions of canonical explicit methods and their simplified form.

In Section 3, we get simplified order conditions of the canonical RKN method.

1. Graphs and Trees

In this section, we only give some definitions and notations about graphs and trees

which will be used in this paper. For details about graphs and trees, one can refer to

[2],[4].

∗ Received September 9, 1991.
1) The Project Supported by National Natural Science Foundation of China.
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1. Graphs. Let n be a positive integer. A graph G of order n is a pair {V,E}

formed by a set V with Card(V ) = n and a set E of un-ordered pairs (v,w), with

v,w ∈ V, v 6= w, which may be empty. The elements of V and E are called vertices and

edges of the graph respectively. Two vertices v,w are called adjacent if (v,w) ∈ E.

Graphs can be represented graphically as Fig. 1 shows. In Figure 1, the black dots

represent the vertices of the graph, and the lines joining the dots are the edges.
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Fig. 1. Graphs

Giving the vertices of G an arbitrary set of labels, we then get a labeled graph

g, g ∈ G. By labeling the graph G in different ways, we can get different labeled graphs.

For convenience, we often use letters i, j, k, l, · · · as the labels in this paper. Notice that

in the definition of the graph G, we use v and w to denote two different vertices; they

are not the labels of these vertices. Fig. 2 shows a graph of order 4 and its different

labelings.
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Fig. 2. Graphs and Labeled Graphs

Now we consider two kinds of special graphs: P-graphs and S-graphs.

A P-graph PG is a special graph which satisfies:

i) its vertices are divided into two classes: “white” and “black”;

i) the two adjacent vertices of a PG cannot be of the same class.
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Fig.3 shows some examples of P-graphs:

White vertex: e Black vertex: u
e u e��u
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Fig. 3. P-Graphs

An S-graph SG is a special P-graph of which white vertices have no more than

two adjacent black vertices. Labeled P-graph and labeled S-graph are defined as

the labeled graph. Fig. 4 shows some examples of S-graphs:
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Fig. 4. S-Graphs

A simple path joining a pair of vertices v and w, v 6= w, is a sequence of pairwise

distinct vertices v = v0, v1, · · · , vm = w, with vi adjacent to vi+1, i = 0, 1, · · · ,m − 1.

2. Trees. (a) A tree t of order n is a graph G of the same order such that for

any pair of distinct vertices of V there exists a unique simple path that joins them. A

rooted tree Rt is a tree with one of its vertex regarded as the root of the whole tree.

Giving the vertices of the tree t (resp. rooted tree Rt) an arbitrary set of labels, we get

a labeled tree RLt (resp. rooted labeled tree RSt); we say Lt ∈ t(resp. RLt ∈ Rt).

The vertices adjacent to the root are called its sons. The sons of the remaining vertices

are defined in an obviously recursive way. Fig. 5 shows a tree and different rooted trees

got from it.

In fact, once a vertex r is regarded as the root, the previous un-ordered edges in

E (i.e., the pairs of vertices in E) are ordered under the son to father projection

T : v −→ w, where v and w are the son and father respectively. This projection T has

a single value.

(b) The definitions of a P-tree Pt, a labeled P-tree LPt, a rooted P-tree RPt

and a rooted labeled P-tree RLPt of the same order n are just as those of tree

t, labeled tree Lt, rooted tree Rt and rooted labeled tree RLt. However, the general

graph is substituted by the P-graph; so are the definitions of the S-tree St, labeled

S-tree LSt, rooted S-tree RSt and rooted labeled S-tree RLSt.

We should point out that in this paper, we consider only S-trees with black root
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vertices. So when we refer to a rooted S-tree, we means that it is an S-tree with black

vertex.
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Fig. 5. Tree and rooted trees1)

(c) If we give the vertices of a rooted P-tree RPt such a set of labels so that

the label of a father vertex is always smaller than that of its sons, we then get a

monotonically labeled rooted P-tree MRLPt. We denote by α(RPt) the number

of possible different monotonic labelings of RPt when the labels are chosen from the

set Aq = { the first q letters of i < j < k < l < · · ·}, where q is the order of RPt.

(d) Denote by RPta(resp. RPtb) a rooted P-tree RPt that has a white(resp. black)

root. The set of all rooted P-trees of order n with a meager(resp. black) root is denoted

by TP a
n (resp. TP b

n). Denote by LPtan(resp. LP tbn) the set of all rooted labeled P-trees

of order n with a white (resp. black) root vertex, and MLTP a
n (resp. MLTP b

n) the set

of all monotonically labeled P-trees of order n with a white (resp. black) root vertex

when the labels are chosen from the set An.

(e) Let RPt1, · · · , RPtm be rooted P-trees. We denote by RPt =a [RPt1, · · · , RPtm]

the unique rooted P-tree that arises when the roots of RPt1, · · · , RPtm are all attached

to a white root vertex. Similarly, denote by b[RPt1, · · · , RPtm] when the root of the

P-tree is black. We say RPt1, · · · , RPtm are sub-trees of RPt. We further denote by

τa(resp. τb) the rooted P-trees of order 1 which has a white(resp. black) root vertex.

(f) The density γ(Rt) of a rooted tree Rt is defined recursively as

γ(Rt) = ρ(Rt)γ(Rt1) · · · γ(Rtm),

where ρ(Rt) is the order of Rt and Rt1, · · · , Rtm are the sub-trees which arise when

the root of Rt is moved from the tree. The density of rooted P-tree RPt and rooted

S-tree RSt are calculated by regarding them as general rooted trees with the difference

between the black and white vertices playing no role.

1) The vertex with ”+” is the root.
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2. General Order Conditions of Explicit Canonical Schemes

2.1. Order conditions of explicit canonical schemes

Consider the Hamiltonian system















dp

dt
= −Hq,

dq

dt
= Hp,

(1)

where p = [p1, · · · , pn]T , q = [q1, · · · , qn]T , Hp =
∂H

∂p
=

[

∂H

∂p1
, · · · ,

∂H

∂pn

]T

, Hq =

∂H

∂q
=

[

∂H

∂q1
, · · · ,

∂H

∂qn

]T

. When H = U(p) + V (q), we have















dp

dt
= −Hq = −

∂V

∂q
= f(q),

dq

dt
= Hp =

∂U

∂p
= g(p).

(2)

It is well known that the following (s − 1)-stage scheme















pi = pi−1 + cihf(qi−1),

qi = qi−1 + dihg(pi),

i = 1, · · · , s − 1 (3)

where p0, q0 are initial values and h is the step-size, is canonical when used to solve

system (2).

Let p = ya, q = yb, f = fa, g = fb and ya,0 = p0, yb,0 = q0, ya,1 = ps−1, yb,1 = qs−1.

Then (3) is transformed into an s-stage scheme of partitioned Runge-Kutta form











































































































g1,a = ya,0 = p0,

g1,b = yb,0 = q0,

g2,a = ya,0 + c1hfa(q0) = ya,0 + c1hfa(g1,b) = p1,

g2,b = yb,0 + d1hfb(p1) = yb,0 + d1hfb(g2,a) = q1,

...

gs,a = ya,0 + h

s−1
∑

j=1

cjfa(gj,b) = ps−1,

gs,b = yb,0 + h

s−1
∑

j=1

djfb(gj+1,a) = qs−1.

(4)
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(4) can be written equivalently as







































































ya,1 = ya,0 + h

s−1
∑

i=1

cifa(gi,b),

yb,1 = yb,0 + h
s−1
∑

i=1

difb(gi+1,a),

gi,a = ya,0 + h

i−1
∑

j=1

cjfa(gj,b), for i = 1, · · · , s,

gi,b = yb,0 + h

i−1
∑

j=1

djfb(gj+1,a), for i = 1, · · · , s.

(5)

And (2) can be rewritten with new variables as











ya

yb











=











fa(yb)

fb(ya)











. (6)

Let


















a1 = c1, a2 = c2, · · · , as−1 = cs−1, as = 0,

b1 = 0, b2 = d1, · · · , bs−1 = ds−2, bs = ds−1

Scheme (5) now becomes



































































ya,1 = ya,0 +
s
∑

i=1

aiki,a,

yb,1 = yb,0 +
s
∑

i=1

biki,b,

gi,a = ya,0 + h

i−1
∑

j=1

ajfa(gj,b) = ya,0 +
i−1
∑

j=1

ajkj,a, for i = 1, · · · , s,

gi,b = yb,0 + h

i
∑

j=1

bjfb(gj,a) = yb,0 +
i
∑

j=1

bjkj,b, for i = 1, · · · , s,

(7)

where

ki,a = hfa(gi,b), ki,b = hfb(gi,a). (8)

We now just need to study the order conditions of scheme (8) when as = b1 = 0. Notice

that as = b1 = 0 is necessary for (8) to be canonical and is also crucial for simplifying

order conditions as we will see later.

Before we use P-trees and P-series to derive the order conditions, we should define

elementary differentials. The elementary differentials F corresponding to system
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(6) are defined recursively as















F (τa)(y) = fa(y), F (τb)(y) = fb(y),

F (RPt) =
∂mfW (RPt)(y)

∂yW (RPt1) · · · ∂yW (RPtm)
(F (RPt1)(y), · · · , F (RPtm)(y)),

(9)

where y = (ya, yb) and RPt =W (RPt) [RPt1, · · · , RPtm]. In (9),

W (RPt) =















a, if the root of RPt is white,

b, if the root of RPt is black.

We see F (RPt) is independent of labeling. Here, and in the remainder of this paper,

in order to avoid sums and unnecessary indices, we assume that ya and yb in (6) are

scalar quantities, and fa, fb scalar functions. All subsequent formulas remain valid for

vectors if the derivatives are interpreted as multi-linear mappings. For details about

elementary differentials, see [4].

From [4], we have the following theorem:

Theorem 1. The derivatives of the exact solution of (6) satisfy



























y
(q)
a =

∑

RLPt∈MLTP a
q

F (RLPt)(ya, yb) =
∑

RPt∈TP a
q

α(RPt)F (RPt)(ya, yb),

y
(q)
b =

∑

RLPt∈MLTP b
q

F (RLPt)(ya, yb) =
∑

RPt∈TP b
q

α(RPt)F (RPt)(ya, yb).
(10)

It is convenient to introduce two new “rooted” P-trees of order 0: φa and φb. Their

corresponding elementary differentials are F (φa) = ya, F (φb) = yb. We further set

TP a = φa ∪ TP a
1 ∪ TP a

2 ∪ · · ·

TP b = φb ∪ TP b
1 ∪ TP b

2 ∪ · · ·

LTP a = φa ∪ LTP a
1 ∪ LTP a

2 ∪ · · ·

LTP b = φb ∪ LTP b
1 ∪ LTP b

2 ∪ · · ·

MLTP a = φa ∪ MLTP a
1 ∪ MLTP a

2 ∪ · · ·

MLTP b = φb ∪ MLTP b
1 ∪ MLTP b

2 ∪ · · · .

Now we can give the definition of P-series:

P-series. Let C(φa), C(φb), C(τa), C(τb), · · ·, be real coefficients defined for all P-

trees

C : TP a ∪ TP b −→ R.
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The series P (C, y) = (Pa(C, y), Pb(C, y))T is defined as

Pa(C, y) =
∑

RLPt∈MLTP a

hρ(RLPt)

ρ(RLPt)!
C(RLPt)F (RLPt)(y)

=
∑

RPt∈TP a

α(RPt)
hρ(RPt)

ρ(RPt)!
C(RPt)F (RPt)(y),

Pb(C, y) =
∑

RLPt∈MLTP b

hρ(RLPt)

ρ(RLPt)!
C(RLPt)F (RLPt)(y)

=
∑

RPt∈TP b

α(RPt)
hρ(RPt)

ρ(RPt)!
C(RPt)F (RPt)(y).

(11)

Notice that C is defined on TP a∪TP b, and for two different labelings RLPt1 and RLPt2

(especially, for monotonic labelings MRLPt1 and MRLPt2) of the same rooted P-tree

RPt, we have C(RLPt1) = C(RLPt2)(especially, C(MRLPt1) = C(MRLPt2)).

Theorem 1 states simply that the exact solution of (6) is a P-series

(ya(t0 + h), yb(t0 + h))T = P (Y, (ya(t0), yb(t0)))

with Y (RPt) = 1 for all rooted P-trees RPt.

Theorem 2. Let C : TP a ∪ TP b −→ R, be a sequence of coefficients such that

C(φa) = C(φb) = 1. Then

h









fa(P (C, (ya, yb)))

fb(P (C, (ya, yb)))









= P (C ′, (ya, yb))

with

C ′(φa) = C ′(φb) = 0,

C ′(τa) = C ′(τb) = 1,

C ′(RPt) = ρ(RPt)C(RPt1) · · ·C(RPtm)

if RPt =W (RPt) [RPt1, · · · , RPtm].

The proof is given in [4].

Let














































ki,a = Pa(Ki, (ya,0, yb,0)),

ki,b = Pb(Ki, (ya,0, yb,0)),

gi,a = Pa(Gi, (ya,0, yb,0)),

gi,b = Pb(Gi, (ya,0, yb,0)),

for i = 1, · · · , s,
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where Ki(i = 1, · · · , s) : TP a ∪ TP b −→ R and Gi(i = 1, · · · , s) : TP a ∪ TP b −→ R are

two sets of P-series. From (5), we have Gi(φa) = Gi(φb) = 1. Hence

P (Ki, (ya,0, yb,0)) =









Pa(Ki, (ya,0, yb,0))

Pb(Ki, (ya,0, yb,0))









=









ki,a

ki,b









= h









fa(gi,b)

fb(gi,a)









= h









fa(Pb(Gi, (ya,0, yb,0)))

fb(Pa(Gi, (ya,0, yb,0)))









= h









fa(P (Gi, (ya,0, yb,0)))

fb(P (Gi, (ya,0, yb,0)))









= P (G′

i, (ya,0, yb,0)).

Then, from Theorem 2 we have

Ki = G′

i, i = 1, · · · , s. (12)

But from (7) we have

P (Gi, (ya,0, yb,0)) =









Pa(Gi, (ya,0, yb,0))

Pb(Gi, (ya,0, yb,0))









=















ya,0 +
i−1
∑

j=1

ajkj,a

yb,0 +
i
∑

j=1

bjkj,b















=















ya,0 +
i−1
∑

j=1

ajPa(Kj , (ya,0, yb,0))

yb,0 +
i
∑

j=1

bjPb(Kj , (ya,0, yb,0))















=

















ya,0 + Pa





i−1
∑

j=1

ajKj , (ya,0, yb,0)





yb,0 + Pb





i
∑

j=1

bjKj , (ya,0, yb,0)





















for i = 1, · · · , s. Thus


























Gi(RPta) =
i−1
∑

j=1

ajKj(RPta),

Gi(RPtb) =
i
∑

j=1

bjKj(RPtb)

(13)

for ρ(RPta), ρ(RPtb) ≥ 1 and i = 1, · · · , s. From (7) we also have























ya,1 = ya,0 +
s
∑

i=1

aiPa(Ki, (ya,0, yb,0)),

yb,1 = yb,0 +
s
∑

i=1

biPb(Ki, (ya,0, yb,0)).

(14)

Comparing the numerical solution got from (7) with the exact solution, we get the

conditions for scheme (7) of p-th order.
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Theorem 3. The scheme (7) is of p-th order iff






















s
∑

i=1

aiKi(RPta) = 1,

s
∑

i=1

biKi(RPtb) = 1,

for 1 ≤ ρ(RPta), ρ(RPtb) ≤ p, (15)

where Ki(i = 1, · · · , s) are defined recursively by










































Ki = G′

i, Gi(φa) = Gi(φb) = 1,

Gi(RPta) =
i−1
∑

j=1

ajKj(RPta),

Gi(RPtb) =
i
∑

j=1

bjKj(RPtb),

for i = 1, · · · , s. (16)

2.2. Simplified order conditions

We now define elementary weight Φ(RPt) for a rooted P-tree RPt. Choose

one labeling of RPt, for convenience, say a monotonic one with labels i < j < k <

· · ·. For simplicity, we just denote this monotonically labeled P-tree as RLPt. Let

RLPt =W (RLPt) [RLPt1, · · · , RLPtm]. We first define Φ(RLPt) recursively as

Φ(RLPt) =



























f(r)−1
∑

i=1

ar(Φ(RLPt1) · · ·Φ(RLPtm)), for W (RLPt) = a,

f(r)
∑

i=1

br(Φ(RLPt1) · · ·Φ(RLPtm)), for W (RLPt) = b,

(17)

where r is the label of the root of RLPt and f(r) is the label of the father of r.

When we compute the elementary weight of a rooted labeled P-tree RLPt regarded

as an original tree, that is, not a sub-tree of another big tree, we add an imaginary

father vertex always labeled s to the root i of RLPt, while the roots of its sub-trees

Φ(RLPt1), · · · ,Φ(RLPtm) have the same father vertex which is the root of RLPt with

label i. If we compute the elementary weight of rooted labeled P-tree RLPt regarding

it as a sub-tree of another big tree, we notice that the root of RLPt has a father vertex

in the original tree. So a rooted P-tree has different elementary weights when it acts

as an original tree and as a sub-tree.

From the form of (17), we know the elementary weights of two labeled P-trees

RPt1, RPt2 ∈ RPt are same and choosing monotonic labeling is unnecessary. Thus

the elementary weight of an original rooted P-tree RPt can be defined as Φ(RPt) =

Φ(RLPt) for any RLPt ∈ RPt.

Theorem 4. Order conditions in (15) are equivalent to

Φ(RPt) =
1

γ(RPt)
for RPt ∈ TP a ∪ TP b, ρ(RPt) ≤ p. (18)
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Proof. We just have to prove






















Φ(RLPta)γ(RLPta) =
s
∑

i=1

aiKi(RLPta),

Φ(RLPtb)γ(RLPtb) =
s
∑

i=1

biKi(RLPtb),

(19)

where RLPta, RLPtb are monotonically labeled P-trees with labels i < j < k < l < · · · ,

RLPta ∈ RPta, RLPtb ∈ RPtb.

From (16), we have






























Ki(RLPta) = ρ(RLPta)





i
∑

j1=1

bj1Kj1(RPLt1b)



 · · ·





i
∑

jm1=1

bjm1
Kjm1

(RLPtm1
b )



 ,

Ki(RLPtb) = ρ(RLPtb)





i−1
∑

jm1=1

aj1Kj1(RLPt1a)



 · · ·





i
∑

jm2=1

ajm2
Kjm2

(RLPtm2
a )





(20)

where


















RLPta =a [RLPt1b , · · · , RLPtm1
b ],

RLPtb =b [RLPt1a, · · · , RLPtm2
a ],

(21)

while j1, · · · , jm1 and j1, · · · , jm2 are the labels of the roots of RLPt1b , · · · , RLPtm1
b and

RLPt1a, · · · , RLPtm2
a respectively.

Thus from (17),(20) and the definition of γ, we have

Right side of (21) ⇐⇒


























s
∑

i=1

aiρ(RLPta)
(

i
∑

j1=1

bj1Kj1(RLPt1b)
)

· · ·
(

i
∑

jm1=1

bjm1
Kjm1

(RLPtm1
b )

)

,

s
∑

i=1

biρ(RLPtb)
(

i−1
∑

j1=1

aj1Kj1(RLPt1a)
)

· · ·
(

i−1
∑

jm2=1

ajm2
Kjm2

(RLPtm2
a )

)

,

Left − sideof (21) ⇐⇒






















s
∑

i=1

aiρ(RLPta)(Φ(RLPt1b)γ(RLPt1b)) · · · (Φ(RLPtm1
b )γ(RLPtm1

b )),

s
∑

i=1

biρ(RLPtb)(Φ(RLPt1a)γ(RLPt1a)) · · · (Φ(RLPtm2
a )γ(RLPtm2

a )).

So we have to prove


























Φ(RLPtnb )γ(RLPtnb ) =
i
∑

jn=1

bjnkjn(RLPtnb ) for n = 1, 2, · · · ,m1,

Φ(RLPtna)γ(RLPtna) =
i−1
∑

jn=1

ajnkjn(RLPtna) for n = 1, 2, · · · ,m2.
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Continue this process and finally we see it is enough to prove



























Φ(τa)γ(τa) =

f(r)−1
∑

r=1

arKr(τa),

Φ(τb)γ(τb) =

f(r)
∑

r=1

brKr(τb),

(22)

where r is the label of τa or τb and f(r) is the label of its father. Since































Φ(τa)γ(τa) =





f(r)−1
∑

r=1

ar



 · 1,

Φ(τb)γ(τb) =





f(r)
∑

r=1

br



 · 1

and















Kr(τa) = 1,

Kr(τb) = 1,

we have finished the proof.

Let Pt be a P-tree of order n ≥ 2. Let v and w be two adjacent vertices. We

consider four rooted P-trees as follows. Denote by RPtv(resp. RPtw) the rooted P-tree

obtained by regarding the vertex v(resp. w) as the root of Pt. Denote by RPtv(resp.

RPtw) the rooted P-trees which arise when the edge (v,w) is deleted from Pt and has

the root v(resp. w). Without loss of generality, let v be white and w be black. Fig. 6

shows the rooted P-trees in Theorem 5.

RPtv :

v

e+�
��

C
CC

· · ·��
��

RPtw :

w

u+�
��

C
CC

· · ·

&%
'$

Pt :

v

e���C
CC

· · ·��
��

w

u���C
CC

· · ·

&%
'$HHHHHHY

������*

RPtv :

v

+ e���C
CC

· · ·��
��

w

u���C
CC

· · ·

&%
'$

RPtw :

v

e���C
CC

· · ·��
��

w

u+�
��

C
CC

· · ·

&%
'$

Fig. 6. Trees of Theorem 5
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Theorem 5. With the above notations, we have

1

γ(RPtv)
+

1

γ(RPtw)
=

1

γ(RPtv)γ(RPtw)
, (23.1)

Φ(RPtv) + Φ(RPtw) = Φ(RPtv)Φ(RPtw) (23.2)

when as = b1 = 0.

Proof. By the definition of γ, we have


















γ(RPtv) = nγ(RPtw)

(

γ(RPtv)

ρ(RPtv)

)

,

γ(RPtw) = nγ(RPtv)

(

γ(RPtw)

ρ(RPtw)

)

.

(24)

Since ρ(RPtv) + ρ(RPtw) = n, then

1

γ(RPtv)
+

1

γ(RPtw)
=

ρ(RPtv)

nγ(RPtw)γ(RPtv)
+

ρ(RPtw)

nγ(RPtw)γ(RPtv)

=
1

γ(RPtw)γ(RPtv)
.

So we get (23.1). We also have


























Φ(RPtv) =
s−1
∑

iv=1

aivΠiv
1

iv
∑

iw=1

biwΠiw
2 ,

Φ(RPtw) =
s
∑

iw=1

biwΠiw
2

iw−1
∑

iv=1

aivΠ
iv
1 ,

(25)

where Πiv
1 (resp. Πiw

2 ) is the product of all Φ(RPtib)(resp. Φ(RPtia)), while

RPtv =a [RPt1b , · · · , RPtm1
b ](resp. RPtw =b [RPt1a, · · · , RPtm2

a ])

and iv, iw are labels of v and w respectively. Πiv
1 (resp. Πiw

2 ) varies only according to

iv(resp. iw). Since






















Φ(RPtv) =
s−1
∑

iv=1

aivΠ
iv
1 ,

Φ(RPtw) =
s
∑

iw=1

biwΠiw
2 ,

(26)

then

Φ(RPtv)Φ(RPtw) =
s−1
∑

iv=1

aivΠ
iv
1

s
∑

iw=1

biwΠiw
2

=
s−1
∑

iv=1

aivΠ
iv
1 (

iv
∑

iw=1

biwΠiw
2 +

s
∑

iw=iv+1

biwΠiw
2 )

=
s−1
∑

iv=1

aivΠ
iv
1

iv
∑

iw=1

biwΠiw
2 +

s−1
∑

iv=1

aivΠ
iv
1

s
∑

iw=iv+1

biwΠiw
2 ,
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and from direct computation, we have

s−1
∑

iv=1

aivΠ
iv
1

s
∑

iw=iv+1

biwΠiw
2 =

s
∑

iw=2

biwΠiw
2

iw−1
∑

iv=1

aivΠ
iv
1

=
s
∑

iw=1

biwΠiw
2

iw−1
∑

iv=1

aivΠ
iv
1 , when b1 = 0.

We then get (23.2).

Corollary 6. Suppose the scheme (7) with as = b1 = 0 has order at least n−1(n ≥

2). Then the order condition Φ(RPtv) =
1

γ(RPtv)
holds iff Φ(RPtw) =

1

γ(RPtw)
holds.

Proof. Since ρ(RPtv), ρ(RPtw) ≤ n − 1, from (18) we already have

Φ(RPtv) =
1

γ(RPtv)
, Φ(RPtw) =

1

γ(RPtw)
.

From (23), we see the corollary is obvious.

We then get the conclusion of this section:

Theorem 7. The scheme (7) with as = b1 = 0 is of order p iff for every P-tree Pt

with ρ(Pt) ≤ p, there exists a rooted P-tree RPt which arises when one of the vertices

of Pt is considered as the root, such that Φ(RPt) =
1

γ(RPt)
holds.

3. Simplified Order Conditions for Canonical RKN Methods

Let us consider the special kind of systems of second order ordinary differential

equations

ÿ = f(y), (27)

where y = (y1, y2, · · · , yn), f = (f1, f2, · · · , fn). (27) is equivalent to









y

y′









′

=









y′

f(y)









. (28)

When f(y) =
∂u

∂y
, let H =

1

2
y′T y′ − u(y). Then (28) turns into a Hamiltonian

system:








y

y′









′

=











∂H(y, y′)

∂y′

−
∂H(y, y′)

∂y











. (29)
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A general s-stage RKN method for system (28) is of the form















































gi = y0 + cihy′0 + h2
s
∑

j=1

aijf(gj), i = 1, 2, · · · , s,

y1 = y0 + hy′0 + h2
s
∑

j=1

b̄jf(gj),

y′1 = y′0 + h

s
∑

j=1

bjf(gj).

(30)

Theorem 8. The difference scheme (30) is canonical iff

bj = bj(1 − cj), 1 ≤ j ≤ s, (31.1)

biaij − bjaji + b̄ibj − bib̄j = biaij − bjaji + bibj(cj − ci) = 0, 1 ≤ i, j ≤ s. (31.2)

See [10–11] for the proof of Theorem 8.

Now we can define the elementary weight Φ(RLSt) corresponding to a rooted la-

beled S-tree. First, for convenience, we assume RLSt is monotonically labeled. Later

we will see this is unnecessary. In the remainder of this paper, if not otherwise pointed

out, the labels of the vertices are always j < k < l < m < · · ·. For a monotonic labeling,

the label of the root is j. Then Φ(RLSt) is a sum over the labels of all black vertices

of RLSt; the general term of the sum is a product of

(i) bj ;

(ii) akl if the black vertex k is connected via a white son with another black vertex

l;

(iii) cm
k if the black vertex k has m white end-vertices as its sons, where an end-

vertex is the vertex which has no son.

Because the elementary weight is a sum over the labels of all black vertices, it

just depends on the relationship among the vertices and is independent of the labels.

Choosing the monotonic labeling is then unnecessary. We see that, for two different

rooted labeled S-trees: RLSt1, RLSt2 ∈ RSt, we have Φ(RLSt1) = Φ(RLSt2) =

Φ(RSt); thus, the elementary weight for a rooted S-tree RSt is also defined.

In [12], we used the first canonical condition (31.1) in Theorem 8 to simplify the

order conditions of RKN method given in [4] and got the following theorem:

Theorem 9. A canonical RKN method (30) is of order p iff

Φ(RSt) =
1

γ(RSt)
, for rooted S − tree RSt with ρ(RSt) ≤ p.

Let St be an S-tree of order n(n ≥ 3) that has at least two black vertices. Let

v and w be two black vertices of LSt connected via a white vertex u. We consider

six rooted S-trees as follows. Denote by RStv(resp. RStw) the rooted S-tree obtained

by regarding the vertex v(resp. w) as the root of St. Denote by RStvu(resp. RStwu)
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the rooted S-tree with root v(resp. w) that arises when the edge (u,w)(resp. (u, v)) is

deleted from St. At last, denote by RStv and RStw the rooted S-trees with root at

v and w respectively which arise when edges (u, v), (u,w) are deleted from St. Fig. 7

shows the rooted trees of Theorem 10.

RStv :

v

u+�
��

C
CC

· · ·��
��

RStw :

w

u+�
��

C
CC

· · ·

&%
'$

RStvu :

v

+ u e
u

�
��

C
CC

· · ·��
��

RStwu :

u

e u
w

+�
��

C
CC

· · ·

&%
'$

St :

v

e���C
CC

· · ·��
��

e
u w

u���C
CC

· · ·

&%
'$PPPPPPPPPi

���������1

RStv :

v

+ e���C
CC

· · ·��
��

e
u w

u���C
CC

· · ·

&%
'$

RStw :

v

e���C
CC

· · ·��
��

e
u w

u +�
��

C
CC

· · ·

&%
'$

Fig. 7. Trees of Theorem 8

Theorem 10. With the above notations, we have

1

γ(RStv)
−

1

γ(RStw)
=

1

γ(RStvu)γ(RStw)
−

1

γ(RStwu)γ(RStv)
. (32.1)

And if the RKN method (30) satisfies (31), then

Φ(RStv) − Φ(RStw) = Φ(RStvu)Φ(RStw) − Φ(RStwu)Φ(RStv). (32.2)

Proof. Let ρ(RStv) = x, ρ(RStw) = y, n = ρ(St) = x + y + 1. From the definition

of γ, we have














γ(RStv) = nΠ1(y + 1)γ(RStw),

γ(RStw) = nΠ2(x + 1)γ(RStv),

(33)
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where Π1(resp. Π2) denotes the product of γ(ti) of the sub-trees ti which arise when

v(resp. w) is chopped from RStv(resp. RStw). Notice that γ(RSt) is calculated as the

general tree t, with the difference between the black and white vertices neglected. Then

1

γ(RStv)
−

1

γ(RStw)
=

1

n

(

Π2(x + 1)γ(RStv) − Π1(y + 1)γ(RStw)

Π2(x + 1)γ(RStv)Π1(y + 1)γ(RStw)

)

. (34)

Since γ(RStvu) = (x + 1)Π1, γ(RStwu) = (y + 1)Π2 and γ(RStv) = xΠ1, γ(RStw) =

yΠ2, we have

1

γ(RStv)
−

1

γ(RStw)
=

1

n

(

Π2(x + 1)γ(RStv) − Π1(y + 1)γ(RStw)

γ(RStvu)γ(RStwu)γ(RStv)γ(RStw)

)

=
1

n

(

Π1Π2(x
2 − y2 + x − y)

γ(RStvu)γ(RStwu)γ(RStv)γ(RStw)

)

.

(35)

But

1

γ(RStvu)γ(RStw)
−

1

γ(RStwu)γ(RStv)

=
n(γ(RStwu)γ(RStv) − γ(RStvu)γ(RStw))

n(γ(RStvu)γ(RStwu)γ(RStv)γ(RStw))

=
n(Π2(y + 1)Π1x − Π1(x + 1)Π2y)

n(γ(RStvu)γ(RStwu)γ(RStv)γ(RStw))

=
Π1Π2(x + y + 1)(x(y + 1) − (x + 1)y)

n(γ(RStvu)γ(RStwu)γ(RStv)γ(RStw))

=
Π1Π2(x

2 − y2 + x − y)

n(γ(RStvu)γ(RStwu)γ(RStv)γ(RStw))
.

(36)

Thus we get (32.1). From the definition of Φ, we have























Φ(RStvu) =
∑

iv

bivcivΠ
v, Φ(RStv) =

∑

iv

bivΠ
v

Φ(RStwu) =
∑

iw

biwciwΠw, Φ(RStw) =
∑

iw

biwΠw

(37)

and






















Φ(RStv) =
∑

iv,iw

bivaiviw(ΠvΠw),

Φ(RStw) =
∑

iw,iv

biwaiwiv (ΠvΠw),

(38)

where Πv(resp. Πw) denotes part of Φ(RStv)(resp. Φ(RStv)) which is the sum over
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black vertices of RStv(resp. RStw). If (30) satisfies (31.2), then we get

Φ(RStv) − Φ(RStw) =
∑

iv,iw

(bivaiviw − biwaiwiv)Π
wΠv

=
∑

iv,iw

bivbiw(civ − ciw)ΠvΠw

=
∑

iv

bivcivΠv
∑

iw

biwΠw −
∑

iw

biwciwΠw
∑

iv

bivΠ
v

= Φ(RStvu)Φ(RStw) − Φ(RStwu)Φ(RStv).

We have finished the proof of (32.2).

The following corollary is obvious.

Corollary 11. Suppose that the method (30) satisfying (31) has order at least

n − 1, with n ≥ 3. If RStv and RStw are different rooted S-trees of order n, then the

standard order condition Φ(RStv) =
1

γ(RStv)
holds if and only if Φ(RStw) =

1

γ(RStw)
holds.

So we get the conclusion of this section:

Theorem 12. The RKN method (30) satisfying (31) is of order p, iff for every

S-tree St, there exists a rooted S-tree RStv which arises when a black vertex v of St is

highlighted as the root, such that Φ(RStv) =
1

γ(RStv)
.
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