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Abstract

In this paper we seek the solutions of the time dependent Ginzburg-Landau
model for type-II superconductors such that the associated physical observables
are spatially periodic with respect to some lattice whose basic lattice cell is not
necessarily rectangular. After appropriately fixing the gauge, the model can be
formulated as a system of nonlinear parabolic partial differential equations with
quasi-periodic boundary conditions. We first give some results concerning the
existence, uniqueness and regularity of solutions and then we propose a semi-
implicit finite element scheme solving the system of nonlinear partial differential
equations and show the optimal error estimates both in the L? and energy norm.
We also report on some numerical results at the end of the paper.

1. Introduction

Central to the theory of type-II superconductors is Abrikosov’s characterization
of the mixed state as a lattice-like arrangement of quantized flux lines, or vortices of
superconducting electron pairs. The Abrikosov’s vortex lattice, which has also been
observed in experiments, is the solutions of the Ginzburg-Landau (GL) equations with
a type of spatial periodicity. Recently there have been several authors studied the
gauge periodic solutions of the GL superconductivity model from different point of
views!110:1L17 - Roughly speaking, gauge periodic solutions are those solutions whose
observables are spatially periodic with respect to some lattice (cf. §2). One of the key
procedures in those studies is fixing the gauge. It is shown that after a preliminary
gauge transformation, any gauge periodic solution can be assumed to have the form that
the complex order parameter 1) satisfies some quasi-periodic boundary condition and
the magnetic vector potential A is the sum of some periodic, divergence free function
and —aG for some real constant o and G(x) = (2, —z1)7T.

The time-dependent Ginzburg-Landau (TDGL) model derived by Gor’kov and
Eliashberg [15] from averaging the microscopic Bardeen-Cooper-Schrieffer theory offers
a useful starting point in studying the dynamics of superconductivity. After appro-
priate nondimensionalization, the TDGL model can be formulated as in the following
system of nonlinear partial differential equations (cf. e.g. [7], [3], [4]):

7]%% + sy + (iv + A)21/1 + ([¢|* = )y =0, (1.1)
K
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OA (g _
5 + Ve +curlcurlA + m[(;vw + A¢)¢] =0, (1.2)
where R[] denotes the real part of the quantity in the brackets [-], and curl, curl

denote the curl operators on R? defined by

ov v )T.

Here 9 is a complex valued function and is usually referred to as the order parameter
so that ||? gives the relative density of the superconducting electron pairs; 1 is the
complex conjugate of 1; A is a real vector potential for the total magnetic field; ¢ is a
real scalar function called electric potential; k > 0 is the Ginzburg-Landau parameter
which satisfies k > 1/4/2 for type-II superconductors; and > 0 is a dimensionless
constant.

The TDGL model (1.1)—(1.2) with Neumann boundary conditions has been studied
in (5, [3], [7], [8], [12] with different gauge choices. The studies in [5] and [3] indicate
that in contrast to the stationary case, where the Coloumb gauge div A=0 is usually
used, the Lorentz gauge div A+¢ = 0 is more appropriate both in proving the regularity
of solutions of the TDGL model and in designing numerically convergent algorithms
solving the TDGL model. For more information about the subject of superconductivity,
the reader may consult the two recent survey articles [2] and [9] and the references
therein. We also refer to [10] for more discussions on the motivations of studying the
periodic model for type-1I superconductivity.

Our goal in this paper is to look for the solutions to (1.1)—(1.2) such that the
associated physical observables (e.g. superconducting electron pairs, current, magnetic
field, etc.) are spatially periodic, particularly for those solutions whose periodicity is
supported on the hexagonal lattice. This problem was first considered in [13] on the
rectangular lattice by using the Coloumb gauge. In that paper, the existence of weak
solutions was obtained by using the method of lines and the problem of the asymptotic
behavior for the time ¢ — oo was considered. In this paper, we first introduce the
gauge periodic TDGL model, fix the gauge (Lorentz gauge) and then present some
results concerning the existence, uniqueness and regularity of the solutions in §2. In
§3 we propose a semi-implicit finite element scheme solving the gauge periodic TDGL
model and in §4 we prove the optimal error estimates for the scheme both in the L?
and energy norm. In §5 we report on a numerical example and in §6 we give some
concluding remarks.

In the remainder of this section we introduce some of the notations to be used in
the paper. Let £ denote a planar lattice which consists of basis vectors t; and t2. After
rotation, we may always assume that the lattice £ has a basis vector that is real. Thus
we assume in the following that £ is generated by t; = (r1,0) and t2 = (r2cos 6, r2sin6)
with 1,79 > 0 and 0 < 8 < w. We denote 2 the open parallelogram generated by t;
and t,. In this paper we say that a function f is periodic if f(z+tx) = f(z) for k = 1,2
and a.e. z € R?.

For any bounded open set D C R? and each integer m > 0 and real p with 1 <p <
00, we denote by W™P(D) the standard Sobolev space of real functions having all their
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derivatives of order up to m in the Lebesgue space LP(D). When p = 2, W™2(D) is
denoted by H™(D). We also use the space

HP.(R?) = {u:u € H™(D) Y bounded open D C R? }.

If B denotes some Banach space of real scalar functions, the corresponding space of
complex scalar functions will be denoted by its calligraphic form B and the correspond-
ing space of real vector-valued functions, each of its compouents belonging to B, will
be denoted by its boldfaced form B. However, we use || - || g to denote the norms of the
Banach spaces B, B or B. ’

For any Banach space X and any integer m > 0, real p with 1 < p < 00, denote

T
W™P(0,T; X) = {u(t) € X for ae. t € (0,T), / (lullfe + -+ [[ut™&) dt < oo}
0
with the norm

T m 1/p
llellwmeor:x) = [/0 (il + - + ™15 ) def] ™

As usual, we write L?(0,T; X) = W%P(0,T; X) and H*(0,T; X) = W12(0,T; X). We
will also make use of the following spaces

L2(0,T; H.(R?)) = { w: w € L*(0,T; H™(D)) V bounded open D C R?},
HY0,T; HZ.(R?)) = { u:u € H'(0,T; H™(D)) V bounded open D C R?},

where m > 0 is an integer.
Now we give a precise definition of gauge invariance. Let

HEo = L*0,T; HE(RY)) N HY(0,T; LL(R?) and HYY = L(0, T; H.(R?)).

loc

We note first that if (¢, A, ¢) € ’Hﬁ;é X leoi X Hltg is a strong solution of (1.1)—(1.2), then

for any x € L2(0,T; HZ .(R?)) N L2(0,T; HL _(R?)), the triple (¢, A, ¢) = Gy (¥, A, $)
given by

_ - -~ 0
b=wexpliny), A=A+Vx, =¢-= (1.3)

is_also a strong solution of (1.1)-(1.2). In the following, two triples (3, A, ¢) and
(%,A, ) are said to be gauge equivalent if and only if there exists a x such that
¥,

A,9) = Gx(¥, A, 9).
2. The Gauge Periodic Model

2.1 Fixing the gauge

As indicated in §1, the purpose of this paper is to look for the solutions of (1.1)—(1.2)
such that the observables induced from these quantities are periodic with respect to the
basic parallelogram 2. The following definition of time dependent gauge periodicity in
(13] according to [1] characterizes this requirement.
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Definition 2.1. Let £L = {mt, + nty : m,n are integers } be a planar lattice with
respect to the basic parallelogram 2. A time dependent state (¢, A, @) is called gauge
periodic if for each s € L, the translated state (v, A, ¢)(z + s,t) is gauge equivalent to
(¥, A, 9)(z, ).

It is obvious that this definition implies that there exists a family of functions
g° € L*(0,T; H3 (R?)) N HY(0, T; HL _(R?)) such that for each s € L, we have

Pz + 5,t) = P(z. 1)er9 @),
Az +s,t) = A1 .1+ Vg*(z,t), (2.1)
9g°(z,t
B+ 5,1) = o, 1) — 2L,
ot
Given two vectors a = (aj1,a2) and b = (b1,b3), let a X b = a1by — azb; denote their
vector product. The following theorem is the mam result of this section.

Theorem 2.1. Suppose that (1/),A qS) € ’HIOC Hloc X Hﬁ)c is gauge periodic. Then
(¥, A, ¢) is gauge equivalent to (¥, A, $) satisfying
(a) A =P + G, where P is periodic and G(z) = —a(zq, —1)T for some real constant
a;

(b) %)(CB + tk7t) = d}(mvt)eingk(z)r where gk(-T) = —Oé((l? X tk)7 k=1,2;
(¢) p+divA =0.

Proof. First we note that by the well-known embedding theorem we have (i, A) €
C(0,T; Hy. (R?)). Let (1o,A0) = (¢(z,0),A(z,0)) € Hi _(R?)) x HL (R?) be the
initial state of the system. From the restriction of (2.1) to time ¢ = 0 we know that
(%0, Ag) is steady state gauge periodic in the sense that there exists a family of functions
h® € HE _(R?) such that for each s € L,

Yo(x + 8) = Yo(x)e™™ @, Ag(z + 5) = Ao(z) + VA ().

Thus from the results proved in [1], [10], [17] we know that there exists a function
xo € H_(R?) such that

1/~10 = 1/}061.'”“’, AO = Ao+ Vxo (2.2)
satisfy

(i) Ag = Po + G, where Py is some divergence free periodic function and G(z) =
—a(z2, —x1)7T for some real constant o '
(i) to(x + tr) = 1o(x)e*9%(®) | where gi(z) = —a(z x tg), k =1,2.

We also note that the gauge transformation function yg € H, loc (IR2) can be made unique
by requiring that xo has zero mean over the basic parallelogram Q.

Now choose Q to satisfy

(')d(? AQ = % + V¢ +curlcurl A V(z,t) € R? x (0,T), (2.3)
Q is peI‘lOdlC, Q(x,()) = Po(z) Vz € R% (2.4)

Note that, in view of (2.1), 8A/3t + V¢ + curlcurl A € L?(0,T; L (R?%)) is periodic.

Thus there exists a unique Q € H>! which satisfies (2.3)—(2.4).

loc
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Let w = curl (Q — A + G). Then we know from (2.3)—(2.4) that

0
515 — Aw = 0 in the sense of distributions,

w is periodic, wli=o = curl (Qo — Ag + G) = curl Vxo =0,

where we have used the relation (i). Thus w = curl (Q—A+G) = 0. On the other hand,
we have from the embedding theorem that Q — A + G € C(0,T;H] _(R?)). Therefore,
for each time ¢ € [0, T}, there exists a unique x(-,t) € HZ_(R?) such that

Q(z,t) — A(z,t) + G(z) = Vx(z,t) a.e. in R® and /Qx(a:, t)dx = 0. (2.5)

It is clear that x(z,0) = xo(z). By applying Poincaré inequality, we know from (2.5)
that x € C(0,T; HZ .(R?%)). Again by (2.5) we have

ox _

i (Q A) in the sense of distributions,

which yields x € H'(0,T; HL_(R?)). As a result of (2.3) and (2.5), we get

0
V(:% — Ax) = V(div A + ¢) in the sense of distributions,

which implies that there exists some function g € L2(0,T) such that

— Ax =divA + ¢+ g(t).

8t
t
Hence, by letting x = x + /g(r)dT, we obtain that ¥ € C(0,T;
0
HY (R?)) N H'(0,T; Hy,, (R?)) satisfies
Bx 2,
KX _Ax=divA+¢ nR® x(0,7), 26)
Xlt=0 = X}t=0 = x0 in R2. (2.7)

Moreover, since div A+¢ € L2(0,T; HL (R?)) and xo € HE_(R?), we conclude from the
interior regularity theory for parabolic equations that ¥ € L?(0,T; HE (R?%)).

Let now (&,A,(}Z) = Gg(¢¥,A,$). Then ({/;,A,rz) satisfies the parts (a) and (c) of
the theorem. In order to prove the part (b) of the theorem, note first that (12;, A %) i
gauge periodic, thus we know that for & = 1 or 2, there exists g** € L%(0,T; H3 .(R?))N
HY(0,T; HL (R?)) such that

Pz + tg,t) = (:c t)einat (@t), (2.8

)
A(z + t,t) = Az, t) + Vg¥* (a: t), (2.9)
b(x + tr, t) = p(z, t) — bg™(2,t) (2.10)

ot
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Since X|t=0 = X0, we have {l;lt:o = 150 the same as that in (2.2). Hence it follows from

(2.8) and the relation (ii) that
g*(zx,0) =gk(m)+?%, k=1,2 (2.11)

for some integer n. On the other hand, it follows from the gauge relation d+divA =0

dg ;
and (2.9)-(2.10) that 9 Agt = 0in R? x (0,T), k = 1,2 which, along with (2.11),

ot
2
implies that g*(z,t) = g™*(z,0) = gx(z) + ﬂ, k = 1,2. Now the part (b) of the
K

theorem follows from (2.8). O

2 J .
+1

2 Fi2

I'_4 I

Fig. 1 The basic parallelogram 2 and its four segments.

Denote the four sides of the parallelogram 2 by I'y,I'—1,'42,I' 2 using the con-
vention of Fig.1. The corresponding unit outer normal vectors will be denoted by
N 1,n_1,Nn42,n_3, respectively. Note that for k = 1 or 2, I'; is the locus of points
y € R? such that y = = + t; for ¢ € T'_. It is also clear that n; = —n_j for k =1,2.

As a result of Theorem 2.1, the gauge periodic TDGL model can be formulated as
follows:

O _ inwdiv Py + (%v +P+ G)2¢ + (W2 =19 =0 inQx (0,T),

i
ot (2.12)

oP j .

EE—AP+§R[(%V¢+P¢+G¢)¢] =0 inQx (0,T), (2.13)

DT + th, ) = P(z,1)e"*® on T_; x (0,T), k=1,2 (2.14)

P(z + tg,t) = P(z,t) on T, x(0,T), k=1,2 (2.15)

¥(z,0) = o(z), P(z,0) =Po(z) on . (2.16)

In order to complete the problem, we add the following natural boundary conditions:

(%WJ +Go) Ny = [(%w + G ) e'or]

‘nyrpon I'_x x(0,T),

(ett.t) (2.17)

(z,t)
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VP(z+ tg,t) = VP(z,t) on T'_p x (0,7), k=1,2. (2.18)

Here VP = (8P;/dx;)? -, stands for the gradient matrix of P. The condition (2.17)
can be obtained by differentiating the relation in Theorem 2.1(b) with respect to = and
using the following obvious identity

G(z + ty) — G(z) = —Vgr(z) for k=1,2.

Remark 2.1. For the sake of completeness, we give here some of the physical
implications of the parameter o in the model. For details we refer to the discussions n
[1] and [10]. First, the periodicity of P implies that

curl Adx = / curl Pdx + 2a|Q| = 209,
Q

Q
where |Q| is the area of the parallelogram Q. Thus we know that o is equal to the half
of the average magnetic field B over Q defined by

— 1 1
B = —/ hdx = ——/ curl Adx.
€2 Jo 12 Ja
Therefore, o is gauge invariant. It is also known that the strength of the external

magnetic field H,, which does not explicitly appear in the model, determines the B and
thus also . Another remarkable feature of the gauge periodicity is that the size of the
lattice cell Q determines a. To see that, we use Theorem 2.1(b) to get

Y(x 4ty + t2) = Y(x + tq)ernl@tt) = Y(z)etrla (@) +aa(+ty)]
and

Y(z + b1+ to) = Pz + ty)eiror(ettz) — w(m)eiﬂ[92($)+yl($+f-2)]’
Since, by some easy calculations,

g1(z) + g2(z + t1) — g2(x) — g1(z + t2) = —2arirysin(d),

hence, there exists some integer n such that
nmw nmw

T krirgsin(0)  k|Q

Remark 2.2. We now give some remarks about the Coulomb gauge used in [13].
Let @ = (0,1) x (0,1). It is proved in [13, Theorem 2.1] that any time dependent gauge
periodic triple (1, A, @) is gauge equivalent to some (¥, P + C,®) such that

(a) P is periodic with mean value zero;

(b) divP = 0; .

(¢) C(z,t) = k(t)(z2, —z1)T for some time dependent function k(t);

(d) ¥(z+s,t) = erk(V)(52=92)/2 (5 t) for s =1 or s = i;

(e) ®(z + s,t) = B(z,t) — k'(t)(5z — 82)/2i for s=1 or s =1,
where z = x1 + izy. However, by using the arguments leading to (2.19), we can see

from (d) that

(2.19)

n(t)r

k(t) = — (2.20)
with n(t) being some integer valued function. Thus the continuity assumption on k(t)
implies that k(t) must be a time independent constant satisfying (2.20) for some integer
n. At this time we know from (e) that ® is also periodic. O

2.2 Solvability and regularity
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We begin this section by introducing some function spaces. For each integer m > 1,
we define the space of periodic functions
H;’ér(Rz) ={A e H.(R?) : A(z + t;) = A(z) fork=1,2and Vz € R? }
and the space of quasi-periodic functions
H™(R?) = {¢ € HL(R?) : ¢(z + tx) = P(z)e™ 9+ for k = 1,2 and Vx € R? }.
From these we define the corresponding spaces of functions restricted to 2

HT(Q) = { Alo: A €HIL(R?)} and HL(Q) = {¢la: ¢ € HG R}

per P qp
Let Wyp(0,T) = L? (0, T ’Hép(ﬂ))ﬂHl(O,T; L?(Q)) and W (0,T) = L?(0,T; Héer(ﬂ))ﬂ

H(0,T;L2()). We now give a precise definition of the weak formulation of the prob-
lem (2.12)-(2.18).

Problem (P) Find (¢, P) € Wgp(0,T) X Wpe(0,T) such that
dr(x,O) = 1/)0(:&), P(:I:,O) = Po(:t) (2.21)

T ad) T
7)/ /—dedt — infc/ / div Pyawdxdt
o Ja Ot 0o Ja

+/OT/Q(%v¢+Pw+G"/’)(_%VD+PQ+GQ)dth

and

+/T/ (l9[2 - y@dxdt =0 Vw € L2(0,T; H}, () (2.22)
0 Q 3 b qp ) *

T roP T T
/ / 9 Qdxdt + / / (divPdivQ + curl Peurl Q)dxdt + / /
o Jo Ot o Ja o Ja

m[(%w + P+ Gzp)@] Qdxdt = 0" VQ € L*(0,T; HX. ().

per

(2.23)

Let Qr = Q x (0,T). Denote by %?ﬁ)l(QT) = L2(0,T; ’HZP(Q)) N HY(0,T; L*(Q)) and
H2L(Qr) = L*(0, T; H () N HY(0,T;L?(2)). We have the following theorem con-
cerning the solvability of the Problem (P).

Theorem 2.2. Let (o, Po) € H,(0) X HY. (Q) such that || < 1 a.e. on Q.
Then the Problem (P) has a unique strong solution (¢,A) € 'Hg'pl(QT) X Hg’ér(QT)
satisfying |¥| <1 a.e. in Qr.

The uniqueness of strong solutions of Problem (P) can be proved by the standard
argument as in [5]. The existence of strong solutions can be proved either by using
the method of lines similar to that in [13] or by using the Leray-Schauder’s fixed point
theorem as in [5]. The necessary regularity results for the associated linear elliptic
problems can be found in [10, §4.1]. Here we omit the details of the proof.

Moreover, we can prove the following regularity results for the solutions of the
Problem (P) by the method in {3, §2].

Theorem 2.3. Let (9, Pg) € HZ (Q) x H2,(Q) such that || < 1 a.e. on L.
Then the solution (1, A) of the Problem (P) satisfies that

P € C0,T;HA ()N HY0,T;HL,(Q) and 1 € L£4Qr);
P € C(0,T;HZ () N HY0,T;H!_(Q) and P, € L*(Q7).

per
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3. The Approximations

In this section we turn to the numerical solutions of the gauge periodic TDGL
model (2.12)-(2.18). The numerical scheme presented below is similar to that used
in [3] for the TDGL model with Neumann boundary conditions. The novel feature of
the method here is the treatment of the “periodicity” conditions imposed on functions
belonging to H.,(2) and H] . (€2). We will also prove a new L? error estimate which
is optimal with respect to the rate of convergence.

We make use of backward Euler scheme to discretize the Problem (P) in time. Let
M be a positive integer and At = T'/M be the time step. For any n =0,1,---, M, we
define ¢" = nAt and I"™ = (¢"~!,t*]. Furthermore, we denote dn™ = (n™ — n™~1)/dt
for any given sequence {n"}M_, and ™ = n(-,t") for any given function n € C(0,T; X)
with some Banach space X.

In space we utilize linear finite element approximations. Let {Ap}r>o be a family
of regular and quasi-uniform triangulations of € such that = Ugea, K. Denote by
h the largest diameter of any of the triangles in Aj, and by A}, the set of nodes of the
triangulation Ap.

We define the finite element space V;, = {v € C(2): v|k is linear for all K € Ay}
and let I denote the usual interpolation operator from C(Q) into V4, i.e., for any
v € C(Q), Inv is the unique element of V}, such that Iyv(z) = v(z) for all x € Nj. It
is well-known that there exists a constant C independent of A such that the following
interpolation estimate holds:

lv = Invllgiy < CR* 7 |lvllgz2iq) Yo € H*(Q) j=0,1.
In order to approximate the problem, we introduce the spaces '

Vi = {¢ €C(Q) : |k is linear for all K € Ap, and

V(z + tr) = P(x)e" @) Ve e NpyNT_y, k=1,2}
and

Vi, ={Q €C(Q) : Q| is linear for all K € Ap, and
Q(z +tx) = Q(z) Vz e NoNT g, k=1,2}

We observe that V;, C HJ,.. () but V, ¢ Hep(S2) because the functions in V, satisfy
the quasi-periodic constraint only at the nodes on the boundary of Q. However, the
finite element space V), do provide a good approximation of the space ’Hcllp(ﬂ) (see [11,
Lemma 3.1}).

Now we are in the position to introduce the following discrete problem.

Problem (DP) For n =1,2,---, M, find (¢},P}) € V), x V}, such that

¥y = Intho, P) = I4Pg (3.1)

and

n / OUPERdx — ink / div Plyandx + / (L4 + PRuf + Gup)
Q Q Q \K

: ( — ' Vap, + Plan + Ga)h)dx + / (W72 — D)YP@pdx =0 Vwy, € Vi,
& @ (3.2)
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/ Py Qrdx + / (div Prdiv Qp, + curl Picurl Qh> dx
Q Q

+ [ [(Cvwrt + PR+ G| Qudx =0 VQue Vi
ar (3.3)

We note that at each time step n, (3.3) is a linear system of equations with positive
definite coefficient matrix, which can be solved by standard methods. As soon as
we know P} from (3.3), we substitute it into (3.2) and solve the nonlinear system of
equations to get ¥}. For a discussion on the existence and uniqueness of the solution
Y7 to (3.2) we refer to [3]. In practical computations, the nonlinear system of equations
(3.2) may be solved by Newton’s iterative method.

We have the following theorem concerning the approximation properties of Problem
(DP) to Problem (P).

Theorem 3.1. Let At be sufficiently small. Assume that the solution (v, P) of
Problem (P) satisfies that v € H*(0,T; H2,(Q)) and P € HY0,T; H2,(Q2)). Then,

we have

max (14" — Rl + IP" = PRl < O + A2), (3.4)
M
S Atfl[9" - vl + IIP" — PRl )| < O+ AF). (35)
n=1

where the constant C is independent of h and At.

The proof of this theorem will be given in next section. We remark that both the
energy error estimate (3.5) and the L? error estimate (3.4) are optimal with respect
to the rate of convergence. We also remark that the regularity assumptions in the
theorem indeed can be proved under suitable regularity and compatible assumptions
on the initial data.

In the remainder of this section, we introduce the elliptic projection operator that
will be used in next section. Given (¥, P) € HZ,(Q2)N HZ2_ (Q), denote by A =P + G,
we define (Y, Pr) = Ru(¢, P) € Vi, x V}, by requiring that:

J L0 =0+ Al =) (= LVan + A2 + (= ¥)an]dx

i i )
K /BQ [(Ev‘p + AT/’) 'n]whds =0 Vwp € Vp, (3.6)

/Q [div (P, — P)div Qp, + curl (P, — P)curl Qp + (Pr — P)Qh] dx
=0 VQy € V. (3.7)

It is easy to see that the solution (1, P) of (3.6)~(3.7) is uniquely existent. Thus
the elliptic projection operator Ry, : H2 op(8) X H2_(Q) = Vi x Vy, is well-defined.

per

Let f = ( v+ A) v+ € c2(Q) Then w5, € Vi can be viewed as the finite
element approximation of the solution ¥ € H (Q) of the following elliptic problem:

(£V+A)2w+z’u:f in 0,
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Pz +tg) = 1/)(ac)ei"g’°(‘”) on I' g, k=1,2,
) ? 1KGL —
(;w +A¢) ‘N = [(;w +A1,Z))e gk]x ‘nyg on Ty, k=1,2.

T+t

The term of the boundary integral in (3.6) results from the fact that Vi ¢ Hi ().
Note that A = P + G and P is periodic. We can show the following error estimate
by the method in [11, §4.1]:

Y — ¥nllgi) < CR2 PPN a2 ¥l 2@ =01, (3.8)

where P : R — R is a quadratic polynomial. From this estimate, the finite element
inverse estimates, the finite element interpolation theory and the embedding theorems,
we have

[¥nllzee) < I¥n — In®llLeo) + il Lo () < Ch I — Inll 2y + 1 In¥ll Lo ()
< Ch™ (llvn = Yllzzgy + 1o — Il L2)) + )l Lo ()
< CP(IPlaz@) ¥l g2 0 (3.9)

and
IVnllLagy < IV@R — )l a) + IVIRYl Laq)
< Ch™ V2|V (g — In)l| 20y + ClIVY Il Lae)
< Ch™ V2|V (Wh — ¥)llege) + IV (@ — )l L2e)) + ClIVE| ey
< CP(IP|l gz)l¥ll a2 (0 (3.10)

where P : R — R is a quadratic polynomial.
By applying the standard finite element approximation theory in [6] to (3.7) we can
prove the following estimate:

IP — Prllgicy < CR*||Pllg2g) 5 =0,1. (3.11)
Then, with the same, reasoning leading to (3.9)—(3.10), we also obtain
IPrll ooy + IVPRILaa) < CliPI H2(0)- (3.12)

4. The Error Estimates

In this section we show the error estimates in Theorem 3.1. Throughout this section
we always denote C a generic constant independent of h and At which generally has
different values at any two different places.

To begin with, we note the following identity

Z/ o ax

which can be easily proved by using Green’s formula. The following stability estimates
for the solutions of Problem (DP) can be proved by the method in [3, §4].

/ (Idiv Q> + Jeurl QI?)dx VQ € H},(2) (4.1)
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Lemma 4.1. Let At be sufficiently small. Then the solution (Y}, Py) of Problem
(DP) fulfills the following estimates

M |
12%@(“’/’2”%2@) + [PhlZ2¢) + 2:—:1 At(l¥hlIzaa) + PRI 740))

M
+ 3 At(IVYRIZ2 () + IVPRIZ2() < C.

n=1

Lemma 4.2. Let (,P) € H2,(Q) x H2.(Q) and (Yn,Pr) = Ry(¥,P) defined
according to (3.6)—(3.7). Then we have

’/an ¥np(Qn n)dsi < CR*P(IPll @)1 20y | Qull () YQn € Vi,

where P : R — R is a quadratic polynomial and C is the constant independent of
v, P,Qp and h.
Proof. Since 9 € 'ng(Q), U, € Vy, and Qy, is periodic, we have

[ (@ md Z /F (D) (& + t&) — () (@) (Qn(2) - n_x)ds

- kZ:jl [ e ) = wn@)eo)

- P)e™ k@) (Qu(z) - n_g)ds.
On the other hand, it is proved in [11, pp. 111-112] that

[¥n(z + ti) — Yr(@)e @ |l 20,y < CRE|[Ynllgr_,)-
}Thus v

| /a OnB(Qu - m)ds| < Ol oo e [ 13 oy | Q2 o)

< CR?|[9l| ooy (1%0n — Intbll a0y + a0l e (00)) 1 Qe ll 112 (02

< CRA|[9 | oo (52 (CR™ 2 [p1, — Il sr1 () + Clll 1 00)) | Qnll 2 02

< CRA||3 | g2y (CA PP P gz 1%l 2y + ClI N a2 e )| Qull e
< Ch*P(IP || g2 191132 o | Qull 1 ) »

where in the first inequality we have used the Cauchy-Schwarz’s inequality; in the
second inequality we have used the triangle inequality and the trace theorem; in the
third inequality we have used the following finite element inverse estimate

Ikl oy < CRTY2 N Chllnay Ve € Va

and the stability estimate of the interpolation operator; and in the fourth inequality we
have used the triangle inequality, the trace theorem; the estimate (3.8) and the finite
element interpolation theory. This completes the proof. O



Modelling and Numerical Solutions of a Gauge Periodic Time Dependent Ginzburg-Landau Model... 377

Given f € L?(Qr), denote by

1
t= -, t)dt 4.2
1 =5 [ 16 (42)
the average of f on the interval I™ = (t"~1,¢"] for n = 1,---, M. Then it is easy to see
that
n of 2 n )
NFI™ - f('at)”%Z(Q) < At i v L2(Q)dt a.e teIm. (4.3)

Now we are in the position to give the proof of Theorem 3.1.
Proof of Theorem 3.1. At first we note that from the regularity assumptions
of the theorem we have ¢y € C(0,T; 7{2 »(Q2)) and P € C(O T;H2_ (). For n =

per

-, M, since (¢, P") € HZ () x Héer(ﬂ), we let (Y7, P}) = Ry(¥", P™) denote
the elliptic projection defined according to (3.6)—(3.7). Then it follows from (3.8)—(3.13)

and the regularity assumptions of the theorem that

max ([[46" — pllms) + IP" = Phllmsn)) < CR*™ forj=0,1  (44)

1<n<M
and N _ ) .
Nohll Lo (o) + IVUR I La) + PRl L) + IVPRILa@) < C. (4.5)
For convenience we write A" = P" + G, A} = Pp + G and AZ = ~Z + G, for

n=1,---,M. Let (f =} — 9} and E} = P} — P? = A7 — A7, then we know from
(2.12)-(2.18), (3.2)-(3.3) and (3.6)—(3.7) that

n / AP andx + = / V(P Vandx
= [ 8" — Gp)andx — inw [ ([divPy" - div Py )ondx
_%/QH[( vy+ay)]" - (2 vy + Amy") | Vandx
LG AT - (v s )l
+£/m[ (Loy+ap)-n]" - (Svym+A™") -n]ands
+ [ QR = Do = ("7 - Dy Jands
—ink /Q (div Pmy" — div PRyf ) ondx — = / (A"g7 — AR} ) Vandx
4L / (A"V3; — ARVYR)ondx + / ™25} — |ARIP6F ) @ndx

+ / (972 = 1y8™ = (P = 1¥R]andx + [ (@7 — vm)andx
=:(D;++ Dy (4.6)
/ OE}Qudx + / (div Egdiv Qn + curlBfcurlQy ) dx
Q Q
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- / A(P™ — PP)Qudx + / [div (IP]" — P")div Qy + curl([P]" — P")eurl Q] dx
+/ R| —V¢+A¢)w]} - (;Vip"_l+A"‘1¢"“1)¢””1]thx
+ [ R[L(Tem et - VU Qufax
+ [ A"*]w"-‘P — AL ) Quix + [ (B — P™)Qud

=: (D), + -+ (I (4.7)

It is not difficult to estimate the terms (I); — (I) and (II); — (II); by using (4.3)-
(4.4), Lemma 4.3 at the end of this section, and the fact that ¢ € C(0,T; ng(ﬂ)) and

P € C(0,T; H2,(2)) to obtain
: h? 1 2
S+ 31D, < (g + VBYO Ul + [1Qullm@),  (48)
7=1 7=1
where

On=At+ (|

i 8t |l H2(Q) H lm(n))

By applying (4.4)-(4.5), Lemma 4.1 and the regularity assumptions of the theorem, we
can prove the estimates

12

S <CR*||wnll ey + Clldr i La@) BRI e Vel L2 (o)
7=8
+ Cl| AR La@ IV I L2y lwnll ) + CUIGE @) + BRI (@) lwnll @)
4 + C(| ARl Za(q) + R 172 @) ISH | Loy lwnllLaga) (4.9)
an

Z (11),] <CR?||Qnllz2(e) + Clivn 17 a IER ™ llzag@) 1Qnlla(a)
j=5

+ CICG M Lao 1Qrll Loy (4.10)

by some standard but tedious argument. Here we omit the details.
Now it remains to estimate (I)7 and (II)4. At first we decompose the term (I)7 as
follows:

D), = - inn/ div (P" — P?)¢papdx — inn/ div P™ (™ — ¥ )opdx
Q Q
+ink / div ERgRandx + ik / div PP(Pandx =: (II), + - -- + (I1),.
Q Q

The last three terms can be bounded by using (4.4)-(4.5) to get

4

> 1a1m),| <Ch?|lwnl i (a) + Clidiv ERllz2 o) lwnll 2o
i=2
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+ Clldiv Pyl 20 ISk | ey llwnll La(a)-

To estimate (III);, we note first that {PVZU_Jh and P — P} is periodic. Thus, by Green’s
formula, we get

(1), = ink /Q (P" — P})Vylaopdx + ink /Q (P™ — PPy Vao,dx
< Ch2| VRl sy llwnllagay + CRAIGRI oo (ol Vwnll r2g) < Ch*lwhll ey,
where we have used (4.4)—(4.5). In summary, we have

|(I)7] <Ch*||whll g1y + Clidiv ER |l 120y llwnll 120y
+ Clidiv Pyl 2 1Kk | o) lwnll L1 () (4.11)

Similarly, we may decompose (I])4 as follows:
(s = | R[LV (! — G516 Qadx + / [ (s B TN
Q K Q K
i o pn— 31 Lo n—1Fn—1
- [ R[EvGE Qufax - [ R[ZveniGiQe]ax
= (IV), + -+ (IV),
and bound the last three terms by

4
> 1(IV),1 <CR*|Qullzn (o) + CIVE 2@ 1Qnll 220y
Jj=2

+ CIVER @IS o) 1QAll (o) -
To estimate (IV);, we apply again Green’s formula to obtain
— _ 1 n—1 _ Tn—1\ i, (Jn—1
Iv), = /Q R[ - ("~ g div (877 Qu) | dx
v - Tn—1\, 7n— p
+ [ R[Z@" =g (Qa - m)]dx < CR2Qullan e,
N K
by using (4.4)—(4.5), the regularity assumption ¢ € C(0,T;H2,(€)), Lemma 4.2 and
the fact that " ~14"~! is periodic.
Therefore, we have
|ID),| <CR*[|Qullgra) + CIVE M L2 @) 1Qkll 220y
+ CIVYR e @llSr  ra@ |1 QallLa () (4.12)
Now letting wp, = At(p € V, in (4.6) and Qp = AtE} € Vj in (4.7), taking the

real part of (4.6), adding the obtained equation with (4.7) together, and applying the
identity (4.1) and the estimates (4.8)—(4.12), we can conclude that

Ny n n My n— n—1
(511%“%2(9) + HEh“iz(ﬂ)) - (‘2"HCh ey + IER liiiZ(sz))
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1 n n
+ 8t (S 1VCR o) + IVERI o))
<C(h* + A0, + CAL(IGH 120y + IERIZ2(0) + T AtIVE 1720
1 o 1 ,

+ 13 AtVE N2y + ZAtHVEhH?LZ(Q) + CAL(1+ T,)'/?

(UG oy + 16 20y + IR 0y + B o), (413)
where

Yo = [¥hlzea) + AR e + 108 2y + IVER 1720 + div PRIIZ2(q)

By using the following special case of the multiplicative inequality in [16, pp. 62-63]:

1/2 2
ollzawy < Cllolgig vl Yo e HY(Q)

1

and the well-known Yong’s inequality ab < ea® + 4—62 Va,b > 0 and Ve > 0, we can
€

bound the last term at the right-hand side of (4.14) by

1 n n— 1 n n—
22 At (IVGRG2@) +IVE lEaq)) + gAt(IVERIE o) + IVEL 2
+ 81+ ) (IR a0y + 16 Faqey + BRI 20 + 1B7 ™ 72y

Note that by the Lemma 4.1 and the regularity assumptions of the theorem, we have

M M
Ye.<c Y Aty <C.

n=1 n=1

Thus, by the discrete Gronwall’s inequality, we obtain

M
ni2 n|2 n|2 ni2 4 2
max (1613 + B F) + ;At(nvch 1320y + IVERII2(q)) < C(B* + AL).

Now the desired estimate (3.4)-(3.5) follows from the triangle inequality and (4.4).

This completes the proof of the theorem. O
Lemma 4.3. Assume that the solution (v, P) of Problem (P) satisfies that

¢ € H'(0,T;H2,(Q) and P € H'(0,T;H2(Q)).

Forn=1,---,M, let (zz,':, P}) = Ry(¢"™, P") defined according to (3.6)-(3.7). Then

we have
n n h? oY 2
105" = iz < C=[ [ (1% ooy * 15 Py 2t]

BP‘ ]1/2

(4.14)

h2
10" ~ PR)lzey < O] |

= (4.15)

3

H2(92)

L

11

<

Si
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where the constant C is independent of h and At.
Proof. The estimate (4.15) is obvious and well-known. We only prove (4.14). First
we note that from the regularity assumptions of the lemma we have

ax (19" w2 + [P le)) < C. (4.16)

From (3.6) we know that for any n =1,---, M, ’IZZ € Vj, satisfies
i, ~ ~ i ~ ]
L LGY@r —um) + AR —9m) (— Ve + Aman) + (FF - 6")an]dx
al\k K
)

_Z /aQ [(£V¢n + A"ip") . n]&}hds =0 Vwp € V. (4.17)

K K

Let (" = 0y™ and ¢} = 812;2 By subtracting the relation (4.17) for n and n — 1 and
doing some easy calculations, we obtain

LG ¢+ A =) (= L@+ A) + (G~ ¢
- 1‘/ [(ivc" + A™C") - n]@pds
on

K K
= / OA™FP — Y1) Vippdx — - / OA™Y(F71 — " Dapdx
KJQ K JQ
_ / OIA™)(@pt — v Napdx + - / (BA™ - n)y" 15, ds
Q K JoQ
21 ng g n— n— - 2 : ny/(, n— n—1\—
:;/QaA (@71 — ") Vapdx +;/Q(ade Y@ — )@y dx
- / OA™A™ + A" N (r! — " Dopdx + % / (OA™ - n)y" 'opds
Q K Jox

=(V);+ -+ (V), Ywp €V, (4.18)

where in the last equality we have used the Green’s formula and the fact that 8A™ and
&Z"lwh are periodic.

Remember that A™ = P™ + G and thus 8A™ = OP™. By applying the Holder’s
inequality, the estimate (4.4) and the embedding theorems, we can obtain that

3
Y1) <CHOP™ | ooy o™ = ™ Ml 2y | Vewnll 2
=1

+ Cllo(div P™)|| Lagey llp ™ — " Y| L) lwnll oo
+ Cl|0P™|| oo () (IIA™ | Lo () + A I oo M lop ™" = ™ Ml 2o llwnll 2
<CR*||0P™|| gr2 () lwnll a1 ()

h? oP 1/2
<C——= - . .
<= [ 15 ] leonllina) (419)

Since Y"1 € 'HZP(Q), wp, € YV, and OA™ = 9P" is periodic, we have

2
H2()

.2
(V)4 = — % > /F (" 1an) (@ + te) — (" ~'@1)(2)] (9P™ - n_y)ds
k=1 —k
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Z / x + tg) — op(z)e” “‘9“(””)} P e 9 (@) (9P . n_;)ds.
.

Again we have the following estimate in [11, pp. 111-112]

llwn (@ + tr) = wa(z)e™* | 20y < Ch?||whllmr(r_y)-
Thus we have
[(V)4| < CR2|[9™ | oo (a0) 1OP™ - m_ || 12 a0 lwi |l 111 092)
< Ch?||OP™ || g1y lwn | 2 o)

h?2 OP |2 1/2

< C—— il .

< C\/E[ | H2(Q)dt] lwnl i om) (4.20)
where we have used (4.16) and the embedding theorem.

Now starting from the relation (4.18) and the estimates (4.19)—(4.20), we can argue
as in [11, §4.1] and apply (4.16) to get

ISk = ¢Mllzzy < CR*PUP™ a2 IS 2o + C%[ élit 1’2(9) ]1/2
h? /
< C\/A—[/I" (” ot } H2(Q H 'le(Q ) ]1 2,

where P(-) : R = R is a quadratic polynomial. This completes the proof. O

5. A Numerical Example

We consider the most interesting periodicity structure, namely that corresponding
to an equilateral triangular lattice having one fluxoid associated with each lattice cell.
Thus we have that n = 1,7; = ry, and § = 7/3. From (2.19) we have that the
basic parallelogram 2 is generated by the vectors t; = (r1,0) and ty = (r3 cos(m/3),

rosin(7/3)) with
rL=To = T
Y727 kasin(0)”

We take the dimensionless constant = 12 as in [4], the Ginzburg-Landau constant
k = 5/3, and the constant @ = 5/3 which corresponds to the average magnetic field
B = 10/3. The initial conditions are set to be 1y = p(x1,22)(0.6 + 0.8i) and Py = 0,
where p(z1,22) = 1 for (z1,22) in the circle centered at the center of Q2 with radius 0.1,
p(z1,z2) = 0 for (z1,z2) outside the circle centered at the center of Q2 with radius 0.2,
and in between, p is smooth.

The triangulation over € is obtained by first subdividing €2 into a uniform paral-
lelogram grid having 20 intervals in each direction and then dividing each small paral-
lelogram into two triangles by joining the lower left corner and the upper right corner
of the parallelogram. The time step size At is set to be 0.05. Numerical computations
were performed on a PC 586 by using the software package “Finite Element Program
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Automatic Generator” by Guoping Liang. In our computations we observed that the
solution achieves a steady state after 150 time steps. The level curves of the density
of superconducting electron carriers at the 50th and 150th time step are given in the
Fig.2 and Fig.3, respectively. The maximum and minimum value of the level curves are
0.1 and zero. In the computations the solution in only a single lattice  was computed,
this solution was extended, using periodicity relations to obtain the solution outside (2.

)00

Fig. 2 Level curves of the density of super- Fig. 3 Level curves of the density of super-
conducting electron pairs at the 50th conducting electron pairs at the 150th
time step. time step.

6. Concluding Remarks

In this paper we showed that the TDGL model for type-II superconductors supports
the solutions whose associated observables are periodic with respect to some lattice
not necessarily rectangular. After fixing the Lorentz gauge, we obtained the unique
existence of strong solutions and some regularity results for the solutions. We also
proposed a semi-implicit finite element scheme solving the system of nonlinear partial
differential equations and proved the optimal error estimates for the numerical method
both in the L? and energy norm. This justifies the reliability of our numerical results
presented in §5. The method in §4 to obtain the optimal error estimate in L? norm can
be extended to show that the numerical scheme in [3] also preserves the optimal error
estimate in L? norm.

It is proved in [13] that under the Coloumb gauge, the solution of the gauge periodic
TDGL model converges to one of the solutions of the stationary periodic Ginzburg-
Landau model studied in [1], [10], [11], [13] as the time ¢ — co. We can prove the
same results for the gauge periodic TDGL model under Lorentz gauge studied in this
paper by combining the methods in [13] and [14]. Thus the numerical method in §3
provides another possibility to solve the stationary periodic Ginzburg-Landau model
which is different from the method studied in [11], where a system of nonlinear elliptic
equations with multiple solutions was solved directly.
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