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Abstract

In this paper, we construct unconstrained methods for the generalized nonlinear
complementarity problem and variational inequalities. Properties of the correspon-
dent unconstrained optimization problem are studied. We apply these methods to
the subproblems in trust region method, and study their interrelationships. Nu-
merical results are also presented.

1. Introduction

Linear and nonlinear complementarity problems have many important applications
in various fields such as economics, transportation etc., they have attracted much at-
tention since early 1960’s. A standard nonlinear complementarity problem is to find a
x ∈ Rn such that:

F (x) ≥ 0, x ≥ 0, xTF (x) = 0, (1.1)

where F : Rn −→ Rn. For simplicity, we often call it NCP. Many authors have studied
this problem and encouraging results have been reported. One can find an excellently
complete summary for it in [2]. For recent works, see [7], [9], [3], [8].

The generalized complementarity problem, denoted by GCP (X,F ), is to find a
vector x∗ ∈ X such that:

F (x∗) ∈ X∗, and F (x∗)Tx∗ = 0, (1.2)

where X∗ denotes the dual cone of X at x∗:

X∗ = {y ∈ Rn : yTx ≥ 0, ∀ x ∈ X}. (1.3)

It is well known that, problem (??) is a special case of variational inequality problem,
which takes the following form:

x∗ ∈ X, and F (x∗)T (y − x∗) ≥ 0,∀ y ∈ X . (1.4)
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For simplity, we called it V I(X,F ). But in general, a variational inequality problem
does not equal to a complementarity problem. However, under certain conditions, a
variational problem may be considered as a mixed nonlinear complementarity problem.

The purpose of this paper is to construct unconstrained method for (??) and (??).
In the following section, we first describe some notations and concepts. Some results
which will be used in this paper are also stated. In Section 3, we consider problem
(??) as unconstrained optimization problem and study its optimal properties. The
subproblem in trust region method is discussed in Section 4. We also explore the
relations between them and show a new view of trust region method. Some numerical
results are also reported in the last section.

2. Preliminaries

First, we give a definition which is due to [3]:

Definition 2.1. We call a function φ : R2 → R NCP-function if it satisfies the
nonlinear complementarity condition

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Consider the function defined as follows:

φ(a, b) = (
√

a2 + b2 − a)(
√

a2 + b2 − b), (a, b) ∈ R2. (2.1)

It is obvious that it is a NCP-function. Furthermore, we have the following result[8]:

Lemma 2.1. let φ(a, b) is defined by (??), the partial derivative of φ(a, b) equals
to 0 if and only if (a, b) satisfies the complementarity condition. If (a, b) is strict
complementarity, which means that a+ b > 0, we have:

∂2φ(a, b)

∂a2
= 0,

∂2φ(a, b)

∂a∂b
= 0,

∂2φ(a, b)

∂b2
= 1 (2.2)

hold for b = 0 and a > 0, and

∂2φ(a, b)

∂a2
= 1,

∂2φ(a, b)

∂a∂b
= 0,

∂2φ(a, b)

∂b2
= 0 (2.3)

hold for a = 0 and b > 0.

Karamardian[4] first established the following basic relation between GCP (X,F )
and V I(X,F ).

Theorem 2.1. Let X be a convex cone. Then x∗ ∈ X solves the problem VI(X,F)
if and only if x∗ solves the GCP(X,F).

In the case where the set X is defined by the inequalities of the form

X = {x ∈ Rn : gi(x) ≤ 0, i = 1, 2, . . . ,m; hj(x) = 0, j = 1, 2, . . . , p}, (2.4)
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provided that the functions g : Rn → Rm and h : Rn → Rp satisfy some standard
constraint qualification of the type often imposed in nonlinear programming[1], a vari-
ational inequality problem can also be cast as a generalized complementaeity problem.
The following result summarized this conversion and has been used by several authors
in different literatures[2].

Theorem 2.2. Let g : Rn → Rm and h : Rn → Rp be continuously differentiable
and let X be defined by (??).

(a) If x∗ solves the VI(X,F) and if a certain constraint qualification holds for the
set X at the point x∗, then for some λ∗ ∈ Rm and µ∗ ∈ Rp , (x∗, λ∗, µ∗) solves the
GCP (Rn ×Rm

+ ×Rp,H) where H : Rn+m+p → Rn+m+p is defined by

H





x
λ
µ



 =





F (x) +
∑m

i=1 λi∇gi(x) +
∑p

j=1 µj∇hj(x)

−g(x)
h(x)



 . (2.5)

(b) Conversely, if gi is convex for i = 1, 2, . . . ,m and hj is affine for j = 1, 2, . . . , p,
and if (x∗, λ∗, µ∗) solves the GCP (Rn ×Rm

+ ×Rp,H), then x∗ solves the VI(X,F).

The problem (??) is usually called a mixed nonlinear complementarity problem, it
is often used in the analysis of sensitivity. Now we state some assumptions which will
be employed in this paper.

Assumptions.

(i) Let F : Rn → Rn and g : Rn → Rm, h : Rn → Rp be twice continuously
differentiable. Let X be defined in (??) and x∗ be a solution of the VI(X,F). Let
I1 = {i : λi > 0}, I2 = {i : gi(x

∗) < 0}, I0 = {i : gi(x
∗) = 0, λi = 0}.

(ii) There exists vector λ∗ ∈ Rm and µ∗ ∈ Rp such that:

F (x∗) +
m

∑

i=1

λi∇gi(x
∗) +

p
∑

j=1

µ∗∇hj(x
∗) = 0, (2.6)

λi ≥ 0, λigi(x
∗) = 0, i = 1, 2, . . . ,m. hj(x

∗) = 0, j = 1, . . . , p. (2.7)

The gradients of the binding constraints (∇gi(x
∗) : i ∈ I1,∇hj(x

∗) : j ∈ {1, . . . , p})
are linearly independent.

(iii)

zT [∇F (x∗) +
∑

i∈I1

λi∇
2gi(x

∗) +
p

∑

j=1

µj∇
2hj(x

∗)]z > 0, (2.8)

for all z 6= 0 such that:

zT∇gi(x
∗) = 0, ∀i ∈ I1.

zT∇gi(x
∗) ≤ 0, ∀i ∈ I0.

zT∇hj(x
∗) = 0, ∀j = 1, · · · , p.
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These assumptions are general in the sensitivity analysis, usually, if the solution is
a regular solution, all these assumptions are satisfied. In fact, (??) is the first-order
condition at the solution x∗, (??) is a complementarity condition for λ ∈ Rm

+ and
the constraints g(x) ≤ 0. Assumption (iii) is the generalized second-order sufficient
condition for an optimization problem which does not demand ∇F (x∗) be positive
definite. From theorem 3.11 in [2] one can see that x∗ is a locally unique solution of
the V I(X,F ). If gi(x) is convex and hj(x) is affine, x∗ is also a locally unique solution
of the GCP (Rn ×Rm

+ ,H) where H is defined in (??), for details, see [5],[6]. Obviously,
I0 + I1 + I2 = {1, 2, · · · ,m} holds.

3. Unconstrained Methods for GCP and VI

In last section, we have stated some assumptions and results. Now we consider the
problem (??). Assume assumptions (i)–(iii) hold, from discussions in Section 2, we
know that x∗ is a locally unique solution of mixed complementarity problem (??). Now
we define:

H1





x
λ
µ



 =

(

F (x) +
∑m

i=1 λi∇gi(x) +
∑p

j=1 µj∇hj(x)
h(x)

)

. (3.1)

Let φ is defined as in (??), H1(x, λ, µ) is defined in (??) . Define:

ψ(y) = H1(y)
TH1(y)+

m
∑

i=1

ψi = H1(y)
TH1(y)+

m
∑

i=1

φ(λi,−gi(x)), y =





x
λ
µ



 ∈ Rn+m+p.

(3.2)
Now we have the following results:

Lemma 3.2. Let φ is defined by (??), ψ(x, λ, µ) is defined as in (??), X is a
convex set. If x∗ is a solution of V I(X,F ) and assumption (ii) holds, then (x∗, λ∗, µ∗)
is a global minimizer of ψ(x, λ, µ) and ψ = 0. Conversely, if ψ(x, λ, µ) equals 0, x is a
solution of V I(X,F ).

Proof. The first part of the lemma follows from the definition of ψ and assumptions.
If ψ(x, λ, µ) equals 0, by lemma 2.1, it must hold λi ≥ 0. By (??), one can easily verify
that x is a solution of V I(X,F ).

It is noticed that for the above lemma, we do not suppose all assumptions (i)-(iii)
hold. If all of the assumptions in Section 2 are true and a strict complementarity
condition such that:

λi ≥ 0, λigi(x
∗) = 0, λi − gi(x

∗) > 0, i = 1, 2, · · · ,m (3.3)

hold, which implies that I0 = ∅. Then we can get the following result:

Theorem 3.3. Let x∗ ∈ Rn be a solution of (??). Suppose that the assumptions (i)-
(iii) and (??) hold at x∗, let ψ(x, λ, µ) is defined by (??) and φ is defined by (??). Then
(x∗, λ∗, µ∗) is a global minimizer of the function ψ(x, λ, µ), the gradients of ψ(x, λ, µ)
at (x∗, λ∗) equals to 0, furthermore, the Hessian of ψ(x, λ, µ) at (x∗, λ∗, µ∗) is positive
definite.
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Proof. The first statement of the theorem follows from Lemma 3.1. The second
conclusion can be derived by inductive algebraic calculus and Lemma 2.1. Now we
consider the Hessian of ψ. From assumptions (i)-(iii), one can see that ψ is twice
differentiable in a neighborhood of (x∗, λ∗, µ∗). Also we have:

∇2ψ = ∇2H1(x
∗, λ∗, µ∗)TH1(x

∗, λ∗, µ∗) +
m

∑

i=1

∇2ψi

= ∇H1(x
∗, λ∗, µ∗)∇H1(x

∗, λ∗, µ∗)T +
m

∑

i=1

∂2φ(λ∗i ,−gi(x
∗))

∂a2
en+p+ie

T
n+p+i

+
m

∑

i=1

∂2φ(λ∗i ,−gi(x
∗))

∂b2

(

∇gi(x
∗) 0

0 0

) (

∇gi(x
∗) 0

0 0

)T

= ∇H1(x
∗, λ∗, µ∗)∇H1(x

∗, λ∗, µ∗)T +
∑

i∈I2

en+p+ie
T
n+p+i

+
∑

i∈I1

(

∇gi(x
∗) 0

0 0

) (

∇gi(x
∗) 0

0 0

)T

= ATA, (3.4)

where en+p+i denotes a n+m+ p dimension unit vector whose n+ p+ i-th component
is 1, A is a block matrix such that:

A =









A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43









,

A11 = [∇F +
m

∑

i=1

λ∗i∇
2gi +

p
∑

j=1

µj∇
2hj ] ∈ Rn×n, A12 = [∇g1,∇g2, . . . ,∇gm] ∈ Rn×m;

A13 = [∇h1,∇h2, . . . ,∇hp] ∈ Rn×p, A21 = [∇gi : i ∈ I1]
T ∈ Rm1×n, A22 = 0m1×m;

A23 = 0m1×p, A31 = 0m2×n, A32 = [ei : i ∈ I2]
T ∈ Rm2×m, A33 = 0m2×p;

A41 = [∇hj : j = 1, . . . , p]T ∈ Rp×n, A42 = 0p×m, A43 = 0p×p

where m1,m2 denote the number of components in set I1, I2 separately, ei is a m
dimension unit vector whose i-th component equals 1. Assume there exists a vector
y = (xT , λT , µT )T ∈ Rn+m+p such that Ay = 0, then:

A11x+A12λ+A13µ = 0; (3.5)

A21x = 0, A32λ = 0, A41x = 0. (3.6)

Thus for such λ = (λ1, . . . , λm)T , we have that λi = 0,∀i ∈ I2. Furthermore, for all
i ∈ I1,∇g

T
i x = 0 and for j = 1, 2, · · · , p ∇hT

j x = 0. It follows that

A11x+
∑

i∈I1

λi∇gi +
p

∑

j=1

µj∇hj = 0. (3.7)
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So

xTA11x+
∑

i∈I1

λix
T∇gi +

p
∑

j=1

µjx
T∇hj = 0 . (3.8)

By assumption (iii), it holds x = 0. It follows that
∑

i∈I1
λi∇gi +

∑p
j=1 µj∇hj = 0.

From assumption (ii), λi = 0,∀i ∈ I1 and µj = 0, j = 1, 2, . . . , p. So if Ay = 0, y = 0,
which means A is nonsingular. This proves the last conclusion.

From the above theorem, we can see that x∗ is not only a global minimizer of ψ(x),
but also a strict local minimizer of ψ(x). By the continuity, ψ is twice differentiable
in a neighborhood of x∗, so if the initial point x0 is chosen sufficiently near x∗, we
can use Newton or Quasi-Newton method to search the minimizer of ψ(x), the local
convergence properties is obvious.

4. Application to Subproblem in Trust Region Method

Trust region methods has obtained great success in optimization. One of its main
advantages is the global convergence. Typically, at each iteration, we solve a subprob-
lem which is reliable in a near neighborhood of the current point. Now we consider the
subproblem in trust region methods for constrained optimization. The problem has the
form

min
d∈Rn

Φ(d) = gT d+
1

2
dTBd, (4.1)

s.t.

dT d− α1 ≤ 0, (4.2)

||ATd+ c||22 − α2 ≤ 0, (4.3)

where g ∈ Rn, B ∈ Rn×n, A ∈ Rn×m, c ∈ Rm, α1 > 0, α2 > 0. Many authors
have studied this problem, for examples, Y. Yuan[10] propose a dual algorithm for it,
Y. Zhang reform this problem and give some results which include the case when the
two constraints are non-convex quadratics[12].

Usually, this problem has a global minimizer which satisfies the assumptions in sec-
tion 2. From the discussions in last section, we can cast this problem as unconstrained
optimization in a space of n + 2 dimensions. It is worth mentioning that when we do
this, the objective function and constraints can be non-quadratic functions, thus some
subproblem with non-quadratic constraints can also use our methods[11]. On the other
hand, if the original constrained problem has a global minimizer and some qualifica-
tions are satisfied at the minimizer, then it can also be considered as unconstrained
problem in a space of n +m dimensions, where m is the number of constraints. Thus
we can view the trust region method as a method which decreases the number of space
dimensions. Because all the subproblem are locally reliable , by the local properties of
our method, one can wish the results is promising.

We now consider the trust region method for variational inequality problem V I(X,F )
with convex set X. Under mild conditions, one can convert V I(X,F ) into uncon-
strained problem. If a feasible interior point is given, we can solve the problem
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V I(X ∩ S,F ) where S denotes a neighorhood of the current point. This subprob-
lem often has a local solution when the original problem is solvable. From the results
in last section, the subproblem can be relatively easy to solve. If a solution of the
subproblem is the current point, it is also a solution of the original problem. Much
work is needed for such a method which will be on our further study.

5. Numerical Results

A FORTRAN subroutine is designed to test our method. The update we take is
BFGS with inexact line search, which satisfies Wolfe-conditions. The stop criterion is
that ||g|| ≤ 10−8. The first five problem are the same as in [10], all of them consider
the problem (??) with n = 4 and α1 = 1.0, we restate them as follows:

Problem 1. m = 1, α2 = 0.25, g = (0.5, 1, 1, 1)T , B = I, c = −1 and A =
(1, 0, 0, 0)T .

Problem 2. m = 2, α2 = 2, g = (0, 0.5, 0, 0)T , B = diag[1, 2, 3, 4], c = (−2, 0)T and
A = (I2×202×2)

T .
Problem 3. m = 3, α2 = 0.36, g = (−3,−4,−5, 0)T , B = I, c = (−0.3,−0.4,−0.5)T

and A = (I3×303×1)
T .

Problem 4. m = 4, α2 = 3, g = (−5,−1,−1,−1)T , B = diag[1, 1/2, 1/3, 1/4], c =
(1, 1, 1,−0.5)T and A = (Ai,j)4×4 where Ai,j = 1 for all i, j = 1, 2, 3, 4.

Problem 5. As problem 4, except that Ai,j = 0.1 for all i 6= j.
The following is our result:

Table 1

Problem Initial point No. of. iter Val. of. ψ

prob 1 (0,0,0,0,0,0) 24/31/25 0.4916976E-18

(-10,-10,-10,-10,1,1) 48/64/53 0.734398E-19

prob 2 (0,0,0,0,0,0) 14/19/15 0.0

(-10,-10,-10,-10,1,1) 63/80/65 0

prob 3 (0,0,0,0,0,0) 28/43/32 0.414645E-17

(-10,-10,-10,-10,1,1) 61/95/74 0

prob 4 (0,0,0,0,0,0) 30/52/36 0.302106E-18

(-10,-10,-10,-10,1,1 ) fails

prob 5 (0,0,0,0,0,0) 22/33/24 0.2188219E-17

(-10,-10,-10,-10,1,1 ) 45/61/49 0.568738E-19

All the solution we get is the same as that in [10] except for problem 5, where our
solution is (0.5827114,−0.4720780,−0.4955691, 0.4381793), it seems to be a editorial
mistake in [10] where the solution is (0.5827114,−0.4720780,−0.4955691,−0.4381793).
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From the table, one can see that more iterations are needed to obtain a solution of
the problem, one of them even fails. But our method is using BFGS method while
Y.Yuan[10] using Newton method. In fact, if we view our method as sums of least
square of some equations and partial Newton method is employed, then our method
will be similar to that in [10].

It is worth mentioning that all of our initial points are infeasible. We also try
various choices of the initial point, when it is not too far from the feasible set, our
method converges in all cases. In fact, if a feasible initial point is given, the method
converges rapidlier. For the subproblem in trust region methods, at each iteration, we
can choose the current point as a feasible initial point.

We also use our methods for variational inequality problem, our choice is F (x) =
Bx+ g, where g and the constrained set are the same as stated above, for simplicity,
we still call it problem 1-5 separately. the following is the result with

B =









10.5 −10 8.5 13.6
3.5 6.88 1.45 −2.8
−11 1.25 2.8 0.5
1.25 15.3 6.5 10









(5.1)

and all the initial points is (0, 0, 0, 0, 0, 0).

Table 2

Problem solution obtained No. of. iter Val. of. ψ

prob 1 (0.5,-0.38287,0.77458,-0.05868,3.6654,34.394) 73/97/80 0.217E-18

prob 2 (0.59276,-0.14028,0.76197,-0.21991,6.1317,10.48) 37/50/40 0.203E-19

prob 3 (0.16436,0.07274,0.86996,-0.4592,5.18496,0) 25/38/29 0.0

prob 4 (0.06854,-0.12322,-0.14963,0.15214,0,0.98236) 27/46/29 0.128E-16

prob 5 (0.04959,-0.03899,-0.10487,0.22057,0,1.62654) 17/28/19 0.0

From the above table, it can be seen that for the variational inequality problem
defined by (??), our method converges for various constrained set. We also notice that
the behavior of our method is different according to various constrained set, sometimes
our method may fail. One of the reasons is due to the ineffectiveness of our method, an-
other reason is that when the constrained set is large, the original variational inequality
problem may have no solution. The following are two examples with F (x) = B1x+ g
and F (x) = B2x+ g, where g is the same as stated before and that:

B1 = (bi,j), bi,j = xi
3 − xj

2 + xixj − xi + xj + i/2,

B2 = (bi,j), bi,j = exp(xi) − cos xj + xixj − xi + xj + i/2,

the constrained set is defined in problem 1-5 with different α1, α2.
Acknowledgements. We thank Professor Y. Yuan for his constant helps and

encouragements.
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Table 3

Problem point solution obtained (α1, α2) No. of. iter Val. of. ψ
Prob 1(B1) (0,-0.45190,-0.21390,-0.00562) (0.25,1.0) 29/43/31 0.117E-19
B2 (0,-0.44908,-0.21596,0.04114) (0.25,1.0) 25/36/27 0.765E-17
Prob 2(B1) (0.28096,0.21189,-0.25369,-0.24860) (0.25,3) 31/42/34 0.130E-18
B2 (0.28097,0.21197,-0.25360,-0.24862) (0.25,3.0) 30/43/32 0.188E-17
Prob 3 (B1) (0.21669,0.27387,0.33074,-0.13655) (0.25,0.36) 34/52/38 0
B2 (0.21304,0.27193,0.33055,-0.14632) (0.25,0.36) 33/53/41 0.279E-17
Prob 4 (B1) (0.41935,-0.16099,-0.15718,-0.15337) (0.25,3) 39/54/43 0.163E-19
B2 (0.41935,-0.16098,-0.15718,-0.15338) (0.25,3) 38/51/40 0.343E-18
(B1) (0.32049,-0.2440,-0.24402,0.16794) (0.25,3) 28/47/32 0.403E-19
B2 (0.32078,-0.24431,-0.24423,0.16663) (0.25,3) 27/45/31 0.244E-18
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