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Abstract

This paper deals with the approximate solution of the Fredholm equation u−
TKu = f of the second kind from a probabilistic point of view. With Wiener type
measures on the set of kernels and free terms we determine statistical features of the
approximation process, i.e., the most likely rate of convergence and the dominating
individual behavior. The analysis carried out for a kind of Galerkin-like method.
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1. Introduction

Quantitative probabilistic analysis was carried out for several numerical problems.
For a systematic survey, we refer to Traub et al. (1988) and references therein. Smale
(1985) gave the first quantitative analysis for concrete measure. He expected that
the approach there might lead to a more systematic way of analysing for the cost of
numerical algorithms. Heinrich (1991) continued this line and gave the first quantitative
analysis for concrete measures and algorithms for integral equation of the second kind.
There, the analysis was carried out for the Galerkin method and the iterated Galerkin
method. It is natural to ask whether other numerical problems can be analyzed from
this point of view. In this paper we get counterparts for a kind of Galerkin-like method,
which was proposed by Schock (1971). For brevity, later on, it was called Q-method
(see, e.g., Schock (1982)). For a more precise discussion of relation between Q-method
and Galerkin method and iterated Galerkin method we refer to Schock (1982).

Finally, we briefly outline the contents of this paper. Section 2 reviews some basic
facts about Gaussian measures. Section 3 deals with the main problem in terms of
general Banach spaces and Gaussian measures. Section 4 specifies our main problem
and formulates the principal results. Section 5 and 6 are devoted to the proofs of the
principal results.
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2. Preliminaries on Gaussian Measures

We consider only Banach spaces over the field of reals throughout this paper. Given
Banach spaces X and Y we let L(X, Y ) denote the spaces of all bounded linear operators
T from X to Y , equipped with the operator norm ‖T‖. K(X, Y ) is the space of compact
operators, and we write L(X) and K(X) if X = Y . X∗ stands for the dual space of
X,B(X) is the σ-algebra of all Borel subsets of X. The symbol 〈, 〉 is used for the
duality between X and X∗, while (, ) always denotes inner products. If X = H is a
Hilbert space, we identify X∗ with H in the usual way, so that 〈, 〉 and (, ) coincide. For
x∗ ∈ X∗, y ∈ Y , x∗ ⊗ y ∈ L(X, Y ) denotes the operator defined by (x∗ ⊗ y)(x) = 〈x,
x∗〉y.

Now we list some basic notions and facts about Gassian measures, the emphasis
laid on the operator theoretic aspect. A Gaussian measure on a Banach space X is a
Radon probability measure µ such that each x∗ ∈ X∗ is a symmetric Gaussian random
variable on (X, µ) (which may be degenerate, that is, = 0 almost everywhere). We
shall consider only symmetric, i.e., mean zero Gaussian measures. For a Hilbert space
H we let γH denote the standard Gaussian cylindrical probability (see [Kuo (1975)],
[Pietsch (1980)]). For T ∈ L(H, X) let

Eγ(T ) = sup
F⊂H

dimF<∞

∫

F
‖Th‖dγF (h), (1)

and let Πγ(H, X) denote the set of all T ∈ L(H, X) with Eγ(T ) < ∞. Eγ is a norm on
Πγ(H, X) turning it into a Banach space. It is easily checked that

‖T‖ ≤ (π/2)1/2Eγ(T ). (2)

For a further Hilbert space H0, a Banach space X0, S ∈ L(H0,H) and U ∈ L(X, X0),

Eγ(UTS) ≤ ‖U‖Eγ(T )‖S‖, (3)

(it follows from [Linde and Pietsch (1974), Lemma 2]). Let Rγ(H, X) be the closure of
the finite rank operators in Πγ(H, X). For T ∈ L(H, X), let TγH denote the cylindrical
probability measure induced on X by T , that is, TγH = γH(T−1(B)) for cylindrical sets
B. Now T ∈ Rγ(H, X) if and only if TγH has an extension T̃γH to B(X) which is a radon
measure (such an extension is unique). So T ∈ Rγ(H, X) implies that T̃γH is Gaussian.
Conversely, If µ is a Gaussian measure on X, there is a separable Hilbert space H

and an injection J ∈ Rγ(H, X) with µ = J̃γH . H and J are essentially unique (up to
isometries). Note that (J,H, X) is then an abstract Wiener space (see [Kuo(1975)]). If
µ = T̃γH , T ∈ Rγ(H, X), then Cµ = TT ∗ is the covariance operator of µ, the closure of
ImT is the support of µ, and

Eγ(T ) =
∫

X
‖x‖dµ(x). (4)

These facts can be found in [Kuo (1975), Linde et al (1974), Traub et al (1988)]. If
X = G is a Hilbert space, then Rγ(H, G) coincides with the class of Hilbert-Schmidt
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operators S2(H, G) and

(1 + (π/2)3/2)−1σ2(T ) ≤ Eγ(T ) ≤ σ2(T ), (5)

where σ2(T ) denotes the Hilbert-Schmidt norm. This is a consequence of [Pisier (1986),
Corollary 2.5 and inequality (2.7)]. The following result will plays crucial pole in our
analysis. It takes from Pisier (1986).

Propsition 2.1. Let X and Y be Banach space, let µ be a Gaussian measure on
X, µ = J̃γ(H, X) and H is a Hilbert space. Let T ∈ L(X, Y ). Then, for all t ≥ 0 and
τ = ±1,

µ{x ∈ X : τ(‖Tx‖ − Eγ(TJ)) > t} ≤ exp(−t2/(2‖TJ‖2)). (6)

We also need the following result of [Chevet (1878), Lemma 3.1] and [Gordon (1985),
Corollary 2.4]

Propsition 2.2. Let X and Y be Banach spaces, m,n ∈ N , x∗1, · · · , x∗m ∈ X∗,
y1, · · · , yn ∈ Y . Define the operator U ∈ L(lm2 , X∗), V ∈ L(ln2 , Y ) and W ∈ L(lmn

2 ,
L(X, Y )) by

U(ξj) =
m∑

j=1

ξjx
∗
j , V (ηi) =

n∑

i=1

ηiyi, W (ζij)
n∑

i=1

m∑

j=1

ζijx
∗
j ⊗ yi.

Then Eγ(W ) ≤ ‖U‖Eγ(V ) + Eγ(U)‖V ‖ ≤ 2Eγ(W ).
Finally, we define some notations which we will need in the sequel. If A is a set and

f, g : A → [0,+∞) are nonnegative functions, we write

f(a) ≺ g(a)

if there is a constant c > 0 such that f(a) ≤ cg(a) for all a ∈ A. Next,

f(a) ³ g(a)

means f(a) ≺ g(a) and g(a) ≺ f(a). If f and g depend on a further variable (collection
of parameters, etc.), say f(a, b), g(a, b), b ∈ B,

f(a, b) ≺a g(a, b)

means that, for each b ∈ B, f(a, b) ≺ g(a, b) (consequently, the constant of c may
depend on b). Analogously, ³a is defined. If the choice of A is ambiguous, we write
≺a∈A and ³a∈A.

3. General Estimates

We begin with an abstract formulation of the Galerkin-like method. Let X be a
Banach space and I the identity operator on X. Let T ∈ K(X) and y ∈ X. Assume
that the Fredholm equation of the second kind,

x− Tx = y, (7)
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has a unique solution x = x(T, y). We want to approximate this solution. For this
purpose let (Pn)n∈N ⊂ L(X) be a sequence of finite rank projections, N always means
{1, 2, · · ·}. Let n ∈ N and assume that there exists a unique zn = zn(T, y) ∈ ImPn

satisfying the Galerkin-like equation

zn − PnTzn = PnTy. (8)

We define the approximate solution to be

xQ
n = xQ

n (T, y) = y + zn, (9)

and the error of the Galerkin-like method by

δQ
n (T, y) = ‖x(T, y)− xQ

n (T, y)‖. (10)

Lemma 3.1. Let T ∈ K(T ). If I − PnT is invertible, then, for each y ∈ X, (8)
has a unique solution. Hence

xQ
n (T, y) = (I − PnT )−1y. (11)

Proof. Equation (9) has a unique solution if and only if equation (8) has a unique
solution. If I − PnT is invertible, then equation (8) has a unique solution. Thus, if
I − PnT is invertible equation (9) has a unique solution.

From
I + (I − PnT )−1PnT = (I − PnT )−1

we can obtain (11). This completes the proof of Lemma 3.1.
Now we specify our measures. Let G and H be Hilbert spaces, let Φ ∈ Rγ(G,K(X)),

J ∈ Rγ(H, X) and assume that J is an injection. Put µ = Φ̃γG and ν = J̃γH . To
handle stability, we introduce the following sets. Let α1, α2, β1, β2 > 0, n0 ∈ N , and
let WQ(α1, α2, β1, β2, n0) be the set of all T ∈ K(X) satisfying

(i) T (J(H)) ⊂ J(H) and ‖J−1(I − T )J‖ ≤ α1,
(ii) I − T is invertible, (I − T )−1(J(H)) ⊂ J(H), and ‖J−1(I − T )−1J‖ ≤ β1,
(iii) for all n > n0, ‖I − PnT‖ ≤ α2,
(iv) for all n > n0, I − PnT is invertible and ‖(I − PnT )‖ ≤ β2.
Since H is a Hilbert space and J is compact, the image of the unit ball, J(BH), is

closed. From this, it is easily derived that WQ is a Borel set.
For the quantitative analysis, we have to introduce certain operators related to the

approximation process. For n ∈ N define ΠQ
n ∈ L(K(X)) by ΠQ

n T = (I − Pn)T , for
T ∈ K(X). For the sake of brevity, we put

E(n) = Eγ((I − Pn)TJ). (12)

L(n) = ‖(I − Pn)TJ)‖. (13)

E1(n) = Eγ(ΠQ
n Φ). (14)

L1(n) = ‖(ΠQ
n Φ)‖. (15)
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Now we come to the probabilistic estimate of the stability sets WQ. More precisely, we
shall reduce it to the estimate of the set U(β), defined for β > 0 by

U(β) = {T ∈ K(X) : ‖(I − T )−1‖ ≤ β}. (16)

Later on, we shall use the results of Heinrich (1990a) where the probability of this
set was estimated. Define the operator ΨX,H : DomΨX,H → L(X, H) as follows. Let
DomΨX,H be the set of those T ∈ K(X) such that T (X) ⊂ J(H). By the closed-graph
theorem, J−1T ∈ L(X, H). Now set ΨX,HT = J−1T .

Lemma 3.2. Suppose that ImΦ ⊂ DomΨX,H and that ΨX,HΦ ∈ Rγ(G,L(X, H)).
Let α > 0, β > 0, n0 ∈ N and define

α1 = ‖J‖(α + Eγ(ΨX,HΦ)) + 1, α2 = α + Eγ(Φ)) + 1/(2β) + 1,

β1 = ‖J‖(α + Eγ(ΨX,HΦ))β + 1, β2 = 2β.

If E1(n) ≤ 1/(4β) for all n > n0, then

µ(WQ(α1, α2, β1, β2, n0)) ≥µ(Uβ)− exp(−α2/(2‖ΨX,HΦ‖2))

− exp(−α2/(2‖Φ‖2))−
∑

n>n0

exp(−1/(32β2l1(n)2)).

Proof. It follows from [Heinrich (1991), Lemma 2.2].
Now we are ready for the convergence analysis of the Galerkin-like method.
Propsition 3.1. Let α1, α2, β1, β2 > 0, n0 ∈ N , and assume that T ∈ WQ(α1, α2,

β1, β2, n0). Then, for each n > n0,

ν{y ∈ X : (2α1α2)−1E(n) ≤ δQ
n (T, y) ≤ (3/2)β1β2E(n)}

≥ 1− 2 exp(−E(n)2/(8(α1α2β1β2L(n))2)).

Proof. By the assumption on T , we can define, for n > n0,

∆Q
n (T ) = (I − T )−1 − (I − PnT )−1. (17)

By (7) and (11) we have
δQ
n (T, y) = ‖∆Q

n (T )y‖. (18)

Furthermore, one verifies directly that

∆Q
n (T )J = (I − PnT )−1(I − PnT − I + T )(I − T )−1J

= (I − PnT )−1(I − Pn)T (I − T )−1J

= (I − PnT )−1(I − Pn)TJ(J−1(I − T )J)−1 (19)

By the definition of WQ, (3),(12) and (19) we get

(α1α2)−1E(n) = (α1α2)−1Eγ((I − Pn)TJ) ≤ Eγ(∆Q
n (T )J)

≤ β1β2Eγ((I − Pn)TJ) ≤ β1β2E(n). (20)
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With the operator norm in place of Eγ it follows analogously that

(α1α2)−1L(n) ≤ ‖∆Q
n (T )J‖ ≤ β1β2L(n). (21)

Now we apply Proposition 1.1 to get

ν{y ∈ X :(1/2)Eγ(∆Q
n (T )J) ≤ ‖δQ

n (T, y)‖ ≤ (3/2)Eγ(∆Q
n (T )J)}

≥ 1− 2 exp(−Eγ(∆Q
n (T )J)2/(8‖δQ

n (T )J‖2)). (22)

Inserting (20)-(22) arrives at the desired result.
For the main results we need the following simple consequence on the global, i.e.,

µ× ν probability.
Corollary 3.1. Let α1, α2, β1, β2 > 0, n0 ∈ N . Then

µ× ν{(T, y) :(2α1α2)−1E(n) ≤ δQ
n (T, y) ≤ (3/2)β1β2E(n), for all n > n0}

≥ µ(WQ(α1, α2, β1, β2, n0))2
∑

n>n0

exp(−E(n)2/(8(α1α2β1β2L(n))2)).
(23)

4. Principal Results

Let Γ = {eit : 0 ≤ t ≤ 2π} denote the unit circle, and {en}∞n=−∞ be normalized in
L2(Γ) trigonometric basis, i.e.,

e0(t) = (2π)−1/2, en(t) = (π)−1/2 cos nt, e−n(t) = (π)−1/2 sinnt, n ∈ N. (24)

n ∈ N , and let Pn, n ∈ N , be the orthogonal projection onto span {ej : |j| ≤ n}.
With the choice of X and Pn, n ∈ N the error functions δQ

n is defined well. Let
L2(Γ2) = L2(Γ2, λ2). For K ∈ L2(Γ2) let Tk ∈ K(L2(Γ)) be the integral operator with
kernel k defined by

(Tkx)(u) =
∫

Γ
k(u, v)x(v)dv. (25)

The error analysis will be carried out for such operator only, so it is convenient to write
δQ
n (k, y) instead of δQ

n (Tk, y).
We define the periodic Sobolev space Hs(Γ) for any real s ≥ 0 as

Hs(Γ) =
{
f ∈ L2(Γ) : ‖f‖2

Hs(Γ) =
∞∑

j=−∞
(1 + j2)s(f, ej)2 < ∞

}
(26)

where (·, ·) denotes the inner product of L2(Γ).
Lemma 4.1. [Kress (1989), Theorem 8.2] The Sobolev space Hr(Γ) is a Hilbert

space with the scalar product defined by

(f, g)Hs(Γ) :=
∞∑

j=−∞
(1 + j2)s(f, ej)(g, ej). (27)
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Note that the norm on Hs(Γ) is given by

‖f‖Hs(Γ) =
{ ∞∑

j=−∞
(1 + j2)s(f, ej)2

}1/2
. (28)

The trigonometric polynomials are dense in Hs(Γ).
It is clear that Hs(Γ) is isomorphism to the space which consists of the sequence

{xj}∞j=−∞ satisfying
∞∑

j=−∞
(1 + j2)s)|xj |2 < ∞ (29)

The functions
emn(s, t) = em(s)en(t), m, n ∈ Z, s, t ∈ Γ (30)

form an orthogonal basis of L2(Γ2). We define the periodic Sobolev space Hr(Γ2) for
any real r ≥ 0 as

Hr(Γ2) = {g ∈ L2(Γ2) : ‖g‖2
Hr(Γ2) =

∑

m,n∈Z

(1 + m2 + n2)r(g, emn)2 < ∞} (31)

By Φr we denote the identical embedding Hr(Γ2) → L2(Γ2). We assume r > 1 and
s > 1/2. Then we have, by (5), Φr ∈ Rγ(Hr(Γ2), L2(Γ2)) and Js ∈ Rγ(Hs(Γ), L2(Γ)).
Hence, we can define the Gaussian measures µr on L2(Γ2), by

µr = Φ̃rγHr(Γ2)
, (32)

and νs on L2(Γ), by
νs = J̃sγHs(Γ)

. (33)

These measures are of Wiener type in the following sense. As the classical Wiener
measures they are generated by the identical embedding of a Hilbert space of smooth
functions into some function space (see [Kuo (1975)]). Concequently, they represent
a certain degree of smoothness. To make this precise, let σ ≥ 0 and let us consider
Hσ(Γ) as a subset of L2(Γ). Clearly, this is a Borel set, so νs(Hσ(Γ) is defined. Then
the following holds:

νs(Hσ(Γ)) =

{
1 for σ < s− 1/2

0 for σ ≥ s− 1/2.
(34)

Roughly speaking, (34) means that νs corresponds to the smoothness Hs−1/2. Similarly,

µr(Hρ(Γ)) =

{
1 for ρ < s− 1/2

0 for ρ ≥ s− 1/2.
(35)

Now we can formulate the principal results. First we provide estimates for an individual,
fixed operator TK and the probability on the set of free terms only.

Theorem 4.1. ρ ≥ s > 1/2, k ∈ Hρ(Γ2), and assume that I − Tk is invertible.
Then there exist constants ci(k) > 0, i = 1, 2, 3, and n0(k) ∈ N such that, for each
n > n0(k),

νs{y ∈ L2(Γ) : c1(k)n−ρ+1/2 ≤ δQ
n (k, y) ≤ c2(k)n−ρ+1/2} ≥ 1− exp(−c3(k)n). (36)
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Remark 4.1. It is wll-known that if the right-hand sides y of the Fredholm integral
equation x−TKx = y is in Hs−1/2(Γ), then the worst-case rate of Q-Method is ns−1/2.
Theorem 4.1 shows that this rate occurs for most of the right-hand sides. Moreover, the
exceptional set is of exponentially small probability.

Theorem 4.2. Let r − 1/2 > s > 1/2. For each ε > 0 there exist constants
ci(ε) > 0, i = 1, 2, 3, and n1(ε) ∈ N such that

µr × νs{(k, y) : c1(ε)n−r+1/2 ≤ δQ
n (k, y) ≤ c2(ε)n−r+1/2 for all n > n1(ε)} ≥ 1− ε.

(37)
Remark 4.2. Theorem 4.2 gives global estimate, i.e., independent of kernels k,

with probabilities on the set of kernels and right-hand sides. More precisely, Theorem
4.2 shows that the worst-case rate of Q-Method occurs with large probability, in fact
almost surely.

The proof of Theorem 4.2 also provides estimates for the dependence on ε for ε → 0,
namely, the functions of ε occurring there can be chosen in such way that the following
hold (here ³ stands for ³ε∈(0,1/2)):

c1(ε) ³ (log(1/ε))−1, (38)

c2(ε) ³ (log(1/ε))3/2+3/(2r)ε−2, (39)

n1(ε) ³ (log(1/ε))6+3/(r)ε−6. (40)

We will prove Theorem 4.1 and 4.2 in the following two sections. This will be accom-
plished by estimating the needed approximation quantities and applying the results of
Section 3. For this purpose we have to establish a correspondence to the notation of
Section 3. We have already fixed X = L2(Γ) and Pn. Now we put H = Hs(Γ), J = Js

and get
ν = J̃γH = νs. (41)

Our main results are formulated in terms of µr, which is a measure on the set of kernels
L2(Γ2). In order to use Section 3, we need a measure µ on the set of compact operators.
For this let Λ ∈ L(L2(Γ2), K(L2(Γ)) be the mapping assigning to each K ∈ L2(Γ2), the
integral operator TK defined by (25). Then µ will be the measure induced on K(L2(Γ))
by µr under the action of Λ. This means

µ(B) = µr(Λ−1(B)) (42)

for every Borel subset B of K(L2(Γ)). Now we put G = Hr(Γ2), Φ = ΛΦr, and it
follows readily that µ = Φ̃γG . With this, E(n), L(n), E1(n), and L1(n) are defined well.
The following section is devoted to them.

5. Approximate Rates

This section is devoted to determine the order of those quantities which are related
to the approximation process. We start with two general results from which the concrete
estimates will follow. Let σ, τ ≥ 0 be reals and the operator

Ψσ,τ : Dom Ψσ,τ → L(Hσ(Γ),Hτ (Γ)) (43)



Probabilistic Analysis Of Galerkin-like Methods for the Fredholm Equation of the Second Kind 453

as follows. The domain Dom Ψσ,τ is the set of all T ∈ K(L2(Γ)) such that Im (TJσ) ⊂
Hr(Γ). Now we set, for T ∈ Dom Ψσ,τ

Ψσ,τT = J−1
τ TJσ. (44)

Propsition 5.1. Let σ, τ ≥ 0, r > τ + 1/2. Then
(i) ImΦ, Im(ΠQ

n Φ) ⊂ DomΨσ,τ ,
(ii) Ψσ,τΦ,Ψσ,τΠQ

n Φ ∈ Rγ(Hr(Γ2), L(Hσ(Γ), Hτ (Γ)),
(iii) ‖Ψσ,τΠQ

n Φ‖ ³n n−r−σ+τ ,
(iv) Eγ(Ψσ,τΠQ

n Φ) ³n n−r−σ+τ+1/2.
Proof. This follows from [Heinrich (1991), Proposition 4.2].
Now we define, for σ, τ ≥ 0, a further operator ΦE

σ,τ : DomΦE
σ,τ → Rγ(Hσ(Γ),

Hτ (Γ)). We let DomΦE
σ,τ be the set of those T ∈ K(L2(Γ)) for which Im (TJσ) ⊂ Hτ (Γ)

and J−1
τ TJσ ∈ Rγ(Hσ(Γ), Hτ (Γ)). The operator is defined for T ∈ Dom ΦE

σ,τ by

ΦE
σ,τT = J−1

τ TJσ.

Hence,
Dom ΦE

σ,τ ⊂ Dom Φσ,τ ,

and, for T ∈ Dom ΦE
σ,τ , ΦE

σ,τT and Φσ,τT are the same operators.
Propsition 5.2. Let r > τ + 1. Then
(i) Im Φ, Im (ΠQ

n Φ) ⊂ Dom ΦE
σ,τ ,

(ii) ΦE
σ,τ , ΦE

σ,τΠ
Q
n ∈ Rγ(Hr(Γ2), Rγ(Hσ(Γ), Hτ (Γ))),

(iii) ‖ΦE
σ,τΠ

Q
n Φ‖ ³n n−r−σ+τ ,

(iv) Eγ(ΦE
σ,τΠ

Q
n Φ) ³n n−r−σ+τ+1.

Proof. This follows from [Heinrich (1991), proposition 4.3].
Now we can easily derive the desired estimates for our concrete situation.
Corollary 5.1. Let r − 1/2 > s > 1/2. Then

E(n) ³ n−r+1/2, L(n) ³ n−r,

E1(n) ³ n−r+1/2, L1(n) ³ n−r,

We have to separate another immediate consequence of Proposition 5.1 (ii), which
will be needed for the application of Lemma 3.2.

Corollary 5.2. Im Φ ⊂ Dom Ψ0,s and

Ψ0,sΦ ∈ Rγ(Hr(γ2), L(L2(Γ),Hs(Γ))).

6. Proofs of the Principal Results

Proof of Theorem 4.1. Let k ∈ Hρ(Γ2) and ρ ≥ s ≥ 1/2, then

Tk(L2(Γ)) ⊂ Hρ(Γ) ⊂ Hs(Γ). (45)

This implies
‖Tk − PnTk‖ ≺ n−ρ. (46)
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Since ρ > 1/2 > 0, we have n−ρ → 0 as n →∞. Hence there exists an n = n0(k) such
that, for n > n0,

‖Tk − PnTk‖ ≤ 1/(2‖I − Tk)−1‖). (47)

With these relations it is readily cheeked that

Tk ∈ WQ(α1, α2, β1, β2, n0)

for certain constants α1, α2, β1, β2 depending on k.
It remains to prove the inequality (36). It is easily followed from Proposition 3.1

and Corollary 5.1. This completes the proof of Theorem 4.1.
Now we come to prove Theorem 4.2. For this purpose, we need an elementary

technical lemma which is from Heinrich (1991).
Lemma 6.1. Let a > 0, b ≥ 1, ε > 0 be reals, n0 ∈ N . If

n0 ≥ ((log a + log(1/ε))a)1/b,

then ∑
n>n0

exp(−nb/a) ≤ ε.

Proof of Theorem 4.2. We start with estimating the probability of the sets WQ

with the help of the Lemma 3.2. By Theorem 3.3 of Heinrich (1990a) and (42), there
exists a function β : (0, 1/2) → (0,+∞) such that

µ(U(β(ε))) = µr{k ∈ L2(Γ2) : ‖(I − Tk)−1‖ ≤ β(ε))} ≥ 1− ε/6 (48)

and
β(ε) ³ (log(1/ε))1/2+3/(4r)ε−1 (49)

(in this section ³ and ≺ always refer to ε ∈ 0, 1/2)). Furthermore, it is clearly possible
to choose a function α : (0, 1/2) → (0,+∞) such that

exp(−α(ε)2/(2‖Ψ0,sΦ‖2)) + exp(−α(ε)2/(2‖Φ‖2)) ≤ ε/6 (50)

and
α(ε) ³ log(1/ε))1/2. (51)

Corollary 5.2 says that the assumptions of Lemma 3.2 are satisfied. Then let α1(ε),
α2(ε), β1(ε), β2(ε) be as defined in Lemma 3.2 when we replace α and β by α(ε) and
β(ε). It is clear that

α1(ε) ³ α2(ε) ³ log(1/ε))1/2. (52)

β1(ε) ³ log(1/ε))1+3/(4r)ε−1. (53)

β2(ε) ³ log(1/ε))1/2+3/(4r)ε−1. (55)

By Corollary 5.1 there exists a constant c1 such that, for all n,

E1(n) ≤ c1n
−r+1/2.
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Hence, if n > N1(ε) = [(4c1β(ε))1/(r−1/2)], then

E1(n) ≤ 1/(4β(ε)), (56)

where [a] stands for the smallest integer m ≥ a. By (48),

N1(ε) ³ log(1/ε))(2r+3)/(4r2−2r)ε−1/(r−1/2). (57)

Corollary 5.1 gives that there is a constant c2 > 0 such that

L1(n) ≤ c2n
−r.

Let N2(ε) be the smallest n0 ∈ N such that
∑

n>n0

exp(−n2r/(32c2
2β(ε)2)) ≤ ε/6. (58)

It follows that ∑

n>N2(ε)

exp(−1/(32β(ε)2)L1(n))2)) ≤ ε/6. (59)

From (57) and Lemma 6.1 with a = 32c2
2β(ε)2 and b = 2r we get

N2(ε) ≤ (log(32c2
2β(ε)2) + (log(1/ε)32c2

2β(ε)2))1/(2r) + 1,

hence, by (49),
N2(ε) ≺ (log(1/ε))(4r+3)/(4r2)ε−1/r. (60)

Lemma 3.2, together with (48), (50), (55),and (58), gives

µ(WQ(α1(ε), α2(ε), β1(ε), β2(ε), n0)) ≥ 1− ε/2 (61)

for all n0 ≥ max(N1(ε), N1(ε)). By Corollary 5.1 there is a constant c3 > 0 such that

E(n)/L(n) ≥ c3n
1/2.

Let N3(ε) be the smallest n0 ∈ N such that
∑

n>n0

exp(−c2
3n/(8γ(ε))) ≤ ε/4, (61)

where γ(ε) = (α1(ε)α2(ε)β1(ε)β2(ε))2. Thus

γ(ε) ³ (log(1/ε))(5+3/r)ε−4. (62)

We have ∑

n>N3(ε)

exp(−E(n)2/(8γ(ε)L(n))) ≤ ε/4, (63)

By Lemma 6.1, (62) and (63),

N3(ε) ≤ (log(8γ(ε)/c2
3) + (log(4/ε)8γ(ε)/c2

3 + 1 ≺ log(1/ε))6+3/rε−4. (64)
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We put
n1(ε) = max(N1(ε), N2(ε), N3(ε)),

apply Corollary 3.1 and get, by (60) and (63),

µ× ν{(T, y) : (2α1α2)−1E(n) ≤ δQ
n (T, y) ≤ (3/2)β1β2E(n), for all n > n0} ≥ 1− ε

(65)
for all ε ∈ (0, 1/2). Now, Theorem 4.2 follows from (40), (41) and Corollary 5.1, while
the corresponding parts of (34), (38), (39) are a consequence of (52)–(54), (56), (59)
and (64). This completes the proof of Theorem 4.2.
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