
Journal of Computational Mathematis, Vol.17, No.3, 1999, 327{336.
TWO DIMENSIONAL RIEMANN PROBLEM FOR GASDYNAMICS SYSTEM IN THREE PIECES�1)Jie-quan Li(Institute of Mathematis, Aademia Sinia, Beijing 100080, China)Shu-li Yang(Institute of Applied Mathematis, Aademia Sinia, Beijing, 100080, China)AbstratThe Riemann problem for two-dimensional ow of polytropi gas with threeonstant initial data is onsidered. Under the assumption that eah interfae ofinitial data outside of the origin projets exatly one planar wave of shok, rar-efation wave or ontat disontinuity, it is proved that only two kinds of ombi-nations, JRS and Js, are reasonable. Numerial solutions are obtained by usinga nonsplitting seond order aurate MmB Sheme, and they eÆiently reet theompliated on�gurations and the geometri struture of solutions of gas dynamissystem.Key words: Two-dimensional Riemann problem, MmB sheme, gas dynamis.1. IntrodutionIt is well known that the Riemann problem plays an essential role in developingone-dimensional theory of hyperboli onservation laws[3℄ and it is the simplest one ofgeneral Cauhy problem and muh easier to larify the expliit struture of its solutions.On the other hand, the solution of the Cauhy problem an be loally approahed bythe solutions of Riemann problem. Hene the Riemann problem serves as the touh-stone and the building blok of mathematial theory of hyperboli onservation laws.Of ourse, the most interesting and important model is the Euler equations in gasdynamis.The Riemann Problem for two-dimensional unsteady ow of invisid, polytropigas with four piee onstant in eah quadrant was investigated by Zhang and Zheng in[10℄, and Chang, Chen and Yang in [2℄ et.. With the harateristi analysis and thenumerial method, a set of onjeture on the struture of solutions is formulated. Un-fortunately, nothing analyti has eventually been solved, although there are still manymathematiians who present various simpli�ed models and try to approah the onje-ture and to explain the ompliated on�gurations in gas dynamis system. Thereforeit is worthwhile to onsider muh simpler Riemann initial data in two dimensions.� Reeived Marh 21, 1997.1) The �rst author was supported by State Key Laboratory of Sienti� and engineering omputing,Aademia Sinia. The seond author was supported by NNSF of China.



328 J.Q. LI AND S.L. YANGThe present paper deals in detail with the Riemann problem in three piees for gasdynamis system, i.e.8>>>>>><>>>>>>: �t + (�u)x + (�v)y = 0;(�u)t + (�u2 + p)x + (�uv)y = 0;(�v)t + (�uv)x + (�v2 + p)y = 0;���e+ u2 + v22 ��t + ��u�h+ u2 + v22 ��x + ��v�h+ u2 + v22 ��y = 0; (1.1)where �; (u; v) and p, e = p( � 1)� , h = e + p� ,  > 1 denote density, veloity, pres-sure, spei� internal energy, spei� enthalty and polytropi index respetively. AndRiemann data in three piees are desribed as follows,(�; p; u; v)jt=0 = Ti; (i = 1; 2; 3); (1:2)where Ti are onstant states (See Fig.1.1),being seleted under the assumption (H)that exatly one planar wave of shok, rar-efation wave or ontat disontinuity issuesfrom eah interfae of initial data outsideof the origin. It's proved that only twoases, JRS and three Js, are in theoryreasonable. Here we use a nonsplitting se-ond order aurate MmB (loally Maximum-minimum Bounds preserving) sheme to ob- Fig.1.1 Distribution of the initial datatain the numerial results for these two ases. MmB shemes are basially derived fromthe struture of the equation and the solution properties of salar onservation laws[5℄,and are generalized to hyperboli systems. The nonsplitting Mmb shemes have theseond order aurate, high resolution and nonosillatory properties, and have beenused to solve many other problems onerning disontinuous solutions fruitfully[6;7℄.This paper is organized as follows. Setion 2 gives the neessary preliminaries. InSetion 3 we disuss the distribution of initial data arefully. And the harateristianalyses are presented and the orresponding numerial results are illustrated in Setion4. 2. PreliminariesIn this setion we begin by realling the main results in [2, 10℄ as our neessarypreliminaries.Noting that the dynami similarity of (1.1) and lak of harateristi length param-eter imply that the solutions be the funtions of the variables � and �, where � = x=t,� = y=t, we seek the self-similar solutions.(�; p; u; v) = (�; p; u; v)(�; �): (2:1)



Two Dimensional Riemann Problem for gas Dynamis System in Three Piees 329The harateristi for (1.1) in (�; �)-plane is either� = �0 = VU ; (pseudoow harateristi); (2:2)or � = �� = UV �p2(U2 + V 2 � 2)U2 � 2= V 2 � 2UV �p2(U2 + V 2 � 2) (pseudowave harateristis); (2.3)where (U; V ) = (u� �; v � �) (pseudoveloity) and 2 = p=� (the sound speed). Dueto the well known reasons, it's natural to onsider disontinuous solutions. Assume� = �(�) to be the disontinuity line, by Rankine-Hugoniot ondition we have thenlinear(ontat) disontinuity d�d� = VU = V0U0 = �0; (2:4)or nonlinear disontinuities,d�d� = U0V0 �q2(U20 + V 20 � 2)U20 � 2 = ��; (2:5)where (�; p; u; v) and (�0; p;u0; v0) denote the left and right states along any disonti-nuity line, and 2 = p� p0�� �0 .The system (1.1) must be supersoni at the in�nity in (�; �)-plane[6℄, and the in�nityan be onsidered as a Cauhy support. In the neighborhood of the in�nity, the solutionmust onsists of planar waves (�; p; u; v)(�� + ��), whih involves:(i). onstant states (�0; p0; u0; v0);(ii). rarefation waves (R);R : 8>>>>><>>>>>: ut;1 = ut;2;un;1 = un;2 � Z �1�2 �d�;�1 < �2 or �1 > �2;p1��1 = p2��2 ; (2.6)(iii) shok waves (S);
S : 8>>>>>>>><>>>>>>>>:

ut;1 = ut;2;un;1 = un;2 �s p012�1�2 (�1 � �2);p1p2 = ( + 1)�1 � ( � 1)�2( + 1)�2 � ( � 1)�1 ;�1 > �2 or �1 < �2; (2.7)



330 J.Q. LI AND S.L. YANG(iv) positive and negative slip lines (J�)J� : 8><>: un;1 = un;2;p1 = p2url(un; ut)jJ = �1; (2.8)where un and ut denote the normal and the tangential omponents of the veloity alongany harateristi or disontinuity line, url (u; v) = vx � uy, p012 = p1 � p2�1 � �2 .Aording to [10℄, we have onjetures for the general pseudostationary ow that:(1). The pseudostationary is ontinuous on the whole plane if and only if it is ontinuousand rarefative in the neighborhood of in�nity; (2). The psedo-stationary ow is smooth(i.e. C1) on the whole plane if and only if it is a onstant state.3. Analysis of Distribution of Initial DataIn this setion, we will disuss the distribution of initial data in detail. At �rst, wegive the lassi�ation.3.1. Classi�ation.Under the assumption (H), in the neighborhood of in�nity, the solution only onsistsof three planar elementary waves in addition to the onstant states. One an easily�nd that the possible ombinations of waves are as follows.(a). three Rs; (b). three Ss; (). one S and two Rs, or one R and two Ss; (d). oneJ and two Rs, or one J and two Ss; (e). one J and one R and one S; (Abbr.JRS) (f).three Js.Next, we will show the following theorem holds.Theorem. The �rst four ases are impossible, and only the last two ases arereasonable theoretially.Remark. In the experiment that a planar moving inident shok wave enountersa sharp ompressive orner [1℄, regular reetion, Mah reetion et. are observed.Case (b) shows that in the neighborhood of the triple point, there may exist a slip linebesides the inident shok wave, the reeted shok wave and the Mah Stem.3.2 The proof of the theoremBy the nature of system (1.1), We always think that l1 oinides with y-axis inthe initial plane under a suitable rotation transformation of the oordinate system (f.Fig.1.1) Next, we will prove the theorem ase by ase.Case (a) In this ase, we just onsider the subase �3 < �2 < �1, and the othersubases are similar.Obviously, the relations (2.10) hold, i.e.R12 : 8<: u1 � u2 = 2pA�1 (��121 � ��122 );v1 = v2; (3.1)R23 : 8<: u02 = u03;v02 � v03 = 2pA�1 (��122 � ��123 ); (3.2)



Two Dimensional Riemann Problem for gas Dynamis System in Three Piees 331and R31 : 8<: u001 = u003;v001 � v003 = 2pA�1 (��121 � ��123 ); (3.3)where ( u0 = u � os(� � �=2) + v � sin(� � �=2) = u � sin� � v � os �;v0 = �u � sin(� � �=2) + v � os(� � �=2) = u � os � + v � sin�; (3.4)( u00 = u � sin�+ v � os�;v00 = �u � os�+ v � sin�; (3.5)and A is the entropy.By (3.1){(3.3), one an getu1 � u2 = �� 1sin� + 1sin��(v1 � v3); (3:6)and u1 � u2 = �(ot�+ ot �)(v1 � v3): (3:7)(3.6) and (3.7) show that sin(�+ �) = sin�� sin�;i.e. sin� = sin� + sin: (3:8)Furthermore, we have sin� = sin + sin�; (3.9)sin = sin�+ sin�: (3.10)(3.8){(3.10) lead to sin� = sin� = sin = 0; (3:11)whih means �; �;  = 0; or �: (3:12)This show that it is impossible that there are only three planar rarefation waves issuingfrom the jumps in initial data.Case (b) By Rankine-Hugoniot ondition, we have8<: pipj = ( + 1)�i � ( � 1)�j( + 1)�j � ( � 1)�i (i; j = 1; 2; 3; i 6= j);pi 6= pj; (3.13)whih implies that z � �21� �2z = x� �21� �2x � y � �21� �2y ; (3:14)



332 J.Q. LI AND S.L. YANGwhere �2 =  � 1 + 1, x = �1�2 , y = �2�3 , z = �1�3 .Noting that z = xy; (3:15)we obtain that (x� 1)(y � 1)(z � 1) = 0: (3:16)It follows that at least one of x; y and z equals to 1, whih ontradits to (3.13).Case () For this ase, if suÆes to notie the following lemma.Consider the properties in the phase plane (�; p), and letR(Q0) = f(�; p)jp� = p0�0 g;S(Q0) = f(�; p)j�(p + �2p0) = �0(p0 + �2p)g; (3.17)where � = 1� , we have the lemma.Lemma. (1) S(Q0) \ S(Q1) = ; if Q1 2 R(Q0). (2) R(Q0) \ R(Q1) = ; ifQ1 2 R(Q0):The proof of this lemma is trivial and omitted, from whih it is easy to know thatit is impossible for this ase to appear.Case (d) The two sublasses are similar, we only onsider the latter. Without lossof generality, suppose the Riemann data are seleted suh that the following relationshold, J12 : ( u1 = u2;p1 = p2; (3.18)
S23 : 8>>>>>>>><>>>>>>>>:

u02 = u03;v02 � v03 = s p023�2�3 (�2 � �3);p2p3 = ( + 1)�2 � ( � 1)�3( + 1)�3 � ( � 1)�2 ;p2 < p3; (3.19)and S13 : 8>>>>>>>><>>>>>>>>:
u001 = u003;v001 � v003 = s p013�1�3 (�1 � �3);p1p3 = ( + 1)�1 � ( � 1)�3( + 1)�3 � ( � 1)�1 ;p1 < p3; (3.20)where (u0; v0) and (u00; v00) are the same as in (3.4) and (3.5). By Rankine-Hugoniotondition, we obtain �1 = �2: (3:21)From (3.18){(3.21), it is not diÆult to get tan � = � tan�. It follows that�+ � = �: (3:22)



Two Dimensional Riemann Problem for gas Dynamis System in Three Piees 333Thus the 2-D Riemann problem (1.1){(1.2) degenerates to the 1-D problem, i.e. thereare only one shok issuing from the jumps in initial data. This ompletes the proof.4. The Charateristi Analysis and Numerial ResultsWe will employ the harateristi method to understand the struture of solutions,and evaluate them by omparing with the orresponding numerial results.a. JRS

Fig. 4.1 Mesh points 401� 401, Time steps n = 480Through our analysis arefully, it suÆes to onsider the distribution of Riemanndata as shown in Fig.4.1. The relevant ompatibility onditions should be
R12 : 8>>>>>><>>>>>>: � = u2 + ;u1 = u2 + Z �2�1 �d�;v1 = v2;p1p2 = (�1�2 ) ; S13 : 8>>>>>>>>>><>>>>>>>>>>:

� = �13 = u3 �r�1�3 p013 = u1 �r�3�1 p013;u1 = u3;v1 = v3 �s p1 � p3�1�3(�1 � �3)(�1 � �3);p1p3 = ( + 1)�1 � ( � 1)�3( + 1)�3 � ( � 1)�1 ;and J23 : 8<: p2 = p3;u2 � u3v2 � v3 = � tan�:



334 J.Q. LI AND S.L. YANGWe know that the solution onsists of R12; S13 and J23 besides the three onstant statesin the neighborhood of in�nity in (�; �)-plane. Taking the in�nity as a Cauhy supportand extending the solution along harateristi lines or stream lines, we obtain thatR12 must meet the soni stem P1P2 and S13 an arrive at the soni irle of the stateT1 at Q1 before they meet R12 sine �13 < u1, and that J23 reah the soni irleof T2 at Q2. Aross the irle of T1, the ow is subsoni and S13, whih uts theonstant states T3 from a subsoni region and form a free-boundary value problem,should math smoothly. From the numerial results, we �nd it beomes weaker andweaker (See Fig.4.1).The distribution of initial data is as follows,u1 = 0 v1 = 0 �1 = 1 p1 = 50u2 = �6:86099 v2 = 0 �2 = 0:408327 p2 = 14:2686u3 = 0 v3 = 6:86099 �3 = 0:431515 p3 = 14:2686and � = �t�x = �t�y = 0:05b. Three Js

Fig.4.2 Mesh points 401� 401, Time steps n = 420In this ase, the pressure p is onstant. Due to the di�erene of J� and J+, thisase is lassi�ed as two kinds of subases.Subase 1. 2J+ + J� The three jumps, J+12; J+23 and J�13, from in�nity meet thesoni irles of states T2 and T3 at Q1; Q2 and Q3 �rstly. We draw the harateristi



Two Dimensional Riemann Problem for gas Dynamis System in Three Piees 335lines �+(1);�+(2) and ��(1) through Q1; Q2 and Q3, respetively. It's easy to see thatthe determination region 
1 of T1 is enompassed by J+12; J�13;�+(1) and ��(1), whileJ23;��(3), the part of the soni irle of (1) Q3Q4 and J13 bound the determined region
3 of the state T3. Obviously, 
1 and 
3 may overlap. Aording to the harateristitheory, there will appear a disontinuous solution whih onsists of shok waves or/andontat disontinuities. From the numerial results, we observe that J12 and J23 mayinterat eah other and produe two shok waves, whih bound the pseudo-subsoniregion, and a ontat disontinuity or other new nonlinear waves whih have not beentesti�ed yet in this region (See Fig.4.2).The distribution of initial data is as follows,u1 = �1 v1 = �1 �1 = 1:5 p1 = 1u2 = �1 v2 = 1 �2 = 0:5 p2 = 1u3 = 1 v3 = �1 �3 = 1 p3 = 1and � = �t�x = �t�y = 0:1Subase 2. 3J�s. This subase is similar to the 4Js disussed in [6℄, our neessaryand signi�ant supplement is that a spiral may appear, whih is the result of theinteration of Js (see Fig.4.3).

Fig.4.3 Mesh points 401� 401, Time steps n = 360



336 J.Q. LI AND S.L. YANGThe table of initial data is as follows,u1 = 1 v1 = �1 �1 = 1:5 p1 = 2u2 = 1 v2 = 1 �2 = 0:5 p2 = 2u3 = �1 v3 = �1 �3 = 1 p3 = 2and � = �t�x = �t�y = 0:2. 5. ConlusionFrom the above analyses and numerial results, we know that Riemann problemare the simplest in 2-D gas dynamis, the struture of solutions is the basis for thestudy of phenomena appearing in gas dynamis. Furthermore, we �nd many interestingphenomena similar to those of Riemann problem in multipiees, suh as spiral, and theinteration of S and R et.. Espeially, the interation of J+ and J� may produe anew kind of a shok, whih we all a delta wave of the solutions[9℄. Now we keep ondoing both numerial experiments and theoretial proof to hek it.In addition, we �nd the numerial results are in aordane to the theoretial anal-yses, whih shows that MmB shemes are dependable one again.Aknowledgement. The authors would like to thank Prof. T. Zhang for hisenouragement and areful disussions.Referenes[1℄ Ben-dor. G. and Glass, II, Domains and boundaries of non-stationary oblique shok wavereetion (1), (2), J. Fluid Meh., 92 (1979), 459{96; 96 (1980), 735{56.[2℄ T. Chang, G.Q. Chen, S. Yang, On the Riemann Problem for 2-D Compressible EulerEquations, Disrete and Continuous Dynamial Systems, 1 : 4 (1995), 555{584.[3℄ R. Courant, K. Friedrihs, Supersoni Flow and Shok waves, Intersiene, New York, 1948.[4℄ T. Chang, L. Hsiao, The Riemann Problem and Interation of Waves in Gas Dynamis,Longman Sienti� and Tehnial (Pitman Monographs and Surveys in Pure and AppliedMathematis, No.41), Essex, 1989.[5℄ Shuli Yang, Calulations of Riemann problem for 2-D salar onservation laws by seondorder aurate MmB sheme, J. of Comp. Math.,12 : 4 (1994), 339{351.6℄ Shuli Yang, Charateristi Petrov-Galerkin shemes for 2-D onservation laws, IMPCT ofComputing in Siene and Engineering, 5 (1993), 379{406.[7℄ Shuli Yang, Spirals for Riemann problems in Multipiees for 2-D Euler equations by us-ing MmB shemes, Pro. of International Conferene on Nonlinear Partial Di�. Equat.,Beijing, June 1993.[8℄ Shuli Yang, Tong Zhang, The Mmb di�erene solutions of 2-D Riemann problems for a2�2 hyperboli system of onservation laws, IMPACT of Comp. Siene Engin., 3 (1991),146{180.[9℄ T. Chung (T. Zhang), Shuli Yang, Delta Waves in Solutions of Conservation Laws, Pro.of International Conferene on Nonlinear Partial Di�. Equat., Beijing, June 1993.[10℄ T. Zhang, Y.Zheng, Conjeture on the struture of solutions of the Riemann problem fortwo-dimensional gas dynamis systems, SIAM J. Math. Anal., 21 (1990), 593{630.


