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ON RAYLEIGH QUOTIENT MATRICES: THEORY AND
APPLICATIONS*
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Abstract

Many authors have studied the Rayleigh quotient and Rayleigh quotient ma-
trix. This paper consists of two parts. First, generalizations of some results on the
Rayleigh quotient are proved. Second, we give some applications of these theoret-
ical results.
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1. Introduction

Throughout this paper we shall use the following notation. R™*" and C"*™ denote
the sets of real and complex m X nm matrices, respectively, R™ and C" denote the sets
of real and complex n-dimentional column vectors, respectively. The superscript H
means the conjugate transpose of matrix. I, is the n x n identity matrix, and 0 is the
null matrix. R(A) stands for the column space of a matrix A; A(A) denotes the set of
the eigenvalues of matrix A. A\(A, B) denotes the set of the generalized eigenvalues of a
regular matrix-pair {A, B}. o(A) the set of the singular values of matrix A.Apin(A) and
Amax(A) denote the smallest and largest eigenvalue of Hermitian matrix A, respectively.
Omin(A) is the smallest singular value of matrix A. || || refers to a uniformly generalized,
unitarily invariant norm for matrices. || |2 denotes the Euclidean norm for vectors
and spectral norm for matrices, respectively. || ||z is the Frobenius norm. For X7,
Y; € C"™*P with X[ X, = Y{'Y1 = I,,, the matrix 0(R(X;), R(Y1)) is defined by

O(R(X1), R(Y1)) = arccos(XTTV, V7 X1)1/2 > 0

Let A € C™ ™ be a Hermitian matrix, and Y; € C™*? satisty V{1V, = I,,. Then the
matrix H; = Y/ AY; is called the Rayleigh quotient matrix of A with respect to Y. If
p = 1, then yI’ Ay, is called the Rayleigh quotient of A respect to y;.

First of all we cite some important results on the Rayleigh quotient. let A be n x n
Hermitian matrix, and A(A) = {A;}_,, moreover, let y; € C" with |y12 = 1, and let

ALEl = >\1X1, ||X1||2 = 1, X, € c"
p =y Ayr,r = Ayy — yim
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6 = arccos|yl’ X1|, 0<6<7n/2
0= min |A; — 1|, A=max|\; — ]

2<j<n
d= min |A; — A D = max |A; — A 2< 9 <n.
QSJ'S”‘ ¥ 1|a 2§j§n‘ ¥ 1‘7 7>

Some elementary results are given in the following theorem, which delineates the
most important relations between sinf, ||r|2 and Ay — 1.
Theorem!'",

sinf < ||r|l2/0 (if § > 0) (1.1)
Asinf
rlle < ———= (if sinf < 1 1.2
M=l < I3/ G5 > 0, A — | < Ay — ), (1.3)
(A1 — 1| < Dsin? 6 (1.4)
inf
=] < Arllasing e <1y (1.5)

V1 —sin%60

The inequalities (1.1)~(1.5) have been eztended to the case p > 1 by Sunl'011) L0l
Liu & Xul%, and Liu™. In this paper, we shall give some further generalizations of the
inequalities (1.1) (1.5) and applications of these theoretical results.

2. Generalizations of the Rayleigh Quotient Matrix Theory

In this section, some extentions of the inequalities (1.1) (1.5) are given. We shall
study the eigenproblem, generalized eigenvalue problem and singular value problem.

2.1. Eigenproblem: p =1

Let A€ C™ " y; € C™ with [|y1]]o = 1, and let

M1 = y{IAyla r=Ay —yiur, ro= AHyl — Y11

Let the Schur decomposition of A be
A oall
A=q(y 4 )" e=Mm.Ql Q"a=1,
0 A
Denote

6 = sep(p1, A1),0 = arccos [yt qi|, 0<6<m/2

P
<S> =Q"yr, A=Ay — Ly alla, D =|A1 = M1, ]

Theorem 1.

(1)sin® < ||r|l2/d, (if 6 > 0) (2.1)

(2)[Irll2 < 4/D? + |lal[3 sin 6. (2.2)
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(3)[A1 — p1| < |ja||2 sin@ + D sin® 4. (2.3)
sin Q||rg||2

V1 —sin%6

Proof. (2.1) is a consequence of Stewart’s result!'¥). From yl'r =0, we have

@)\ — | < if sing < 1), (2.4)

(M — ) |lp)|? + patts + sH (A, — piI,_1)s = 0. (2.5)
I3 = 11(A1 = ) SI5 + [a™ 81> + aTS (A — p)p+ (M = p)[pa’s + (A — wi)|p[*]

— M —p1)p+afls
= @,y =g, (G ) < el D2l

Noticing that ||s]|o = sinf, we obtain (2.2).
As

1 — A1 = y{IAyl — A = y{I(A — )\1)y1 = ﬁaHS + SH(A1 — )\1[7171)5
we have
[ = M| < llall2||Sll2 + DIISI3.
Finally, from (2.5) and y/'r = 0, we have
(A1 — pa)lpl® = pa'"S — S"(Ay — pil,-1)S
therefore
AL — pllpl* < [[pa™ + S™(Ay — paLn 1) |21IS]l
Pay attention to

Irolls = X1 = w1 [*[p* + [lpa + (A1 — pnL—1)" S5

pll + 13 =1

we obtain
(1A = wallp?)? < [Isl3(lroll3 = Ay — pal?[p[?)

and from this we prove (2.4) directly.
Remark. If the normality departure of A with respect to norm || || is denoted by
A(A)?] then
lallz < A(4).

If A is an normal matrix, then A; = diag(Xg, -, \,), and ||rg|| = [|7]|2, so we have
Corollary 1. Let A be a normal matriz, then

(1).sin® < |r|l2/6,  (if 6 > 0) (2.1)
(2).]r]]2 < Dsiné. (2.2))
(3).|A1 — 1| < Dsin? 6. (2.3")

] < SO g < 1) (2.4

V1 —sin?6
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We note that (2.1)" (2.4)" are generalizations of the inequalities (1.1), (1.2), (1.4)
and (1.5).
2.2. Generalized Eigenvalue Problem

Let A,B € C™" be Hermitian matrices. Suppose {A, B} is a definite matrix-

(12]

pairt™“l, i.e.

¢(A,B) = ”n‘r‘lin1 2T (A+iB)z| >0
z|la=

First of all we cite some lemmas.
Lemma 2.1.1'2 et

A, =Acosp — Bsingp, B, = Asing + Bcos¢
Then there exists ¢ € [0,2m) such that By is positive definite, and
c(A, B) = Amin(By).
Let
MA, B) = {(ci, Bi)lef + 57 =1, i =1,---,n}
MAg, Bg) = {(d, Bi)leg + 67 =1, i =1,---,n}
Lemma 2.2.
) () (), e
Definition 2.1. Let Q € C™*? satisfy Q2 = I,,. The matriz-pair {QHAQ, QHBQ}

is called the Rayleigh quotient matriz-pair of {A, B} with respect to Q
Let

M = (QHBWQ)J(QHA@Q% Ry = AwQ - BwQM
R — B;l/QRO(QAHB(pQA)fl/Q’ A[] — B;l/QA(pB(Zl/Q
Qo = BY*Q(Q"B,Q)'/*
My = (QHBwQ)fl(QHAWQ)(QHBWQ)J/Q
Then we can easily prove following facts
(1) QUHQO = Ip

(2) My is the Rayleigh quotient matriz of Ay with respect to Qq.
(3) For any unitarily invariant norm || ||

—1/2 . —1/2 A A
1B, 2 Roll = win [18,72(4,Q — B,QH)|
Lemma 2.3['2. There exists Q = [Q1, Q2] € C™™ such that

Q"B,Q =5, @"4,0= (7 )
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A1 = diag ()\1,"',)\p), A2 = diag ()\p+1,-",>\n)
Let

MMo) = {p;}, wi>->py
AL > 2 Ny, Q= diag (- pp)
A = max |[A; —

I1+p<j<m

0= mln‘y{{XIL
D = max|X\;j — A\,
k= \/)\max(Bcp)/Amin(Btp)a

sinf = || sin0(R(Q), R(Q1))|2

Following the approach described in [11], we can prove the next theorem.

1 <3 <p.

Theorem 2.
(1) sinf < k|[Rl|i/c(A, B)d, (if &> 0)
(2) |R|l2 < Asinf/c(A, B)V1 —sin? 6

(3) for any unitarily invariant norm || ||

|A1 — Q1] < sin||Ro||/c(A, B)y/1 — sin? 6.

Remark. Consider the chordal metric defined on Gauss plane G o

A, B), (v,0)) = |ad — (|

(12]

and pay attention to

p((@.0), (7,9)) = p((a. B). (7,9)
here

(5)- (5 ) ()

()= a) ()
and

p((a; 8), (7,9)) < |e/B—~/o| (i |B],[6] > 0)

We can give results expressed by chordal metric, weaker than theorem 2, but without
assuming B to be positive definite.

2.3. Singular Value Problem

Let A € C"*™ have the singular value decomposition

A=UxVvH

without loss of generality, we suppose m > n so that

S0
Z:(O Zz), ¥ = diag (01,---,0p)
0 0
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Yy =diag (opt1,--+,0n), 01> >0,
U= [Ul,UQ],V = [Vl,VQ], U, € mepj Vi e cnxp

Definition 2.2. Let U, € C"™*? and V; € C"*P satisfy
OFth =1, VT =1,

Then the matrix S = UIHAVl is called the singular quotient matriz of A with respect to
Ui and V7.
Let

Ry = AV, —U,S, Ry = AU, — v 81
o(S)={61,---,0p}, 61>--->5p
O = diag (61,---,6p)

0, = a1rccos(U1HU1U1HU1)1/2

0y = arccos(VTVi v, vy)1/?

A =max|o; — 6;|, 6=min|o; — 5]

D =max|oj—oi]; 14+p<j<n; 1<i<p

we notice that
(5 a)-( )G DG DES)
0 Ry) \AZ 0 Vi 0 Vi 0 S 0

<0 f/lH)(o A><O le)_(o SH>
ult o A0 Vi 0) \S 0 )

o=(i 0) m=(5 V),

A
then H is the Rayleigh quotient matriz of <A0H 0

results in [11], we directly obtain following theorem.
Theorem 3.

Let

) with respect to Q. From the

(1). For any unitarily invariant norm | ||

(5 )= i
0 Ry)|| 7,HoeCrx»

(2) If 6 > 0 then for any unitarily invariant norm || ||

sin6‘1 0 R1 0
< )
H( 0 sin92>H_H<0 RQ)H/

(3). If sin@ = max{|| sin b ||2, || sin ]2} < 1, then

max{||R1|z, | Rzl2} < Asinf/y/1 —sin* 6

(it )|
AHU, — ViH,
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Ay/Ilsin 3, + || sin 6]

1 —sin%6

VIR + (| Rl <

for any unitarily invariant norm || ||

sin 64 0
(% 0><A< 0 sntn)|
0 B ST Ve

(4) If sin@ < 1, then for any unitarily invariant norm || ||

[y | B [
0 A= /17 /1 —sin20 I\ 0 Ry

Corollary 2. If p = max{||R:|2, || Rall2}/0 < 1, then for any unitarily invariant

(o )
0 Ry

norm || .

O T
0 Afl_Ql - 1_p2

3. Applications

In this section, we deal with some applications of the theoetical results proved in
the last section.

3.1 Deflation to Computing eigenvalue

In this subsection, we describe an approach to analyse the influence of deflation on
the accuracy of computed eigenvalues.

Let A € R"™ be a symmetric matrix. The QL algorithm with suitable shifts (QL-s
for short) for computing all eigenvalues of A states as following

Step 1. Construct an n x n orthogonal matrix Q such that 4y = QT AQ is a
symmetric tridiagonal matrix.

Step 2. By QL-s calculations form tridiagonal matrices

ol g
(k)
Ak: 51 k 0717
| e
ﬁﬁf,)l aP)

Step 3. Deflation. For suitable small positive number ¢, if \,ng)| < g, then we
accept agk) as an approximate eigenvalue of A, and the algorithm goes on with lower
order matrix

)
|

L . (k)

: /67171

/67(11?1 Oh(lk)
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(1)

and take the eigenvalues p,---, u, of A;” as approximate eigenvalues of A.

About above-mentioned algorithm, a natural question is: how to estimate the ac-

k . .
curacy of ag ),,ug, -+, by as approximate eigenvalues.

Let
In:[ela"'aen]a QHE[BQa"'aen]

Obviously, agk) and AS) are the Rayleigh quotient and Rayleigh quotient matrix of A
with respect to e; and )1, respectively. Let

MA) = ()
without loss of generality we suppose
A2 > A3 2> Any P >3 > 2>

§=min|\; — Ai| > 8]

A — ol = min [n - o)
1<i<n

Theorem 4. If p; = |ﬁ£k)\/(5 — |ﬁ£k)\) <1 then

o = x| < |8

(k)
|>‘]7:u‘]‘§p1|51 ‘7 7:2,,71
V1ot
Proof. From
5§k)62 = Ager — 61a§k)a
[ﬁ%k)el, 0] = AQ1 — QlAg),
we obtain

lAcer — eraf?]o = 161",
k
146Q1 = QA [l = 167]
By Bauer-Fike theorem!'? and (1.3), we have
= < il
On the other hand, as p; < 1, for 7 > 2 we have

2= ol =l = 1y - o > 6 - pBY)] > 61

(12]

By Davis-Kahan theory!'?) and Sun’s results'!! we know

(k)
Pl\ﬂ1 | j=2,-

M]'_uﬂg T
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This result means that, generally speaking, the influence of deflation on the accuracy
of computed approximate eigenvalues is very small.
Remark. Above techniques can also be used to Lanczos algorithm and Jacobi

algorithm.
3.2 Singular Value Problem
Let
A H N A 0
v=(g w) =(5 )
o(M) = {o;}j_1, o(A) ={oi(A)}]_;
o(E) = {oi(E)}ips
Op = II?]LIIP 0j(A) —oi(E)| >0
p+1<i<n
Suppose

p = max{||G||2, [|[H|[2}/po(1/2)

According to Weyl-Mirsky theorem ([12] p.134, th.3.10), there exists a permutation
n(1),---m(n) of {1,2,---,n} such that

l0j(A) —oxjyl < oop, j=1,---,p
Uk(E)_Un(k)SPOPa k:p+177n

and therefore

‘O-j(A)io—F(k)‘ZIOO'(]-ip)v J=1--p
0k(E) —oxyl > po-(1=p), k=p+1,---,n

Let
p1 = max{||Gll2, [[H|l2}/[po(1 — p)]

then from corollary 2 we have
Theorme 5. If p1 < 1/2, then

prmax{||Gll, |[H |2}

V1 -0t

p1 max{[|G||2,
V1 -0t

Remark. R. Mathias and G.W. Stewart®! have considered following case: G = 0.
Under the assumption

0j(A) — ox(j] <

|H 2}

S 7:111pak:p+1aan

ok(A) = Orr)

Omin(4) > [ Bl

they proved results slightly better than ours in this case.
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