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Abstract

The analysis of the finite difference schemes with nonuniform meshes for the
problems of partial differential equations is extremely rare even for very simple
problems and even for the method of fully heuristic character. In the present work
the boundary value problem for quasilinear parabolic system is solved by the finite
difference method with nonuniform meshes. By using of the interpolation formulas
for the spaces of discrete functions with unequal meshsteps and the method of a
priori estimation for the discrete solutions of finite difference schemes with nonuni-
form meshes, the absolute and relative convergence of the discrete solutions of the
finite defference scheme are proved. The limiting vector function is just the unique
generalized solution of the original problem for the parabolic system.

1. In the study of the problem in physics, mechanics, chemical reactions, biology and
other practical sciences, the linear and nonlinear parabolic equations and systems are
appeared very frequently. Many numerical investigations in scientific and engineering
problems especially in the large scale computational problems often contain the numer-
ical solutions of parabolic equations and systems. The method with unequal meshsteps
is not avoidable in these computations. Many unexpected and self-contradictory phe-
nomenon raising from the use of unequal meshsteps call our great attention to study
the cause and the method of solution.

For the parabolic equations and systems there are various finite difference schemes
of approximations with truncation error of different order for the purpose of different
usage. There are a great amount of works contributed to the convergence and stability
study of finite difference schemes for the linear and nonlinear parabolic equations. All
these studies are concerned to the method with equal meshstep.

By use of interpolation formulas for the norms of intermediate quotients for discrete
functions and the method of a priori estimation for the discrete solutions of finite differ-
ence schemes we get the great success in the studies of the finite difference method with
equal meshstep for the solutions of the problems of partial differential equations and
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systems!! 5. The study is of rigorous character and avoids the methods of heuristic

character. This new method of study is very appropriated for the general difference

* Received September 26, 1994.
YUThe project is supported by the National Natural Science Foundation of China and the Fundation
of CAEP, No. 9406119.



290 Y.L. ZHOU

schemes and for the general linear and noulinear problems of partial differential equa-
tions and systems. The results are obtained without any assumptions which are hardly
to verify, for example, the existence and uniqueness of the sufficiently smooth solutions
for the original problems, the maintenance of the fundamental behavior of the solutions
under the treatment of lincarization and another ways of simplification.

The consideration for the solutions of partial differential equation by the finite dif-
ference method with nonuniform meshes is extremely rare even for very simple problems
and even for the method of fully heuristic character. All present situations tell us to
know that it is very helpful to study the difference schemes with unequal meshsteps for
the problems of partial differential equations and systems by the use of the interpola-
tion formulas for the spaces of discrete functions with unequal meshstepsl®7, and the
method of a priori estimation for the discrete solutions of the difference schemes.

In the present work, we are going to solve the boundary value problems for the
quasilinear parabolic systems of partial differential equations of second order by the
finite difference schemes with unequal meshsteps. The absolute and relative convergence
of discrete solutions for the very general difference schemes for the mentioned problems
are proved without any assumption on the existence of the smooth solutions for the
original problem.

1. Finite Difference Schemes

2. Let us consider the quasilinear parabolic system of partial differential equations
of second order

w = Az, t,u)uge + f(z,t,u, ug), (1)

where u = (u1,ug,---,uy,) is a m-dimensional vector unknown function (m > 1),
Ju ou 0%u

up = oy e = oo Use = oo and f(z,t,u,p) is a m-dimensional vector function of
x

ot
variables (z,t) € QT = {0 <z <I,0<t<T} and the vector variables u,p € R™.
Suppose that the m x m matrix A(z,t,u) satisfies the condition of strong parabolicity:

inf inf (&, A(z,t,u)€) = 09 > 0, (2)
(z:t,u) [€]=1
where (z,t) is any point of a rectangular domain Q7 = {0 <z <[, 0 <t < T} and
u, p are the m-dimensional vectors of m-dimeusional Euclidean space R™ and op is a
positive constant.

For the simplicity, let us consider the homogeneous boundary value problem for the
quasilinear parabolic system (1) of partial differential equations. On the lateral sides
z = 0 and z = [ of the rectangular domain Q7, the homogeneous boundary conditions
are taken to be of the form

u(0,t) =0, wu(l,t)=0, 0<t<T, (3)
where [ > 0 and T > 0 are given constants. And the initial condition is of the form

u(z,0) =¢(z), 0<z<l, (4)
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where p(x) = (p1(z), -, om(z)) is a given m-dimensional initial vector function.
Suppose that the following conditions are satisfied.
(I) The cocfficient matrix A(z,t,u) is a m x m continuous and positive definite
matrix for (z,t) € Qr and w € R™, that is, for any (x,t) € Q7 and v € R™, there is a
positive constant og, such that

({,A(w,t,u)f) > U()lgl2 (5)

for any £ € R™. This shows that the condition (2) is valid.

(II) For the sake of brevity, let us assume that the m-dimensional vector function
f(x,t,u,p) is continuous with respect to (z,t) € Qr and u,p € R™ and is Lipschitz
continuous with respect to w,p € R™. Then there is a constant K; > 0, such that

|f (et u, p)| < Ki(Jul + [pl + [F(2,1,0,0)]) (6)

for (r,t) € Qr and u,p € R™.

(ITI) The m-dimensional initial vector function ¢(x) belongs to c(([o,1]) and
satisfies the homogeneous boundary conditions ¢(0) = ¢(I) = 0.

(IV) The matrix A(x,t,u) is continuously differentiable with respect to the vector
variables u ¢ R™.

3. We are going to solve this problem by the finite difference method with unequal
meshsteps as the following way. ’

Suppose that the rectangular domain Q7 is divided into small rectangular grids

- L
QA:{Q]:; =(z; <a <rj;t" <t<ttYy|j=0,1,---,J-1;n=0,1,---,N-1}
by the parallel line x = z;(j =0,1,---,J) and t =" (n = 0,1,---, N), where

O=xzpg <21 < - <xy_1 <x5=I,

0=t"<t'<... <NtV =T
and J and N are two integers. In general the meshsteps
h = {h]-+% =Tj41 — T > 0[] =0,1,---,J — 1}
r={rmts =t " > 0ln=0,1,---,N — 1}

arc assume to be unequal. Denote by va = vf = {v}|j =0,1,---,J; n = 0,1,---,N}
the m-dimensional discrete vector function defined on the discrete rectangular domain
Qa = {(zj,t")'j=0,1,---,J;n=0,1,---, N} of the grid points.

Let us now construct the finite difference scheme with unequal meshsteps are follows:

UT~L+] — 7

7 J _ Antag2, nto n+o ] — —1:n= —
W——AJ ) Uj +f] ) ]-—1,2, ,J 1,n~0,1, ,N 1 (7)
corresponding to the quasilinear parabolic system (1) of partial differential equations,
where

nta _  nto nta 1}+a
Yitr 7YY Yj-1
hivi hj—%

521;;.”“" =
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ATE = Ay, 47, 5007 ), (8)
ff+a _ f(-I'p tn—}—(x, 5()1)314-(1’ SI,U;H-Q)

and

<0 1 1 1 i 1 1
O™ = a(Br i 4 By i+ BT R + (BEvoy + BT BT ),

S0 nta n+1 n+1 n+1 n+1 'n+1 n+1
O v = (5 /3 +/6 J+1)+(,34J — 1+ﬁ53 41 +/66] ]+1)
(9)

_ “nta n+avn+a - ,Ur'L—i—a nta ,Un+a . ‘n+a
1, n+a _ ¢onta J+1 J J J*‘l
Flopte = 5y, oun 1+ﬂ21 Ry e = T RS e B

J h.. 1 h. 1

Jt+35 J—3

vﬂ+(1 . avn"‘l + (1 — a)'u‘?’ 0 S o S 1

J
~1)

(2) _
hi” = §(h‘j+§ thi 1
forj=1,2,-:-,J—1landn=20,1,---,N — 1. Here 3,8, 3’s are constants depending
on the indices j = 1,2,---,J —~1and n = 0,1,---, N — 1 and satisfying the restrictions

(Bn+1 n+1 ‘}n-l-l) + (}34] +,35] +ﬂ6])
a(B + ,’Z‘H + B3 + (B + BE; + Bey) =

n+a ntoa

/,31] +B’2_7 :17 ]:172’7J—15n=0w1a)N—1

And the absolute values of the constants 3, B , ’s are uniformly bounded by the constant

Ky > 0 with respect to the indices n = 0,1,---,N =1 and j = 1,2,--,J - 1. It

is noticed that the coefficients B,B,B’s of the difference schemes can be different for

different layers and different grid points in the difference approximation of the system

This means that the difference scheme has the large degree of freedom in general.
The corresponding finite difference boundary conditions are of the form

’l)g:O3 'UTJl:()? TL:O,I,"',N- (10)
And the corresponding finite difference initial conditions are of the form
U?:Wja j:132,"'7‘]_17 (11)

where ¢; = ¢(z;) (j = 0,1,---.J) is the value of the m-dimensional vector function
@(x) on the grid point z = z; (j =0,1,---,J) and also ¢g = ¢; = 0.

4. Now we want to prove the existence of the discrete solutions for the finite
difference scheme (7), (10) and (11).

The finite difference system (7), (10) and (11) can be regarded as a system of
nonlinear equations with J + 1 unknown m-dimensional vectors ’U;-L+1 (j =0,1,---,J),
as the m-dimensional vectors v} (j = 0,1,- --,J) are given. So the finite difference
system (7), (10) and (11) can be solved step by step with respect ton =1,2,---,N.

Denote v = (vp™!, vPth oo v%1)) then v is a m(J + 1)-dimensicnal vector or a
point of a m(J + 1)-dimensional Euclidean space R = RmU+1),
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When a = 0 the system (7), (10) and (11) is an explicit finite difference scheme for
the homogeneous boundary problem (3), (4) of the quasilinear parabolic system (1).
So the existence of the discrete solution is evident.

When 0 < a < 1, the finite deference scheme (7), (10) and (11) is implicit and then
is a system of nonlinear equation of m(J + 1)-dimensional vector v € R. In this case,
we can prove the solvability of the system by the fixed-point theorem of continuous
mapping in the finite-dimensional Euclidean space.

For this purpose, we construct a mapping Ty: R — R of the m(J + 1)-dimensional
Euclidean space R into itself with a parameter 0 < A < 1 defined by v = T)\(z) as
follows:

VI = ol AT S AT (%2 + (1 — )d207) + ArE s e (12)

for y=1,---,J — 1 and the boundary conditions vg = 0 and v;j = 0, where 0 < A <1
is a parameter and z = (z9,21,--+,25) € R. The notations A;-H"" and fj’-”“ (j =
0,1,---,J — 1) are as follows:

ArHe = A(ay, 47t ote) e = f(gy,evte

*n+a *nt+oa
J ; 51) )

X ]

and

oI = (BT 2 +[3”+1zj+63j zjp1) + (Bivf_y + Bgvf + Bg;vi1),  (13)
ot = (B zim1 + B 2 + B3 2i41) + (Bvioy + B0 + Bvjia), (14)

~ nta nta n
Sv *n+<x = By (a52j+% +(1- a)(Sv;:_%) + By (adz; 1+ (1— a)&vj_:lz_). (15)

Thus the mapping T transforms z = (zp, z1, e ,2J) € R tov = (v"+1 U?—H, ey

vty € R, that is v = Th(z) € R for any z € R and the parameter 0 < A < 1. This
defines a continuous mapping 7Y : R — R of the m(J + 1)-dimensional Euclidean space
R into itself with a parameter 0 < A < 1.

When A = 0, for any z € R, the image Ty : R — R is a fixed point To(z) =
(vf, v}, -+, v7) of the m(J + 1)-dimensional space R. This justifies one of the sufficient
conditions of the fixed point theorem of the continuous mapping in a finite dimensional
Euclidean space in [5].

Therefore in order to prove the existence of the solution for the nonlinear system (7)
and (10), it is sufficient to _prove the uniform boundedness of all possible fixed points
of the mapping Ty : R — R with respect to the parameter 0 < A < 1. Hence we need
to prove the uniform boundedness of all possible solutions of the nonlinear system

1 < 1 . ;
'u;.'*l = v} + /\T’L“LZA?'"Q(S%;-”LQ + At fJT“L“, j=1,2,---,J—-1 (D)
and the boundary conditions U6‘+1 ’UT"l = 0 with respect to the parameter 0 < A <1

5. Taking the scalar product 52'UJT-‘+“iz§-2) (j =1,2,---,J-1) with the corresponding
vector equations of the system (7)) for j = 1,2,---,J — 1 and then summing up the
results of the product for j = 1,2,---,J — 1, we then obtain :

J-1 J-1 J-1

2 nta n 2 a . n 2 1 2, nta n—+a 4o 2
Z((Sz-uj’+ ,1.vj+1)h§- ) = Z((S%}H ,U; )h§ ) p Armta Z(szj+ ,AjjL 5211j+ )hg '+
Jj=t 7=1 7=1



294 Y.L. ZHOU

J—1
n )\Tn_}.% Z (621);1 4 . '/-;).+a)h;2) ) (16)
Jj=1

Here (u,v) denote the scalar product of two m-dimensional vectors v and v.
For the first term of the above equality, we have

Z ((5 )t'n+a n+1 (2) Z (6’!‘77 + v 5“":’_?» l'”+1 Z (51)1”.?, z,jn;r]l ]7}4.—1)
- ‘

J—-1
n4wa |, n41 n+a ,n4ly n+<r n+1
(51 e+ (0] 1,1), ) = —Z((sv )1LJ+1,
j=1
n+a _ nta
where 6’0”_’-? = zmyj_’"l _UJ
‘ j+ 5 .

Iy h,]+1

Also for the second term of the above equality we have
2, n+ (2) +
Z((S 0T vt A Z(Jv” =T %)hﬂ_%.
j=0 J=0
Since the matrix A is positive definite, then

J—1
Z(()’v”‘“V A"+" 2 "+") l‘,(iZ) > aol|6%op e f3.
j=

For the last term of the above equality, we get

J-1 J—1

2 nto pnto 2 1 NI AT 1 n+o 4+ 2
Dt Y < ool et = S (e £ ng?
j:() ]:0

From the assumption (1), the last sum of the above inequality can be dominated as

follows:
J—=1
Z(.f;z,+u’ f}1.+a) (2) < Cv ( Z I(s()“”+”'2ll¢(2) + Z I(sl Un+al2 Z) + 1)
g0 j=1 Jj=

where (') is a constant independent of the meshsteps h = {h i+l l7=0,1,---,J—1} and
2

1 . .
r={r"t2ln=0,1,.---, N —1}. As a convention, we denote the constants independent
of the discrete solutions and the unequal meshsteps A and 7 by C’s with different indices
also in subsequent discussion. Here we have

J—1
Z lgovjvﬁalzhl(iz z |a 5n+1 n+1+ﬁn+1 ?7+1 +’3n+1 ;L:*ll)
J=1

+ (/341 i 1+55]U ﬂoﬂ’]ﬂ)}h( )
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J-1

: 1
2 2 1)2 12
SCQ{(.», Z I+ o TR ol )Z(ILH% +h_1)
=1
J-1
+Z !17“ +!1'”IZ—+—[(7J+1[ (h]+1 +h ;)}
i=
32(5(‘*‘”hﬂ{ﬂgH"2+WB-+lhmH§L
h/,'_l h 1
where Mp = nax {_J__Z_v - }
=01 =1 Lhy 1 ILJ_%

is the maximum ratio of the neighboring meshsteps. Then

J—1
%0, nta 2y (2) 24, n+t nil2
E 6%0 7 PR < Cof o llop IS + onllz)
=1}
where (U3 is a constant independent of the meshsteps and dependent on the maximum
ratio My, of the neighboring meshsteps. Shnilarly, we have

~
i

J—1

— N ~n+o ‘ Tty

31 e E:Wu 5u;’:f+;32
2

Je=

/’,H'Q[Zf( ) < (/4{“ H(S"nHH; + ”51’;11“5}

where (74 is a constant independent of the unequal meshsteps and dependent on the
maxinuun ratio My, of the neighboring meshsteps. Hence we have

J—1
ST rte, frrn? < Cola®op U + oo + el + i3 + 1)
J=1

For any m =1,2,---,J, we have

m__|
=20 8 ] < VARG,
4=0 -
where v = 0. This gives
it oo < VIliovp o, (17)
Also there 1s
J-1q J 1
ni2 2 p TP
e liz = Z E(|LJI t+ !I’j+1|2)h’j+% =~ S_‘ ( i) 1‘j+§||"”h“§ 5" Plovgl3-
7=0 Jj=0"
r n 1 1
Thus lepls < V?ll,duhnz
1
and also z"“ ) <] AU"H
A e LA
Then we have
J—-1 )
n+a  pnta : 2 n 2 n
(7 £770h7 < Co{o|ldop IS + [l6vR I3 + 13-

j=1
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Substituting all above obtained estimates into the equality (16), we then have

J-1
1 1 n+oa
(0772, 807 by s + S AT 200670
=0
J-1
< 3 @03, by + AT Cr (a8 G + 160R1 + 1)

j=0

or
a||(5vh+1”2 + (1 - 2a) Z ”15,6'0 )h]+1 + )\T"+200[|52 +°‘[|2
< (1 - a)l|svRll3 + —AT"+2C7{a2ll<50"“Hz + [16vR 13 + 1}

Taking

H<5 RIS+ —ll5vhllz,

J—-1

1
'Z 0(51’?41’ Vipyies
]:

we can rewrite the above inequality as follows:

(a—11- 2a]* - 2—-)\Tn+207a )lop 13 + ,\T"+zao||52 nta)2
1-2a] 1 . .1 . 1 .
<(1-a)- R el *tioy) (ourl3 + SoATTHCr

Taking again 7732 or 7 so small that

—1-—Tn+ C; <
200 -

N

k)

e

we see that 5 . .
5vn+l 2<__2+___ 5,n2+_
601 < =2+ ISR + 4

is uniformly bounded with respect to 0 < A < 1 for given meshsteps. From (17), w
also see that |[v}+!]|o is also uniformly bounded with respect to 0 < A < 1 for given
meshsteps. This completes the proof of the existence of the solutions for the finite
difference system (7) and (10).

Theorem 1. Suppose that the conditions (I) and (1I) are satisfied. For sufficiently
small meshsteps T = {T"+%|h =0,1,---,N — 1} independent of 0 < a < 1, the finite
difference scheme (7), (10) and (11) has at least one discrete solution va = v =
{U;‘Ij=O,1,---,J;nzO,l,---,N}, forany 0 < a < 1.

2. Estimation for Discrete Solutions

In this section we are going to derive some a priori estimates for the discrete solution
v = v = {UJ"|J =0,1,---,J; n = 0,1,---,N} of the finite difference system (7),
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(10) and (11) corresponding to the boundary problem (3) and (4) for the quasilinear
parabolic system (1) under the assumptions (I), (II) and (III).

6. Similarly, taking the scalar product of the vector §%v "+“h( )77+3 and the vector
equation (7) and then summing up the resulting relations for j=12,---,J—1, we get

J—1 -
2(521{?+a’?};}+1 _ n)h( ) =77 % 2 52U?+a,A;_t+a52v;z+a)h§2)

J-1J-1
n+ 2262 n+a fn+0)h(2’ n;:O,l,"',N—l.
j=1j=1
By similar verification as before, there is

J—-1
n n n n+l nta sntoa,ntoayy(2
80112 — 16pl3 + (20 — D[S —op)I5 + 2772 Y (8207, AT T )hﬁ-)
J=1

J—-1
_27-"+% Z ((5217;+“, f;'+a)h;-2). (18)

j=1
The last term of the above cquality can be dominanted as follows:

J—1 < J-1
+1 2, n+ +ayp(2) i1 2, n+ 1 nyl + +ayp,(2)
2 S, Y < T ol S S
j=1 i=
And also we have the estimate

1 J—1

ntl nta pniayp(2) o 1 atl +1)12 2
%_67' 2;(fj TR S%ET 2C7{||6v, T I3 + [lovplls + 1}

Hence we have

1
Pt S, frn® < o o™ R 1P e Cu {80 I vR I+ 1)
j=1

1
7. Let us consider the case 2a — 1 > 0 or 3 < a < 1, that is, the finite difference
scheme (7), (10) and (11) is implicit or called strongly implicit. Then (18) becomes

16up 1112 — R I3 + oo™ 3 162013 < Cur™ 5260 3 + 0uR I3 + 1} (19)

Then we have

1+ Cgt™
l6vp 15 < (_____)”5 rlI3 + ;
— CsT 1—-Cg7"72

From this iterative formula, we obtain

1+ C N CerhtE P 14 Cerita
et < [ IT (27 My oy 1 ()
k=0 1 — 1—Cgt +3 j=kt1 1 — Cgritsz
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) ! . .
We take the meshstep 7= {7772 {n = 0,1, -, N — I} so small. that is. the maximum

n -+
i 1. | 4 Cygr™T2
meshstep 77 = ax 7173 go small that Cem* < -, Thus we have H e e
; SO N ) N bt
o
n n v
YN IER] T 1+(8T 2 ~ | PSS | .
< N and ———-Tl—) < 201" FLAON Therefore we
1 1—Cgr?™2
() [ -8

eet the (‘sﬁnml‘(‘

3O 5,002 | o ntl 308"
SO S 4 20T T

Lemma 1. Under the conditions (1), (1), (MY for the suflicicutly small mesh-

1
sleps 7= {7113

n=0.L--.N—1} and 5 <o~ 1 Hhere ds the eslimale

L

max  J|dvr iy < Ny, 20
nr::()‘l(;",N || /L”Z = ( )
of ihe discrete solution va = of = {ofj =0,1.--- J:in =01, NV of the finite
rence seheme (7). (10) and (1) for the homogencous boundary problem: (3) and
(1) of the quasilincar parabolic system (1), where Wy is a constant independent of the
meshstops b= {/1./ ;l)%f =0.l.---.J =1} and 7 = {7"* ign =0.1,--- N = 1}.

Corollary. Under the conditions of Lemma L, there are lhe ostimates

Jomax (il loillee) < (21)
of the discrete solution vp = vff = {o}|j=0,1,-+-J:n=0.1,.--. N} oof the difference
sehenme (7). (10 and (L1) for the boundary problem (3) and (1) of the system (1), where
iy is a constent independent of the uncqual meshsteps.

Summing up (19) for n = s, s+ 1,---,m, we have

I8 IS — 1B + o0 D 1%

n=s
m .
e 412 Py 2 + 5 ‘ s
<O S ISR T+ Ol = 1),
n=s
Then for any 0 < s <m <N -~
m . I
NS e 0 NG 20T 4 (3T
T Y
1 S

Lemma 2. {(nder 11 conditions of Lemama Lo there is the cstimate

L S0t 2rmts < K 0<s<m <N~ 1 (22)
for the discrele solution v = v) = {l"" =0,1.---,J:n = 0,1,--- N} of the fi-
nite difference scheme (7). (10) and (11), where Ny is a constant independent of the

incshsteps.
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From the finite difference scheme (7), we have

m I l‘n.-H — 2 . m J—=1 n+1 \n (2)
h o h|"nts - Fn +—-—
B el KD DD DY s, [
n==s T -~ n==s I:l
m J— mo J—1
< 2 L Z |An+a52vn+al2h(2) n+s , ) Z A lfn +-(ll -’) n+~
"J—l TE=S 1 5|
Since the coefficient matrix A depends only on ,¢ and u. then /1"+" (j=1---.J-1
n=0,1---.N—=1)is uniformly bounded with respect to the m(‘\hst( ps h and 7. Ag,fnn

from the be hm jor (IT) of the vector function f, it is clearly that

mo g m J—1
2 Z, PR < Gy 30 ST {0 18R+ 1 < Cro.
news n=s j=I

This implies the following lemma.
Lemuma 3. Under the conditions of Lemma 1. there s the estimale

m +1 n
vp T — o2 .
$ |k s < -
— TTL+§ 2
n=s
0< s <m<N =1 for the discrete solution va = v] = {1 ”’1 =0.1.---,J:n =
0.1 N} of the finite difference scheme (7), (10) and (11). where W is a constant

/mi(,p( ndent of the meshsteps hoand 7.

Henee we have the following theorem for the estimates of the diserete solutions
va of the finite difference scheme (7), (10) and (11) corresponding to the homoge-
neous honndary problem (3) and (4) for the quasilinear parabolic system (1) of partial
differential equations.

Theorem 2. Under the conditions (I). (IT) and (IIT). for the sufficiently small

1
meshsteps 7= {7" 2 |n=0,1,--- N — 1} and 5 < v < 1, there are the estimales

F4

Cmax (lepllz 4 oeqis) + Z(UUZMIVHH PR+ et

n==0
‘ m“l '1 1'/I:'+l i ["II:I' f'g n+t % - 2 S P2 \\;I o2 _net i
} e | TR A < Ky H@h,”g + ”f Chiia b >y, 2t -
i ned 2 Lt
n=0 T - ne=) (2])

Jor the discrete solution ea = vj, = {v;l[] =0,1,---,JJ:n=0,1.---.. N} of the strongly
implicit difference scheme (7), (10) and (11) corresponding Lo the homogencous bound-
ary problem (3) and (4) for the quasilinear parabolic system (1). where K7 is the con-
stant independent of the meshsteps and here f(z,t) = f(x.1.0.,0).
8. Now let us consider the explicit and weakly implicit finite difference scheme (7),
. . 1
(10) and (11), that is the case of 0 < a < 5

(1) For this purposc let us at first consider a mapping of the Euclidean space R
of m(J 4+ 1)(N + 1)-dimeusion into itself. For any zo = zj = {z]|j = 0,1,---,J;
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n = 0,1,--- N}, we define va = vf = {77 = 0,1,---,J; n = 0,1,---,N} as the
solution of the following finite difference system

Uv_v,+] T

U *
J J _ sntag?2 nta n+a *
L —A]' 51’j +f]’ (7)
T2
and the homogeneous boundary conditions (10), where A"+“ (j=1,---,J —1) are

obtained from A'j"'“’ (j=1,---,J — 1) as va is replaced by ZA respec,tlvely. For any
given za € R*, the solution va of (7)*, (10) and (11) exists by means of Theorem 1 in
the previous section.

(2) The solution va of the difference system (7)*, (10) and (11).is unique. For the
justification of the uniqueness of the solution, let us suppose that for given vectors
vi(j =0,1,---,J), there are two solutions v?“ and 'E';”'H (j =0,1,---,.J). Hence then
we also have

ot — 'u.,’7

where f,n“‘ (j =1,---,J —1) are obtained from f;“m (j=1,---,J —1) as the vectors
”'H (j =0,1,---,J) are replaced by 17;-1“ (7 =0,1,---,J) respectively.
Denote wJ”+l =t 5;“ (=0,1,---,J). Subtracting one difference system by

J
the another, we get

. ok L
“‘;_1 +1 =a = A '}-L“XT'”+352‘U"-7'+1 + Tn-f— (f )n+a ( n+1 n+1 +[3n+1 n+l /}”"‘1 'Jni»ll

+ T"J“]? (fy );”L“(v(/} 5urn+1 + ﬂ2] 5’w"+1),
where

Ly
fo = / 5[(:17,t,Tu+(1 —7)u, 7p + (1 — 7)p)dr,

fi= A d}{(vt7u+(1—r)u ™+ (1 — 7)p)dr,

are m x m matrices and then are all bounded.

Making the scalar product of the vectors 62w;.‘+1h,§.2) and the above equations and

summing up the resulting products for j =1,---,J — 1, we obtain

J-1 J—
Z(52-11.'}'“,11/"“)]1(2) — arts Z 52w"+1 "+a5w"+l)h(2)

=1

+(YT"+ Z 5211,n+1 (f )n+a[ﬁn+1 n+1 [jn-}»l n+l+[)m+l ;:f])h?)
]~l

S G, (e Wi+ By St IR,

7=1

where (fg);-‘“" and (f; );H'o‘ (j=1,---,J — 1) are bounded.
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By a similar method of derivation as before, we can obtain the inequality

]7 . B
8up I3 + Saooll8up ET T < aCy TR Swpt .

Let us choose the meshstep 7 = {7t ln 0,1,---,N —1} or 7* so small that 7*Cy; <
1. Then the above inequality implies that [|(5wh+1||2 = 0. This shows that n;’“ =7t
(j = 0,1,---,.J) and the solution va of the difference system (7)*, (10) and (11) is
unique.

Thus the mapping of Euclidean space R* into itself is defined. Denote this mapping
of Euclidean space R* into itself by H : R* — R*, that is, for any zao € R*, there is
va = Hzp.

(3) Let G = {:A\ max 27| < D} be a bounded set of the Euclidean

n=0,1,---,N;5=0,1,---,J
space R*, where D is a constant to be determined. Evidently G is convex. We want to
determined the constant D in order that the image of the bounded convex set under
the mapping H lies inside the set G itself, that is H(G) C G.

n+ah( ) n+

Now making the scalar product of the vector §2 v; and the vector equa-

tion (7)* and summing up the resulting products for j = 1, -, N — 1, we have

J—1 -
Z((SQ?’?“_Q, ,U'Jr_l-i-l _ U;)hgg) —n % Z 62 n+a ;1+a(52 n—!—a)h(z)
L J—-1 5
+ 73 37 (8%, frt)pl?)
=1
or
J-1
1807 E — 1R 13 + (2 — ISR+ — o)l + 2072 3 (6%, Artestorten D
j=1

(vl—‘

— 2 nta pntay(2)
Z (8%, frH )R,

The difference term in the above equality can be calculated as the following way:

n+1 n n+1 n
1 2 (Vif1 —vi) — (07 —vf) 2
Jo(+t = Rl = Z R L LT
J7+3
< (T"+§)2§ ‘v;ljll -V 3 'U;}H - vy 2h
- h* — Tn—l—% TR‘F% ]+i
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T 2325 AR oo g2 ntay 7, (2)
<H(T—) X {araagratgte Ayttt n

ANARTS:

n+% o d=1 / p‘Z( n+<v)

y &

((527'41;4-0 .n Iv(v(s.l n-|~a)h( 2)

+(1+ 1) (e, prren®l,

where h, = j:(),I]H~i-?.I~l h,j+% and the symbols p(j{}”“) and o(j{}”“) are defined as
|A¢] o (6,49
p(A) = sup ——, o(A)= inf
( cern [ A= <12

respectively. here p(A) is the radius of the spectrum of the matrix A and o(A) measures

the definitencss of the matrix 4. Evidently, p(4) > o(A) > o > 0. In the case of
1

0<a<s, let us suppose that the meshsteps 7 = {T”Jr%ln =0,1,---,N — 1} and

h = {hj +;\,j =0,1,---,J — 1} are not chosen independently, but can be chosen with
restriction

2 e hZ (=, f)€QT,u|<6I\oD o(A(z,t,u))

1 1
wherce =1for1 > a > §;O<s< lfor0<a< ;,and

o) 3n+1| + l52+1| + wn—H” [lﬁ-@l + |ﬁ3 1+ |88 H < 6Ks.
Then

(1 - 20)[3(0f "~ op)IIE <201+ )1 - °)00'r”+2 1545 +18

Z(f"’*“ frro)n?.

+2(1+é)(1—€)

1
Hencee in the case of 0 < a < 2’ we have
1 ~ _ «
15073 — 113 + 20072 (1 — & — (1 4+ &) (1 — ) I6* v ™13

n+% 1 g (2)
(= +2(1+ A=) DUt AR,
j=1

T

< -
ao 4g

1 1
Then taking € = 15 and & = 2% we get

1JI

Z(fn+a fn+a)h(2) (25)

1 57"t
v 13 — 16vR 13 + Seoor™ 2 16707+ E < o
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By the same way of estimation, we can prove that there exists a constant D(=) such
that

jz=0,1,: {]n%x_ N iU]"I < Dle)

for given 0 < = < 1, where D(¢) is 1ndependent of the discrete function va and za and

also independent of the meshsteps h = {hﬁélj =0,1,---,J—1}and 7 = {7"" S =
0.1.---, N = I}. Taking this D(e) for given 0 < ¢ < 1, we see that the 111;1‘])})i11g H
maps the bounded convex set G into itself. By the Brouwer fixed point theorem, there
exist at least one fixed point of the mapping H : G — G in the bounded convex set
(;. Hence for the fixed point va, there is va = Huva € G. For these fixed point, the
inequality

Frrd p2(ante)

1
4(2 ) he o(ATFe) sl-e (26)
holds for y =1,2,---,J - 1;n=0,1,- N—landO<a<1

From the above discussion, we have the following statemon‘r for the restriction of
meshsteps h = {h_H%IJ =0,1,---,J -1} and 7 = {T"+~ ln=0,1,---.N —1}.

(V) For any given small constant 0 < ¢ < 1, there is a constant D(<) which is
determined by ¢ and the data of the original problem or is dependent on ¢ and on the
coeflicient matrix A(x.f,u) and the free vector term f(x, ¢, u. p) of the system (1) and
the initial vector function ¢(z). The meshsteps h = {h‘j_ir;l; lj =0,1,---,J — 1} and

T = {T”'*% [n=0,1,---, N — 1} are so chosen that they satisfy the relation

4(1 )T* p2(A(m,t,'u,)) <l-e (27)

where 1 — 2« > 0.

It is clear that the fixed points are the discrete solutions of the finite difference
scheme (7). (10) and (11). Hence by an analogous argument, we obtain the following
theorem of estimation for the discrete solutions of the explicit (« = 0) and the weakly

implicit (0 << %) difference scheme (7), (10) and (11).

Theorem 3. Suppose that the conditions (I), (I1) and (I11) are satisfied. Suppose
that 0 < o < % and the meshsteps h = {hj+%|.7 =0,1,---,J -1} and 7 = {T”+%|’n, =
0,1,---, N — 1} satisfy the condition of restriction (V). The weakly implicit (O <a<
%) and the explicit (a = 0) finite difference schemes (7),(10) and (11) have at least

one discrete solution va = vj = {v;-‘|j =0,1,---,J;n=0,1,---, N} and there are the
estimates

N-1
opax (IR 13 + 10uii3) + 3 (o3 + lovy o3 + lo%op+eI3) 7+ 2
7=0
n+1 L1
+3

+ Z th sty
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< K(e){lenl3 + 1d2nll3 + Z fe et e,
(28)

where K (<) is a constant independent of the meshsteps h and 7 and dependent on
0 < £ < | given in the condition (V) and here f(z,t) = f(z,t,0,0).

9. Now we turn to prove the uniqueness of the discrete solution va = vp, {U"I ] =
0,1,---,J;n=0,1,---, N} for the nonlinear difference system (7), (10) and (11). Sup-
pose that for the given v}(j = 0,1,---,J ) there are two solutions v;“” and U"H
(j =0,1,---,J). Then we have

l’n+1 "
52 . 1 1
- s L = A;-"M& v;L‘H’ + f;”’", G=1,---,J=1); vytt=u]""=0
and
gl g _ _
N R 5 L= Antegigrte g frre (j=1,-,J-1); gt =0 =0,

where /13”‘“‘ and f}“”’ (J =1,2,---,J — 1) are obtained from A?}"H‘ and f}”’“ (j =
1,2,---,J — 1) respectively by the replacement of v"+1 ( =0,1,---,J) by the corre-

sponding ﬁ?“ (j =0,1,---,J). The difference w; = v;“q ;’“ satisfies

'wj :a,,_n+§A;}+a52,wj + Tn+%(A;_l+a _ A;}+a>52@?+a
7_n+§(f;z+a - f]ﬂ+a)’ (G=1,2,--+,J = 1), (29)
Wy =Wy = 0.

From the assumptions (I), (II), (IV) and the estimates in Theorem 2 and 3, we have
the following estimates

1= = Frteld < aP(enll6wnld + Cu(enllunl),
max (AR - AR, < aX(esllbwnlld + Cralea) lwnll),

n=0,1,,

8202372 < Cha, (30)

where C’s are independent of the unequal meshsteps.
Now firstly making the scalar product of the vectors 6211)] h( ) with the vector equa-
tion (29) and summing up the resulting products for j = 1,2,---,J — 1, we have

J—1
3 (6%wj, w)hP) =ar™ts 2(62w1,A"+a62w] %
j=1 j=1
L3 e 52 (2)
+ Tn+§ (5 ,wj, (An+a A;_l+a)5 ﬁ;t+a)hj
j=1
J—1

"t Z (8%wj, (F+e = Frro)h®. (31)
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Using the estimates (30), we have

J-1

nti n+a An+a —n+ta n+li

8 3 (6%, (AT — APT)st ) nSY < 7t {aes | 6%wall}
=1

1 - 1
g AR = AR NSoR R IR} < S acalldunl}

« = n a m
+ 4o, @l + Cuaed)wnll) - Crar™ %Z w;, (f7 = 7 )hs?

<rH{aca|Funllf + - (@160l + Cuz(e) l|wh”2)}

Then (31) becomes

4e,C -
(1 _ 2 13)”6 "% +a7_n+ [0-0 _ 263 - 4 :I”(sz h”2
a 1
S4_s—3(C13012(€2) + 7’"+2011(51))Hwhug'

2 209

2 .
C’ 9 ) there is

Taking e — 1 =¢€9 =€3,e3 < mln(

1
|6wn |3 + acor™*2(|8%wh |3 < Cuallwsll3. (32)

Secondly taking the scalar product of the vector wjhgz) and the vector equation

(29) and then summing up the resulting relations for j = 1,2,---,J — 1, we obtain
1 2,2 L @, ntd inta) 52 @)
Z ]wjlzhj =ar"t3 Z (wj,A;?+"(52wj)hj + 72 Z(wj’ (A;.“L" - A;.“LO‘)& 17;-‘+")hj
j=1 j—=1 i=1
. J-1 B @
Y (g, 7 = FORS, (33)

Using the estimates (30), we have

|, AFesy h(2)| < arth (El16%wh |13 + Cis(&)||wrll3),

T
—‘II

n+:

=

(,wJ, (An+a An+a)62-—n+a)h 2)' < ”An+a An+a”2 (”52hn+a”2 n+ )
1
1
+ar™ 3C15()|lwnll < 0eCrslealldwn 3 + Cra(ea)lwall3] + @™+ 2 C1s () lwallz,
J-1 -
3 (wy, £ = FrnD| < e - frtel
7j=1

+ar™ 315 (@) |wnll} < T aelerl|6wnl3 + Cua(en) lwal] + ar™+2Crs (@) llwnll3

.
Il

1
i
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Then (33) becomes

1 n+ i -
Hwh”%(1«—0(6?C|3C|2(€2) — CYET”+2011(€1) — 3ot +2C15(6))

< er" a1+ e))|[0%wnllf + agCses || Swnll3.

Taking
g < ! ot !
~ 4C19Ch3’ - 4(0115 + 3015(6—))7
we get
w2 < 4aer™ 2 || 62w |2 + 2C 58]/ 6w ||3- (34)

Substituting (34) into (32), we have
i 1
”6711/1”% -+ (100Tn+§||62’wh“% S 4a§T"+§Cl4|l(52whl|g -+ 20136’145”(51[}},“%

or .
1 - <
(1 - 20130|4§)“(5?ﬂh”% + aT"+§(00 — 40146_‘)”(5211/‘”@ < 0.
Taking
1 1 (eJ1)
¢ < min ( —
et - 4C15Cy3° 4C13C1s” C'14>’
we have
| 6w |2 + aoor™ Tz 162w |3 < 0.
Hence we obtain w, = 0, that is v?*t! = #7*!. This completes the proof of the
h h p

uniqueness for the discrete solution of the difference scheme (7), (10) and (11).
Theorem 4.  Suppose that the conditions (I), (II), (III) and (IV) are satisfied
and the restriction condition (V) for the unequal meshsteps is valid for the cases of

1
the explicit (a = 0) and weakly implicit (O <a< —2-) finite difference schemes. As

the meshsteps T = {TTH_%I’IL =0,1,---,N — 1} or 7 is sufficiently small, the discrete
solution va = vy = {vﬂj =0,1,---,J;n =0,1,---, N} of the difference scheme (7),
(10) and (11) is unique for either the case of strongly implicit or the case of explicit
and weakly implicit difference schemes.

3. Convergence Theorems

10. In this section we are going to establish convergence theorems of the implicit and
explicit finite difference scheme (7), (10) and (11) on the basis of the obtained estimates

and the convergence properties of the discrete solutions va = v} = {1);‘ l7=0,1,---,J;
n=0,1,---,N}.
Let us define the piecewise constant functions
el g
_.n+tl T _  n+ ~ _ d J
vh(z,t) = vi", T =0l dp(a,t) = R
+1 .
for (x1t) € Q? L= {Tgljl <z < :1’52;7 " < t < tn+1} (.7 :O,l,"',.]; n =
2 2
0,1,---,N — 1), where h_1 = h;, 1 =0, 20 = 2_1, j = Tj41. Define the piecewise
2 2

constant functions

o (z,t) = 6uTFY, o) (,t) = Suft®
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n L .
for (z,t) € QJ:; ={z; <z <z t" <t <Y} (G =01, J—-1; n =
0,1,---,N —1). Again define

,U;;T(:z:,t) = 521;?+1’ @h T(z,t) = 52v n+()1

n+1
for (x,t) €Qj+2 (j=0,1,---,J-1;n=0,1,---,N = 1).

1
Let us define A7(x,t) = A" and f7(z,t) = f7T in "2 for j=0,1,---,J~1
h J h J J
andn=0,1,---,N — 1.
As i — oo and the sequences of meshsteps 7(; and h;y tend to zero, the sequence of
@) (&)

piccewise constant functions UT(’) z,t)} uniformly converges to u(x,t) in Q7 and the
hy g

sequences of piecewise constant functlom corresponding to the 501'”+“ and 6% "+°‘ in
the expressions of A"+" and f; "t respectively are also uniformly (onvergent to u(x t)
in Qr as i — oo and then 7(;) and h(;y — 0. Hence as 7 — oo and then 7y — 0 and
by — 0, the sequence of piecewise constant functions {A;‘:} (z,t)} is also uniformly
convergent t A(z,t,u(x,t)) in Qr.

As i — oo and then 7 — 0 and hg;y — 0, the sequence of piecewise constant

functions {ﬁh:(_i)) (z,t)} is strongly convergent to u,(x,t) in L2(Q7). Then the sequence

uh( ) (z,t)} also converges to u,(x,t) pointwisely almost everywhere in Q7. In this case

the sequences of the piecewise constant functions corresponding to the §'v "+°‘ in the

7t s also convergent to ug(z,t) pointwisely almost everywhere in Qp.

expressions of f
Therefore the sequence { f;ﬁ::(x,t)} is also pointwisely almost everywhere convergent
to f(z,t,u(z,t), uz(x,t)) in Qr. On the other hand f7(z,t) is uniformly bounded in
Ly(Qr) with respect to the meshsteps 7 and h. So the sequence { f;ﬁ’; (z,t)} is weakly
convergent to the m-dimensional vector function f(z,t,u(z,t), u.(z,t)) as i = co and

then 7(;) — 0 and h(;) — 0.
Also the sequence of piecewise constant functions {vh:(;) (z,t)} is weakly convergent

to ugzz(x,t) in Lo(Qr) and the sequence {17,:((1)) (z,t)} is weakly convergent to u;(z,t) in
Q7 as i — oo and then 7(;) — 0 and h@ — 0.

Here the limiting m-dimensional vector function u(z,t) belongs to the functional
space W (Qr).

11. Let ®(z,t) be any smooth test function. Define the piecewise constant func-
tion @] (z,t) corresponding to the discrete function {@% = &(z;,t")|j = 0,1,---,J;

ntl
n = 0,1,---,N} as before, that ®(z,t) = 7 in Q]-+2 for j = 0,1,---,J and
n=0,1,---,N —1.
Here we have evidently the identity

n+1 ,Un 9 L
An+¢152 n+a f@+a] h§ )Tn+§ = 0.
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This is equivalent to the integral identity

(1)

/ / (1’)—7 O (, )[5] (2,1) — AL (2, )5, (2,8) — f7 (2, )] dwdt = 0.

When ¢ — oc and then 7(;) — 0 and h(;y — 0, {@T(’ (z,t)} and AT(’) (x,t)} are uniformly

convergent to ®(z,t) and A(z,t,u(x,t)) respectively in Q7 and {vh(’) (z,t)}, vh:(; (x,t)}

and {fhz_;(x, t)} are weakly convergent to uy(z,t), uz(z,t) and f(z,t,u(z,t)), uz(z,t))
respectively in Lo (Q7).
Here we have

/ /(1])" ,Tl(;v,t)ﬁ,:(az,t)dxdt—/ O(z, )07 (z, t)dzdt
Qr

M»a

gj//QT@,:(x,t) — &(z, )0 (x, t)dad]

T 'l T /i
+|/0 /0 : @;(m,t)ag(m,t)dxdt]Jr}/o /m 7 (@, )5 (x, t)ddt)
IJ_%

By means of

}//Q (B](2,1) — B, )55, (z, ) dedt]| < VIT|B], — Bll1._ o) 157 2(0)-
T

T x(ll) 1
[ [ @i 05 0dedt] < /503 71900 172 0

1 . .
f/ /m (2, )37 (2, o] </ Shy s TIBF 1@ 52200,

we see that as ¢ — oo and then 7;) — 0 and h;; — 0

/ /(IJ)_E @;(()) x t)f),:((f)(x t)dxdt —)/ ®(z, t)uy (z, t)dedt.

nh—‘

Similarly, we can verify that as ¢ — oo and then 7(;y — 0 and h(;y = 0,
/ /(1) ,Tl(;)) z t)f;:zl: (x,t)dzdt — // b(z, t) f(z,t,u(z, t), ug(z, t))dzdt,
! Qr

/ / (j) f@,j((”)( DAY (2,0)0, (2, t)dadt — / / B(x, 1) Az, t, u(@, t))gs (z, £ dadt.

e
Thus for any smooth test function ®(x,t), we obtain m-dimensional integral identity

//Q O (z,t)[ue(x, t) — Az, t,u(z, t))upe(z,t) — flz, t,u(z, t)), us(z, t)|dzdt = 0.
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This means that the m-dimensional vector function u(z,t) satisfies the quasilinear
parabolic system (1) of partial differential equations in generalized sense. It is clear
that u(z,t) belongs to the Banach space H (Q ).

Since the sequence {vh( ) x,t)} is umf()rmly convergent to u(x,t) in the rectangular
domain Qr, the limiting m dimensional vector function u(z,t) satisfies the homoge-
neous boundary conditions (3) and the initial condition (4) in classical sense. This
means that the m-dimensional vector function u(z,t) € W, (2.! )(Qy) is just the gener-
alized solution of the boundary problem with the homogeneous boundary conditions
(3) and the initial condition (4) for the quasilinear parabolic system (1) of partial
differential equations.

Hence we have proved that there exists a sequence of meshsteps 7(;) and hgy (1 =

1,2,---) such that as i — oo and then 7(;y — 0 and h(; — 0, the discrete solutions vh(())

of the finite difference scheme (7), (10) and (11) converge to the m-dimensional vector
function u(x,t) € VV(Z’I)(QT) which is just the generalized solution of the problem (3)
and (4) for the quasilinear parabolic system (1). The sense of ¢ onvergence is as follows:

{v;(()) z,t)} converges uniformly to u(z,t) in Q7 and {vh( "z, 0)}, {vh() (z,t1)} and

{UT(') (z,t)} converge weakly to ug(z,1), tuee(x,t) and w(z,t) respectively in Lo(Qr).

12 Theorem 5. Under the conditions (I), (II), (I11) and (IV), the homogeneous
boundary problem with the boundary conditions (3) and the initial condition (4) for the
quasilinear parabolic system (1) of partial differential equations has a unique generalized
solution u(z,t) € W2(2’1)(QT), which is a m-dimensional vector function, satisfying
the quasilinear parabolic system (1) in generalized sense and satisfying the boundary
conditions (3) and the initial condition (4) in classical sense.

The uniqueness of the generalized solution can be justified by usual way.

By means of the uniqueness of the generalized solution of the homogeneous bound-
ary problem (3) and (4) for the quasilinear parabolic system (1) of partial differential
equations, we then can obtain the absolute convergence theorem for the strongly im-
plicit finite difference scheme (7), (10) and (11) and the relative convergence theorem for
the weakly implicit and explicit finite difference schemes (7), (10) and (11) as follows:

Theorem 6. Under the conditions (I),(II),(III) and (IV) as the meshsteps
h = {hj+—;-|j =0,1,---,J —1} and 7 = {T"+%|n =0,1,---,N — 1} tend to zero, the

m-dimensional discrete vector solution va = vj, = {U;L'j =0,1,---,J;n=0,1,---,N}
. ; L, 1
of the strongly implicit finite difference scheme (7), (10) and (11) with 3 <a<1 con-

verges to the unique generalized solution u(x,t) € W2(2’1)(QT) of the boundary problem
(3) and (4) for the quasilincar parabolic system (1) of partial differential equations.
Theorem 7. Suppose that the conditions (I),(IT),(11T) (md (I1V) are catlsﬁe
When the meshsteps h = {h; 1 j=0,1,---,J—1} and T = {7'”Jr |ln=0,1,- -1}
tend to zero with the condztzon of restriction (V), the m-dimensional d1sc7efe vector
solution va = vj = {1)}' lj =0,1,---,J; n=0,1,---,N} of the weakly implicit (() <

1
a < 5) and the explicit (o = 0) finite difference schemes (7),(10) and (11) converges
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to the unique generalized vector solution u(z,t) € W2(2’1)(QT) of the boundary problem
(3) and (4) for the quasilinear parabolic system (1) of partial differential equations.
The convergence of discrete vector functions va to the vector solution u(r,t) €

H/"2(2’1)(QT) as the unequal meshsteps h = {h; 1|j =0,1,---,J—1}and 7 = {‘r"+%|n =
2

0.1,---, N —1} tend to zero means that for any convergent to zero sequence {h;y, 7(;)}

of meshsteps as i — 00, the corresponding sequence {v;‘(’)) (z,t)} converges to u(z,t) €

W/2(2'1) (Q7) in the above mentioned sense. Since the generalized solution wu(z,t) of

the boundary problem (3) and (4) for the parabolic system (1) is unique, the limiting

m-dimensional vector function is always the same one m-dimensional vector function
J '(211)

u(z, t) € Wy, (Qr).

Now suppose that there is a sequence {h(i), T(;)} which converges to zero as i — 0o,
such that the corresponding sequence {UZ(())(I, t)} is not convergent. Then there exist
two subsequences {h;, 7(;) } and {h(;),r(;)} with the properties that as i — 0o, 7 — 00
and then hgy, by, 74y, 75 = 0, such that the corresponding sequences {h(,;),’r(i)} and

{/z,v;((":i’) (z,t)} and {U,Tl((z)) (x,t)} satisfy the relation

T(4)

|v,*" — v >e
h(iy hiy N Loo(QT) ’
. . T
where e > 0 is a certain constant. Let subsequences {v’-l()(:c,t)} of the sequence
)

{‘u;(("’)) (z,t)} and the subsequences {vgm (x,t)} of the sequence {v;((’)) (z,t)} be uniformly
G ) i

convergent to uy(z,t) and ug(x,t) respectively in Qr, then we have

lur — w2l Lo (@r) 2 €

This contradiction shows that for any sequence {h(i),'r(,-)} convergent to zero, the cor-
responding sequences { v;(('))} converges always to the unique generalized solution u(z, t)

of the boundary problem (3) and (4) for the system (1).
Hence theorems are proved.
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