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A NEW GENERALIZED ASYNCHRONOUS PARALLELMULTISPLITTING ITERATION METHOD�1)Zhong-zhi Bai(State Key Laboratory of Sienti� and Engineering Computing, ICMSEC, Chinese Aademyof Sienes, Beijing 100080, China)AbstratFor the large sparse systems of linear and nonlinear equations, a new lassof generalized asynhronous parallel multisplitting iterative method is presented,and its onvergene theory is established under suitable onditions. This methodnot only uni�es the disussions of various existing asynhronous multisplitting it-erations, but also a�ords new algorithmi and theoretial results for the parallelsolution of large sparse system of linear equations. Besides its generality, thismethod is also muh more suitable for implementing on the MIMD multiproessorsystems.Key words: Systems of linear and nonlinear equations, Asynhronous multisplittingiteration, Relaxed method, Convergene theory.1. IntrodutionTo solve large sparse systems of linear and nonlinear equations on the multiproessorsystems, many authors presented and studied various parallel iterative methods in thesense of multisplitting in reent years. For details one an refer to [1℄-[9℄ and referenestherein. Among these methods the haoti multisplitting iterative methods proposedby Bru, Elsner and Neumann[4℄ are meaningful on both theory and appliation sine itaims at avoiding the synhronous wait among proessors of a multiproessor system andmaking use of the eÆieny of the MIMD parallel omputer. However, beause morerestritions are imposed upon these haoti multisplitting iterative methods (see [7,6℄),the maximum eÆieny in exploiting the resoures of the multiproessor systems hasnot yet been attained. To overome this shortoming, Evans, Wang and Bai (see [2,7℄)further modi�ed and developed Bru, Elsner and Neumann's work from the angles ofboth algorithmi model and theoretial analysis, and presented a series of asynhronousparallel multisplitting iterative methods. Reently, Su[6℄ also presented another gener-alization of Bru, Elsner and Neumann's haoti multisplitting methods, whih is alledas generalized multisplitting asynhronous iteration. Sine the designs of these asyn-hronous multisplitting methods take into aount not only the good parallelism of themultiple splittings, but also the onrete harateristis of the multiproessor systems,they an suÆiently exploit the parallel omputational eÆieny of the multiproessorsystems.In this paper, by summarizing the advantages of the aforementioned asynhronousmultisplitting iteration methods, we propose a new asynhronous parallel iterativemethod in the sense of multiple splittings, alled as a new generalized asynhronous� Reeived Otober 30, 1996.1)Projet 19601036 Supported by the National Natural Siene Fundation of China.



450 Z.Z. BAImultisplitting iterative method (GAMI-method), for solving large sparse systems oflinear and nonlinear equations. This new method has the properties of onvenient im-plementation, and exible and free ommuniation, et., and an also make full use ofthe eÆieny of the multiproessor systems. Meanwhile, the above stated existing asyn-hronous parallel multisplitting iterative methods are its speial ases. Under similaronditions to [7℄ and [6℄, we establish onvergene theory for our new method.Sine a system of equations an be equivalently transformed to several �xed pointequations having a ommon �xed point by the multisplitting tehnique under ertainonditions, without loss of generality, in the sequal we will mainly onsider the iterationfor getting a ommon �xed point of an operator lass.2. Desription of the GAMI-MethodTo mathematially desribe our new generalized asynhronous multisplitting itera-tive method for parallely solving system of equations, we �rst introdue the followingnotations and onept.Assume �(1 � � � n) be a given positive integer. For all i 2 f1; 2; � � � ; �g, letTp;i : Rn ! Rn(p = 0; 1; 2; � � �) be mappings having a ommon �xed point x� 2 Rn,and Ei be nonnegative, nonzero, diagonal matries satisfying �Pi=1Ei = E nonsingular.Denote N0 := f0; 1; 2; � � �g and OT = fTp;i : Rn ! Rn j i 2 f1; 2; � � � ; �g; p 2 N0g. Forany p 2 N0, we let J(p) be a nonempty subset of the number set f1; 2; � � � ; �g, ands(i)j (p), t(i)j (p)(j = 1; 2; � � � ; n; i = 1; 2; � � � ; �) be nonnegative numbers satisfying:(a) for 8i 2 f1; 2; � � � ; �g, the set fp 2 N0 j i 2 J(p)g is in�nite;(b) for 8i 2 f1; 2; � � � ; �g, 8j 2 f1; 2; � � � ; ng, 8p 2 N0, there hold s(i)j (p) � p andt(i)j (p) � p;() for 8i 2 f1; 2; � � � ; �g, 8j 2 f1; 2; � � � ; ng, there hold limp!1 s(i)j (p) = 1 andlimp!1 t(i)j (p) =1.If we additionally de�ne�(p) = min1�j�n1�i�� ns(i)j (p); t(i)j (p)o ;then there obviously have �(p) � p and limp!1 �(p) =1.With the above preparations, we an now desribe the generalized asynhronousmultisplitting iterative method (GAMI-method) for parallely solving systems of equa-tions as follows.GAMI-method. Given an initial vetor x0 2 Rn, and suppose that we have gotapproximations x1; x2; � � � ; xp of a ommon �xed point x� 2 Rn of the operator lassOT = fTp;i : Rn ! Rn j i 2 f1; 2; � � � ; �g; p 2 N0g. Then the next approximation xp+1of x� an be got by the following formula:xp+1 = Xi2J(p)EiTp;i �xs(i)(p)�+0�I � Xi2J(p)Ei1Axp + Xi2J(p)(I �E�1)Ei �xp � xt(i)(p)� ;(2.1)where



A New Generalized Asynhronous Parallel Multisplitting Iteration Method 4518>>><>>>:xs(i)(p) = �xs(i)1 (p)1 ; xs(i)2 (p)2 ; � � � ; xs(i)n (p)n �T ;xt(i)(p) = �xt(i)1 (p)1 ; xt(i)2 (p)2 ; � � � ; xt(i)n (p)n �T ;and I is the n� n identity matrix.Clearly, when we let E = I, the GAMI-method naturally redues to a generalizedversion of the asynhronous parallel multisplitting iterative methods studied by Bai,Wang and Evans in [2℄, and when t(i)j (p) = p(j = 1; 2; � � � ; n; i = 1; 2; � � � ; �; p 2 N0),it automatially turns to the one disussed by Su in [6℄. Moreover, the ase t(i)j (p) =s(i)j (p)(j = 1; 2; � � � ; n; i = 1; 2; � � � ; �; p 2 N0) really produes a new asynhronousparallel multisplitting method for solving systems of equations.3. Preliminary KnowledgeFor a vetor x 2 Rn, x > 0(� 0) will denote that all its omponents are positive(nonnegative). Similarly, for x; y 2 Rn, x > y(x � y) will mean that x� y > 0(x� y �0). For x 2 Rn, jxj will denote the vetor whose omponents are the absolute value ofthe orresponding omponents of x. We shall employ similar notations for matries.Let v = (v1; v2; � � � ; vn)T > 0. Then the monotone norm k � kv of a vetor x =(x1; x2; � � � ; xn)T is de�ned as kxkv = max1�j�n �����xjvj ����� :This vetor norm is monotone in the sense that jxj � jyj implies kxkv � kykv . If wedenote by kBkv the matrix norm of B 2 L(Rn) indued by the monotone vetor normk � kv, then there obviously holds kjBjvkv = kBkv . Moreover, it easily follows thatkxkv � � if and only if jxj � �v, and kBkv � � if jBjv � �v, where � 2 R1 is somenonnegative onstant. The monotone norm and its properties will play an importantrole in the establishment of the onvergene theorem of the GAMI-method.Write 8><>:Pi = EiE+i ; i = 1; 2; � � � ; �;Ip = Xi2J(p)Ei; Ip = IpI+p ; p 2 N0;where E+i and I+p denote the Moore-Penrose inverses of the matries Ei and Ip, respe-tively. Then we easily know that these matries have the following useful properties:(1) PiEi = EiPi = Ei, PiE+i = E+i Pi = E+i , i = 1; 2; � � � ; �;(2) IpIp = IpIp = Ip, IpI+p = I+p Ip = I+p , p = 0; 1; 2; � � �;(3) IpEi = Ei, (I � Ip)Ei = 0, i 2 J(p), p 2 N0.In addition, de�ne an in�nite integer sequene fmlgl2N0 aording to the followingrule: m0 is the least positive integer suh that [0��(p)�p<m0J(p) = f1; 2; � � � ; �g, and ingeneral,ml+1 is the least positive integer suh that [ml��(p)�p<ml+1J(p) = f1; 2; � � � ; �g.By the de�nitions of the set J(p) and the nonnegative integer sequenes ns(i)j (p)o,nt(i)j (p)o (j = 1; 2; � � � ; n; i = 1; 2; � � � ; �) and f�(p)g, this nonnegative integer sequene



452 Z.Z. BAIfmlg is well-de�ned and possesses the following properties (For their proofs, one anrefer to [6℄ for detail):(1) ml+1�1Pp=ml Ip(l = 0; 1; 2; � � �) are nonsingular diagonal matries;(2) ml+1�1Qp=ml (I � Ip) = 0; l = 0; 1; 2; � � �.The following fat ited from [2℄ is elementary for our subsequent disussion.Lemma 3.1 (see [2℄). Given �x� 2 Rn and f�xqgpq=0 � Rn(8p 2 N0). Assume thatfor all t 2 f0; 1; 2; � � � ; pg, there exist positive number Æ and positive vetor v 2 Rn suhthat k�xt � �x�kv � Æ. Then there identially hold�xs(i)(p) � �x�v � Æ; �xt(i)(p) � �x�v � Æ; i = 1; 2; � � � ; �;provided s(i)j (p) � p and t(i)j (p) � p(j = 1; 2; � � � ; n; i = 1; 2; � � � ; �), where8>>><>>>: �xs(i)(p) = ��xs(i)1 (p)1 ; �xs(i)2 (p)2 ; � � � ; �xs(i)n (p)n �T ;�xt(i)(p) = ��xt(i)1 (p)1 ; �xt(i)2 (p)2 ; � � � ; �xt(i)n (p)n �T ; i = 1; 2; � � � ; �:Lemma 3.2. Let x� 2 Rn be a ommon �xed point of the operator lass OT , andthe sequene fxpgp2N0 be generated by the GAMI-method. Assume that there hold(Ipjxp+1 � x�j � �pIpv;(I � Ip)jxp+1 � x�j � (I � Ip)jxp � x�j; p = 0; 1; 2; � � � ; (3.1)where v 2 Rn is a positive vetor, and f�pg is a nonnegative number sequene satisfying�p+1 � �p; p = 0; 1; 2; � � � : (3.2)Then, for any positive integer q � ml(l 2 f�1g [N0;m�1 = 0), there hold I � qYp=ml (I � Ip)! ���xq+1 � x���� �  I � qYp=ml (I � Ip)!�mlv; m = �1; 0; 1; 2; � � � :(3.3)Proof. Analogously to the proof of Theorem 1 in [6℄, we an indutively demon-strate this lemma.Lemma 3.3. Let x� 2 Rn be a ommon �xed point of the operator lass OT , andthe sequene fxpgp2N0 be generated by the GAMI-method. If we denotep := max(kxp � x�kv; maxi2J(p) xs(i)(p) � x�v ; maxi2J(p) xt(i)(p) � x�v) ; 8p 2 N0;then, for p = 0; 1; 2; � � �, there hold(i) Ipjxp+1�x�j � Pi2J(p)Ei ���Tp;i �xs(i)(p)�� x����+ �Ip � �2minfI; E�1g � I� Ip�pv;(ii) (I � Ip)jxp+1 � x�j = (I � Ip)jxp � x�j,



A New Generalized Asynhronous Parallel Multisplitting Iteration Method 453where we use the notationminfI; E�1g = diag �minf1; e�111 g;minf1; e�122 g; � � � ;minf1; e�1nng� ;with E = diag(e11; e22; � � � ; enn).Proof. Equivalently, we an express (2.1) asxp+1 = Xi2J(p)EiTp;i �xs(i)(p)�+ Xi2J(p)(I �E)E�1Eixt(i)(p) +0�I � Xi2J(p)E�1Ei1Axp:(3.4)Note that x� 2 Rn is a ommon �xed point of the operator lass OT , aording to (3.4)we havex� = Xi2J(p)EiTp;i (x�) + Xi2J(p)(I �E)E�1Eix� +0�I � Xi2J(p)E�1Ei1Ax�: (3.5)Now, subtrating (3.5) from (3.4) we immediately obtainxp+1 � x� = Xi2J(p)Ei �Tp;i �xs(i)(p)�� x��+ Xi2J(p)(I �E)E�1Ei �xt(i)(p) � x��+0�I � Xi2J(p)E�1Ei1A (xp � x�); p = 0; 1; 2; � � � : (3.6)By making use of the properties of the operators Ip(p 2 N0) and Pi(i = 1; 2; � � � ; �),and through diret manipulations we haveIpjxp+1 � x�j � Xi2J(p)Ei ���Tp;i �xs(i)(p)�� x����+ Xi2J(p) jI �EjE�1Ei ���xt(i)(p) � x����+0�Ip � Xi2J(p)E�1Ei1A jxp � x�j� Xi2J(p)Ei ���Tp;i �xs(i)(p)�� x����+ hjI �EjE�1Ip + (Ip �E�1Ip)i pv:Up to now, to prove (i) we only need to test that there holdsjI �EjE�1Ip + (Ip �E�1Ip) = Ip � �2minfI; E�1g � I� Ip: (3.7)In fat, for any j 2 f1; 2; � � � ; ng, if e�1jj � 1, we easily know thathjI �EjE�1Ip + (Ip �E�1Ip)ijj = j1� ejj je�1jj [Ip℄jj + �[Ip℄jj � e�1jj [Ip℄jj�= (e�1jj � 1)[Ip℄jj + �[Ip℄jj � e�1jj [Ip℄jj�= [Ip℄jj � [Ip℄jj= hIp � �2minfI; E�1g � I� Ipijj ;



454 Z.Z. BAIwhere we use [�℄jj to denote the j-th diagonal omponent of the orresponding diagonalmatrix; and if e�1jj < 1, we easily see thathjI �EjE�1Ip + (Ip �E�1Ip)ijj = j1� ejj je�1jj [Ip℄jj + �[Ip℄jj � e�1jj [Ip℄jj�= (1� e�1jj )[Ip℄jj + �[Ip℄jj � e�1jj [Ip℄jj�= [Ip℄jj � (2e�1jj � 1)[Ip℄jj= hIp � �2minfI; E�1g � I� Ipijj :Therefore, the identity (3.7) holds, and we have ful�lled the proof of (i).From (3.6) we an diretly get (ii) by applying the properties of the operatorsIp(p 2 N0) and Pi(i = 1; 2; � � � ; �), too.4. Convergene Theory of the GAMI-MethodTheorem 4.1. Let x� 2 Rn, and assume that for 8i 2 J(p), there exist onstant� 2 (0; 1) and Æ 2 (0; 1) independent of i and p suh that for any z 2 Rn, whenkz � x�kv � Æ, there holds eitherkTp;i(z)� x�kv � �kz � x�kv (4.1)or kPi(Tp;i(z)� x�)kv � �kPi(z � x�)kv : (4.2)Then for any x0 2 Rn satisfying kx0 � x�kv � Æ, the sequene fxpg generated by theGAMI-method onverges to x� provided E < 2I=(1 + �).Proof. Evidently, eah of the inequalities (4.1) and (4.2) implies that x� is a om-mon �xed point of the operator lass OT . In aordane with Lemma 3.2 and Lemma3.3, to ful�ll this proof we only need to demonstrate that there exists a nonnegativenumber sequene f�pg suh that(a) Pi2J(p)Ei ���Tp;i �xsi(p)�� x���� + �Ip � (2minfI; E�1g � I)Ip� pv � �pIpv, p =0; 1; 2; � � �;(b) �p+1 � �p, p = 0; 1; 2; � � �; and() limp!1�p = 0.As a matter of fat, in light of the properties of the operators Pi(i = 1; 2; � � � ; �) aswell as the assumptions (4.1) and (4.2) we get for all i 2 f1; 2; � � � ; �g and all z 2 Rnsatisfying kz � x�kv � Æ that there holdEijTp;i(z)� x�j = EiPijTp;i(z)� x�j � Ei�kz � x�kvv: (4.3)Now, de�ne( emin = min f[Ei℄jj j [Ei℄jj > 0; j = 1; 2; � � � ; n; i = 1; 2; � � � ; �g ;
 = 2minfI; E�1g � (1 + �)I; � = I � emin
; (4.4)and



A New Generalized Asynhronous Parallel Multisplitting Iteration Method 455�p = �p; p = 0; 1; 2; � � � : (4.5)Then we easily see that it holds [
℄jj > 0 and [�℄jj 2 [0; 1), j = 1; 2; � � � ; n, whenE < 2I=(1 + �). Moreover, through diret omputations we obtain by (4.3) thatXi2J(p)Ei ���Tp;i �xsi(p)�� x����+ hIp � �2minfI; E�1g � I� Ipi pv� hIp � �2minfI; E�1g � (1 + �)I� Ipi pv= [Ip �
Ip℄ pvhold for both ases (4.1) and (4.2). Note that for any p 2 N0 and any j 2 f1; 2; � � � ; ng,[Ip℄jj = 0 if and only if [Ip℄jj = 0, we see that[Ip � 
Ip℄ pv = [Ip � 
Ip℄ pIpv� �pIpv = �pIpv:Therefore, (a) holds for all p = 0; 1; 2; � � �. In aordane with Lemma 3.3 we know thatthere have Ipjxp+1 � x�j � �pIpv; p = 0; 1; 2; � � � :To test (b) we only need to demonstrate the validity of the inequalitiesp+1 � p; p = 0; 1; 2; � � � : (4.6)Beause of jxp+1 � x�j = jIp(xp+1 � x�) + (I � Ip)(xp+1 � x�)j� Ipjxp+1 � x�j+ (I � Ip)jxp+1 � x�j� �pIpv + (I � Ip)jxp � x�j� �pIpv + (I � Ip)pv= [�Ip + (I � Ip)℄pv� pv; (4.7)by applying Lemma 3.1, we easily see that when p = 0 there holds 1 � 0. Now, basedupon (4.7) and Lemma 3.1 again, and by making use of indution, we an immediatelydedue the validity of (4.6).Now, we turn to (). Evidently, we only need to verify that it holdsp � �l0; 8p � ml; l = 0; 1; 2; � � � : (4.8)In fat, when l = 0, (4.8) is trivial. Suppose that (4.8) holds for all p � ml. Then,when p � ml+1, from Lemma 3.2 we see thatjxp+1 � x�j � �mlv = �mlv;and from the de�nition of fpg as well as the indution assumption we get thatp+1 � �ml � �� �l0 = �l+10:



456 Z.Z. BAIThat is, (4.8) also holds for all p � ml+1. The above disussion shows the validity of(4.8).(4.7) and (4.8) immediately give limp!1xp = x�, and the proof of this theorem ishene ompleted.We use the following remarks to end this paper.Remark 4.1. The iteration formula (2.1) an be equivalently expressed asxp+1 = Xi2J(p) �E�1Ei� hETp;i �xs(i)(p)�+ (I �E)xt(i)(p)i+ Xi=2J(p) �E�1Ei�xp; p = 0; 1; 2; � � � :Note that �Pi=1E�1Ei = I, we see that the requirement that the sum of the weightingmatries Ei(i = 1; 2; � � � ; �) does not equal to the identity matrix is just equivalent torelaxing the original iteration with the diagonal matrix E, the sum of the weightingmatries. Hene, whether E = I or not is not relevant for multisplitting iterativemethods from the theoretial point of view.Remark 4.2. Di�erent onstrutions of the operator lassOT an result in variousasynhronous parallel multisplitting iterative methods for solving systems of linear andnonlinear equations. Some representatives of the hoies of the operator lass OT havebeen shown in [1, 3, 9℄.Remark 4.3. The existing results in the papers [1-9℄ are speial ases of that inthis paper. Referenes[1℄ Z.Z. Bai, D.R. Wang, Generalized matrix multisplitting relaxation methods and their on-vergene, Numer. Math. J. Chinese Univ. (English Ser.), 2 (1993), 87-100.[2℄ Z.Z. Bai, D.R. Wang, D.J. Evans, Models of asynhronous parallel matrix multisplittingrelaxed iterations, Parallel Comput., 21 (1995), 565-582.[3℄ Z.Z. Bai, D.R. Wang, D.J. Evans, Models of asynhronous parallel nonlinear multisplittingrelaxed iterations, J. Comp. Math., 13 (1995), 369-386.[4℄ R. Bru, L. Elsner, M. Neumann, Models of parallel haoti iteration methods, Linear AlgebraAppl., 103 (1988), 175-192.[5℄ D.P. O'Leary, R.E. White, Multisplittings of matries and parallel solution of linear systems,SIAM J. Alg. Dis. Meth., 6 (1985), 630-640.[6℄ Y.F. Su, Generalized multisplitting asynhronous iteration, Linear Algebra Appl., 235(1996), 77-92.[7℄ D.R. Wang, Z.Z. Bai, D.J. Evans, A lass of asynhronous parallel matrix multisplittingrelaxation methods, Parallel Algorithms Appl., 2 (1994), 173-192.[8℄ D.R. Wang, Z.Z. Bai, D.J. Evans, A lass of asynhronous parallel nonlinear multisplittingrelaxation methods, Parallel Algorithms Appl., 2 (1994), 209-228.[9℄ D.R. Wang, Z.Z. Bai, D.J. Evans, Asynhronous multisplitting relaxed iterations for weaklynonlinear systems, Intern. J. Computer Math., 54 (1994), 57-76.


