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Subspae Searh Method for Quadrati Programming with BoxConstraints�1)Zi-luan Wei(ICMSEC, Chinese Aademy of Sienes, Beijing 100080, China)AbstratA subspae searh method for solving quadrati programming with box on-straints is presented in this paper. The original problem is divided into manyindependent subproblem at an initial point, and a searh diretion is obtained bysolving eah of the subproblem, as well as a new iterative point is determined suhthat the value of objetive funtion is dereasing. The onvergene of the algorithmis proved under ertain assumptions, and the numerial results are also given.Key words: Subspae searh method, Quadrati programing, Matrix splitting1. IntrodutionIn this paper, we onsider the problem of minimizing a quadrati onvex program-ming with box onstrained variables:Minf(x)s.t.x 2 
 (1.1)where 
 = f x 2 Rn: l � x � ug, f(x) = 12xTHx+ bTx, and H is an n by n symmetripositive de�nite matrix, and b; l; u are given onstant vetors in Rn.This problem arises in several areas of appliations, suh as optimal ontrol anddisign engineering, linear least square problem with bounded variables and implemen-tation of robust method for nonlinear programming, et. Many suessful algorithmsfor solving this type of large sale problem have been studied based on ative set strate-gies. A popular approah is to use an ative-set algorithm that solves a sequene ofsubproblems of the form Min f(x+ d) s.t. di = 0; i 2 Vk (1.2)where Vk is the index set of ative onstraints, indiating the set of varaibles that wouldremain �xed at one of their bounds. Obviously, it is neessary to identify a andidateative set, and to solve the problem (1.2) exatly in the ative set algorithm. Espeially,� Reeived Otober 4, 1996.1)This researh supported partially by The National Natural Siene Foundation of China(No.19771079) and State Key Laboratory of Sienti� and Engineering Computing.



308 Z.L. WEIobtaining the exat minimizer of (1.2) may require many onjugate gradient iterations,and adding onstaints at a time to the working set may lead to an exessive number ofiterations for large sale problem. In order to avoid the above disadvantages, a di�erenttype of algorithm, based on the gradient projetion, and ombination of the gradientprojetion with onjugate gradient, have been proposed by several authors. Thesealgorithms have �nite onvergene if the problem is stritly onvex and the solutionis nondegenerate[12℄. A similar algorithm ombines onjugate gradient with gradientprojetion tehnique, and uses a new strategy for the deision of leaving the urrentfae and make it possible to obtain �nite onvergene even for a singular Hessian andin the presene of dual degeneray[7℄. A primal-dual interior point algorithm is alsoused to solve large problem (1.1), and the numerial experiments have shown that thealgorithm requires only a few steps and is very eÆient[9℄.In this paper, we present a subspae searh method for solving the problem (1.1).The main steps of the algorithm are to divide the problem (1.1) into independentsubproblems at an initial feasible point and solve eah of these subproblems to obtaina searh diretion, and then to determine a new feasible iterative point suh thatthe objetive funtion is dereasing. The onvergene of the algorithm is proved underertain assumptions. The main feature of the algorithm is that large sale problom (1.1)an be transformed into many small independent subproblems, and all the subproblemsan be solved simultaneously.This paper is organized as follows. In Setion 2 we desribe the algorithm. Theonvergene results are proved under ertain assumptions and numerial results arealso given in Setion 3. 2. Derivation of the AlgorithmNow we onsider the problem (1.1). Without loss of generality, assume that vetorx 2 Rn an be divided into (xT1 ; xT2 ; � � � ; xTt ), and xi 2 Rni , and that n1 = n2 = � � � = ntand tni = n. Aordingly, matrix H and vetors b; l; u an be also subdivided intot � t blok submatries Hij(Hij 2 Rni�ni ; i; j = 1; 2; � � � ; t) and subvetors bi; li; ui(bi; li; ui 2 Rni , i = 1; 2; � � � ; t); respetively. Therefore, the objetive funtion f(x) anbe rewritten as follows. f(x) = 12 tXi=1 tXj=1xTi Hijxj + tXi=1 bTi xi (2.1)Assume that an initial vetor �x 2 
 is a stritly interior point, that is, l < �x < u, andthat x belongs to the neighborhood of �x, then we havex = �x+ (x� �x) (2.2)Substituting (2.2) into (2.1), it is easy to derive thatf(x) = 12 tXi=1 �xTi b̂i + tXi=1(xi � �xi)T�bi + 12 tXi=1 tXj=1(xi � �xi)THij(xj � �xj) (2.3)



Subspae Searh Method for Quadrati Programming with Box Constraints 309where b̂i = � tXj=1Hij�xj+2bi), �bi = � tXj=1Hij�xj+bi�. Clearly, f(x) is non-separable in theexpression (2.3), so the problem (1.1) an not be split into t independent subproblems.One possibility to overome this diÆulty is to de�ne the following funtions'i(xi; �x) = 12 �xTi b̂i + 12(xi � �xi)THii(xi � �xi) + (xi � �xi)T�bi (2.4)and '(x; �x) = tXi=1 'i(xi; �x) (2.5)It follows from (2.5) that '(x; �x) is a quadrati funtion de�ned on X1 �X2 � � � �Xt(here Xi = fxi 2 Rni : li � xi � uig, i = 1; 2; � � � ; t), and it is easy to verify thatf(�x) = '(�x; �x) (2.6)rf(�x) = r'(�x; �x) (2.7)and f(x)� '(x; �x) = 12 tXi=1Xj 6=i(xi � �xi)Hij(xj � �xj) (2.8)If '(x; �x) is used to replae f(x) in (1.1), thus, the original problem (1.1) an bereplaed loally by the following problemmin '(x; �x) s.t. x 2 
 (2.9)It is obvious that '(x; �x) is separable funtion, hene, minimizing (2.9) is equivalent tosolve the following t independent subproblemsmin 'i(xi; �x) s.t. xi 2 Xi (2.10)Suppose that x̂ is an optimal solution to the problem (2.10), it is easy to see that thevalue of objetive funtion f(x) is dereasing at �x along the diretion d = x̂ � �x. Ifmatrix H an be divided into H1 and H2 (H = H1 +H2) suh thatyT (H1 �H2)y > 0 (2.11)holds for any y(y 6= 0) 2 Rn, where H1 is a blok diagonal matrix of H onsistingof t diagonal blokes of H ( from H11 to Htt), and H2 = H � H1. Obviosly, if His a symmetri nonsingular M -matrix[3℄ or blok-diagonal dominant matrix[2℄, then itis easy to verify that H an be split into H1 and H2 suh that (2.11) holds for anyy(y 6= 0) 2 Rn. As a result, a new iterative point x = x̂ an be generated suh thatf(x̂) < f(�x). Based on the above desription we are able to onstrut the followingsubspae searh algorithm for solving the problem (1.1).Algorithm A:Let x0 2 
 be a given initial point, " > 0 be some presribed auray. And k := 0,then xk+1 is obtained by the following steps.



310 Z.L. WEI(i) Let �x = xk, and solve the problem (2.10) for i = 1; 2; � � � ; t, and obtain anoptimal solution x̂k.(ii) If kx̂k�xkk2 � ", then stop, and x̂k is an approximate solution for the problem(1.1), Otherwise, let xk+1 = x̂k and k := k + 1, and return to (i).It follows from the de�nition of algorithm A that the main omputational workis from solving problem (2.10) for i = 1; 2; � � � ; t at eah iteration. There are somedi�erent algorithms, whih an be used to solve the problem (2.10).3. Convergene ResultsThis setion deals with the onvergene of the algorithm A. We prove that sequenexk generated by the algorithm A onverges to an optimal solution x� of problem (1.1)under ertain assumptions. Several lemmas are introdued in order to prove the on-vergent onlusion.Lemma 3.1. Suppose that H is an n by n symmetri positive de�nite matrix, andb; l; u are given onstant vetors in Rn, then x� is an optimal solution of problem (1.1)if and only if x� 2 
 and there is y� � 0, z� � 0 suh thatHx� + b = z� � y�; (u� x�)T y� = 0; (x� � l)T z� = 0: (3.1)hold.Lemma 3.2. Suppose that '(x; �x) is de�ned by (2:5), and that x� is an minimizerof '(x; �x) on X1 �X2 � � � � �Xt, then'(x�; �x) � '(�x; �x)� 12 tXi=1 dTi Hiidi (3.2)where di = x�i � �xi; i = 1; 2; � � � ; t.Proof. It follows from the assumption that '(x; �x) is a separable funtion, so x�an be obtain from (2.10) for i = 1; 2; � � � ; t. A neessary and suÆient ondition for x�ibeing a solution of (2.10) isHii(x�i � �xi) + �bi = qi; i = 1; 2; � � � ; t: (3.3)where qir8><>: > 0; (x�i )r = (li)r< 0; (x�i )r = (ui)r0; (li)r < (x�i )r < (ui)r (3.4)and ( )r denotes the r-th omponent of a vetor. From (3.3) and (3.4), it is easy toverify that dTi Hiidi + dTi �bi < 0; i = 1; 2; � � � ; t: (3.5)On the other hand, '(x; �x) is a quadrati funtion, so one an easily derive that'(x�; �x) ='(�x; �x) + dTr'(�x; �x) + 12dTr2'(�x; �x)d



Subspae Searh Method for Quadrati Programming with Box Constraints 311='(�x; �x) + tXi=1 dTi [Hiidi +�bi℄� 12 tXi=1 dTi Hiidi (3.6)By (3.5) and (3.6), it is straightforward to obtain'(x�; �x) � '(�x; �x)� 12 tXi=1 dTi Hiidiwhih proves the onlusion of the lemma.Lemma 3.3. Suppose that �x 2 
 and H is divided H1 and H2 suh that (2:11)satis�es, and that x̂ is generated by the algorithm A with the starting point �x, thenf(x̂) < f(�x) (3.7)holds.Proof. It follows from the assumptions that x̂ is obtained from (i) of Algorithm A.By (2.8), it is lear that jf(x̂)� '(x̂; �x)j = 12 ��� tXi=1Xj 6=i dTi Hijdj���Hene f(x̂) � '(x̂; �x) + 12 ��� tXi=1Xj 6=i dTi Hijdj��� (3.8)From (3.2), (3.8) and (2.11), it is straightforward to show thatf(x̂) � '(�x; �x)� 12(dTH1d� dTH2d) = f(x)� 12dT (H1 �H2)d (3.9)This implies that (3.7) holds, whih proves the lemma.Theorem 3.4. Suppose that H is a nonsingular M -matrix or blok-diagonal dom-inant matrix and that H is divided into H1 and H2 suh that H = H1+H2 and x0 2 
is an initial point. Assume that sequene x̂k and xk are generated by the algorithm A,then there exists an integer k0 > 0 suh that x̂k0 = xk0 (x̂k0 is an optimal solution ofproblem (1:1)) or limk!1(x̂k � xk) = 0 (3.10)and the aumulation point of xk is a solution of the problem (1:1).Proof. From the assumptions that H is a nonsingular M-matrix or blok-diagonaldominant matrix, then, it is easy to show that H an be divided into H1 and H2 (H = H1 + H2 ) suh that (2.11) holds for any y(y 6= 0) 2 Rn, where H1 is a blokdiagonal matrix of H onsisting of t diagonal blokes of H. As the result, the algorithmA is well de�ned. Assume that sequene x̂k and xk is generated by the algorithmA. If there exists an integer k0 suh that x̂k0 = xk0 , then, from (3.3){(3.4), it is easy tosee that x̂k0 (or xk0) is an optimal solution for the problem (1.1).



312 Z.L. WEIIf the above desription is not true, from (2.11) and (3.9), it is striaghtforward toverify that the sequene f(xk) is onvergent. Thus,limk!1 k dkk2 = limk!1 kx̂k � xkk2 = 0 (3.11)whih implies that (3.10) holds. Let x� be a limit of a onvergent subsequene of thesequene xk, and let x̂� be an aumulation point of the orresponding subsequene ofx̂k, By (3.10) or (3.11), it is obvious that x� = x̂�. Hener'(x�; �x) = r'(x̂�; �x) = rf(x�)From (3.1), the neessary and suÆient onditions of optimality for problem (1.1) holdat x�, whih proves the onlusion of the theorem.The following orollary is a diret result of Theorem 3.4.Corollary 3.5. Suppose that x0 2 
 is an initial point and H is a symmetripositive de�nite martrix with diagonal dominant, and that H is divided into H1 and H2suh that H = H1+H2 and H1 is a blok diagonal matrix, and sequene x̂k and xk aregenerated by the algorithm A. Then there exists an integer k0 > 0 suh that x̂k0 = xk0(x̂k0 is an optimal solution of problem (1:1)) orlimk!1(x̂k � xk) = 0 (3.12)and the aumulation point of xk is a solution of the problem (1:1).Now we disuss the numerial experiments of our algorithm. The algorithm Awas implemented in double preision Fortran, and the ode was tested on randomlygenerated problems. The matrix H is de�ned by H = S+vvT , The elements of v 2 Rnare generated randomly in the interval (�1; 1), and vtv = 1, S is a diagonal matrix, andS = �I (� > 0) and I is an identify matrix. Without loss of generality, assume thatl = 0; u = e; e 2 Rn and all the elements in e are equal to 1, and the number of ativeonstraints at the optimal solution x� is hosen as n2 , and half of the ative variableshave positive gradient, and the other half have negative. So the optimal solution x� ishosen suh that (rf(x�))i = 8><>: 1; x�i = 0�1; x�i = 10; 0 < x�i < 1 (4.7)Finally we set b = �Hx� +rf(x�).If jf(xk)�f(x�)j < " is used for the termination rule, and set " = 10�6 and � = 1:0,then the omputational results are shown in Table 1 for n (from 100 to 1000).where n; ni; t and NI denote the size of the problems, the size of subproblem, numberof the subproblems and number of iteration for eah problem, respetively.



Subspae Searh Method for Quadrati Programming with Box Constraints 313Table 1.n ni�t NI kxk � x�k2 n ni�t NI kxk � x�k210�10 12 0.40632�10�3 15�40 15 0.50520�10�3100 5�20 13 0.51831�10�3 600 30�20 14 0.71878�10�320�5 13 0.29122�10�3 40�15 14 0.54251�10�320�10 12 0.56617�10�3 35�20 15 0.43237�10�3200 40�5 10 0.43943�10�3 700 70�10 13 0.64135�10�350�4 9 0.40737�10�3 20�35 15 0.57402�10�330�10 12 0.49600�10�3 40�20 15 0.45446�10�310�30 13 0.58339�10�3 20�40 15 0.59770�10�3300 50�6 11 0.31306�10�3 800 50�16 14 0.67480�10�320�15 13 0.41242�10�3 80�10 13 0.65477�10�315�20 13 0.52632�10�3 10�80 15 0.50097�10�340�10 13 0.40337�10�3 30�30 16 0.45173�10�320�20 14 0.48924�10�3 60�15 15 0.46720�10�3400 50�8 12 0.50962�10�3 900 15�60 15 0.73217�10�325�16 14 0.40236�10�3 10�90 15 0.59535�10�316�25 14 0.54003�10�3 90�10 14 0.44213�10�350�10 13 0.54079�10�3 100�10 14 0.45201�10�325�20 14 0.66207�10�3 50�20 15 0.33196�10�3500 20�25 11 0.29122�10�3 1000 20�50 16 0.48603�10�310�50 14 0.75915�10�3 25�40 16 0.49682�10�3100�5 11 0.29018�10�3 10�100 15 0.59320�10�3Table 2.� NI1 kxk � x�k2 NI2 kxk � x�k20.90 16 0.11285�10�2 18 0.10277�10�20.80 21 0.11397�10�2 24 0.11242�10�20.75 26 0.90089�10�3 30 0.98295�10�30.70 32 0.11379�10�2 39 0.10953�10�20.65 45 0.10712�10�2 58 0.12360�10�2The seond and third olumn, and the fourth and �fth olumn denote the numerialresults for n = 500 (ni = 25; t = 20) and n = 900(ni = 30; t = 30), respetively.The author wishes to thank Prof. Y.Yuan for many valuable suggestion and om-ments. Referenes[1℄ D.P. Bertsekas, Projeted Newton method for optimization problems with simple on-straints, SIAM J. Control Optimization, 20 (1982), 221{246.[2℄ Zhongzhi Bai, Parallel matrix multisplitting blok relaxation methods, Math. Numer.Sinia, 17 (1995), 238{252 (in Chinese).[3℄ A. Berman , R.J. Plemmons, Nonnegative Matries in the Mathematial Sienes, AademiPress, New York, 1979.[4℄ T.F. Coleman, L.A. Hulbert, A diret ative set algorithm for large sparse quadrati pro-gram with simple bounds, Mathematial Programming, 45 (1989), 373{406.[5℄ A.R. Conn, N.I.M. Gould , Ph.L. Toint, Testing a lass of methods for solving minimizationproblems with simple bounds on variables, Math. Comp., 50 (1988), 399{430.



314 Z.L. WEI[6℄ J.C. Dunn, On the onvergene of projeted gradient proesses to singular ritial point, J.Optim. Theory Appl., 55 (1987), 203{216.[7℄ A. Friedlander, J.M. Martinez, On the maximization of a onave quadrati funtion withbox onstraints, SIAM J. Optimization, 4 (1994), 177{192.[8℄ R. Flether, Pratial Methods of Optimization, 2-nd ed., John Wiley, Chihester, NewYork, 1987.[9℄ C.G. Han, P.M. Pardalos, Y. Ye, Computational aspets of an interior point algorithmfor quadrati programming problem with box onstraints, in Large Sale Numerial Op-timization, T.Coleman and Y.Ye, eds., Soiety for Industrial and Applied Mathematis,Philadephia, PA, 1990.[10℄ O.L. Mangasarian, Parallel gradient distribution in unonstrained optimizatin, SIAM J.Control and Optimization, 4 (1995), 1916{1925.[11℄ J.J. More, G. Toraldo, Algorithm for bound onstrained quadrati programming problems,Numerial Math., 55 (1989), 277{400.[12℄ ||, On the solution of large quadrati programming problems with bound onstraints,SIAM J. Optimization, 1 (1991), 93{113.[13℄ M.P. Mekenna, J.P. Mesirov, S.A. Zenios, Data parallel quadrati programming on boxonstrained problem, SIAM J. Optimization, 4 (1995), 570{589.[14℄ R.S. Varga, Matrix Iterative Analysis, Pientie-Hall, Englewood Cli�s, N.J., 1962.[15℄ Y. Yuan, Numerial Methods for Nonlinear Programming, Shanghai Sienti� and TehnialPublishers, 1993 (in Chinese).


