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THE SCHWARZ CHAOTIC RELAXATION METHOD WITHINEXACT SOLVERS ON THE SUBDOMAINS�Jian-guo Huang(Department of Applied Mathematis, Shanghai Jiao Tong University,Shanghai 200240, China)AbstratIn this paper, a S-CR method with inexat solvers on the subdomains is pre-sented, and then its onvergene property is proved under very general onditions.This result is important beause it guarantees the e�etiveness of the Shwarzalternating method when exeuted on message-passing distributed memory multi-proessor system.Key words: S-CR method, Chaoti algorithm, Inexat solvers.1. IntrodutionEarly in 1869, A.H. Shwarz introdued the tehnique of domain deomposition andalternative iteration to prove the existene of the solution for some ellipti problem innon-regular domain. In reent years, with the arrival and tremendous developmentof superomputer and multiproessor system, this anient and profound idea bringsabout fresh vitality, beomes an important soure to the researh of large-sale sienti�omputation.Besides the ease of parallelization, Shwarz alternating algorithm and many otherdomain deomposition methods allow one to treat omplex geometries or to isolatesingular parts of the domain through adaptive re�nement. They have attrated muhattention all of the world, see e.g. [1℄, [8℄ for details. But all of these algorithms aresynhronous, whih will lead to great overheads in data ommuniation, and severelydamage the eÆieny of parallelization in pratie.In [5℄, [6℄, Kang put forward the S-CR algorithm (Shwarz Chaoti Relaxation algo-rithm) whih �rst ombined the haoti idea and shwarz relaxation alternating method.This new algorithm was arried out in some message - passing distributed memorymultiproessor system. Numerial experiments have showed its e�etiveness[5;6℄. In hisPh.D. Thesis, Huang[3;4℄ gave a rigorous proof for the onvergene of the S-CR. Thisproof depends heavily on the norm estimates of some multipliative operators.In this artile, the author will go on with the onvergene analysis of the S-CR withinexat solvers on the subdomains. It is well known that implementation of the S-CRis mainly at the request of the solving of subproblems assigned on ertain separate andinteronneted proessors. But exat solvers for these subproblems are impossible or� Reeived June 6, 1994.



126 J.G. HUANGimproper, in pratie we have to employ the inexat solvers, e.g. Gauss-Seidel method,SSOR, PCG and other high eÆient iterative methods. What inuene on the globalonvergene does this result in? We show under muh reeivable onditions the S-CRalgorithm with inexat solvers is also onvergent. This result is important beause itguarantees the e�etiveness of the S-CR algorithm when exeuted on the message -passing distributed memory multiproessor system.Let 
 � R2 be a bounded polygonal domain, and let( a(u; v) = (f; v); f 2 H�1(
); v 2 H10 (
);u 2 H10 (
); (1.1)be the variational form of an ellipti operator de�ned on it. The bilinear form satis�es:For arbitrary u; v 2 H10 (
), 8><>: a(u; v) = a(v; u);a(u; v) � C2kuk1 kvk1;a(v; v) � C1kvk21; (1.2)where k:k1 is the onventional Sobolev norm in H10 (
), C1 and C2 are two positiveonstants. We will borrow the �nite element method to approximate (1.1).Assume that the triangulation Th is quasi-uniform[1℄, and let V � H10 (
) be theorresponding pieewise linear �nite element spae de�ned on it. Then we have thefollowing disretized form of (1.1).( a(uh; v) = (f; v); v 2 V;uh 2 V: (1.3)Thanks to (1.2), in what follows, we will onsider V as a Hilbert spae with innerprodut a(�; �), its related indued norm is denoted by k:k.Suppose 
 is divided into m subdomains 
1;
2; � � � ;
m whih satisfy:1. 
 =X
i;2. �
i aligns with the triangulation Th, i.e. the line of �
i either oinides with ordoes not interset the triangulation line of �T.Let Vi = H10 (
i) \ V whih an be looked upon as a subspae of V, M? denotethe orthogonal omplementary subspae of some subspae M , and PM represent theorthogonal projetion operator from V onto M . We assume thatV =XVi: (1.4)Let ! 2 (0; 2) be a relaxation parameter. The S-CR introdued in [5℄ and [6℄ an beabstrated as follows: Let u0 2 V be an arbitrary guess funtion, the iterative sequenefukg for solving (1.3) satis�es that8><>: u1 � uk�1 2 V�(k);a(u1; v) = (f; v); v 2 V�(k);uk = (1� !)uk�1 + !u1; (1.5)



The Shwarz Chaoti Relaxation Method with Inexat Solvers on the Subdomains 127where �(k) denotes the subsript of the subdomain related to the kth iteration, andfor arbitrary natural number i, 1 � i � m, it appears in�nite often in the index setf�(k)g1k=1.From (1.5), we see that the main work to exeute the S-CR is to solve the subprob-lem de�ned on the subdomain 
�(k) at the kth step. But exat solver is not availableor improper in general, and only inexat solvers suh as Gauss-Seidel method, SSOR,PCG or other high-eÆient iterative algorithms an be used. This leads to the followingsheme whih desribes that S-CR implemented in pratie.SCRI (S-CR with inexat solvers). let u0 2 V be an arbitrary initial guess funtion,! 2 (0; 2) and � 2 (0; 1) be two parameters. Then the iterative sequene fukg satis�esthat 8>>>>>>><>>>>>>>:
u1 � uk�1 2 V�(k); (�)a(u1; v) = (f; v); v 2 V�(k); (�)u2 � uk�1 2 V�(k);ku2 � u1k � �kuk�1 � u1k;uk = (1� !)uk�1 + !u2; (1.6)where u2 is the approximate solution of (1:6�) via proper iterative method with initialfuntion uk�1, � means the auray restrition.Let Ek = uk � uh, E1 = u1 � uh and E2 = u2 � uh. It follows from (1.6) that8>>>>>>><>>>>>>>:
E1 �Ek�1 2 V�(k);a(E1; v) = 0; v 2 V�(k);E2 �Ek�1 2 V�(k);kE2 �E1k � �kEk�1 �E1k;Ek = (1� !)Ek�1 + !E2: (1.7)Obviously E1 = P 0�(k)Ek�1 where P 0l denotes the orthogonal projetion operatorfrom V onto the subspae V ?l . Let �k = kE2 �E1kkEk�1 �E1k (�k = 0 if E1 = Ek�1), then itis lear that 0 � �k � � < 1.In order to make out the error propagation of the algorithm SCRI more learly,we'd like to express (1.7) in operator form. It follows from (1.7), matrix theory and theisomorphism tehnique that there exists an orthogonal operator Qk on V�(k) satisfyingE2 �E1 = �kQk(Ek�1 �E1): (1.8)Here Qk an be viewed as a linear operator de�ned on the whole spae V by zeroextension, i.e. Qkv = 0, for v 2 V ?�(k). By the way, from now on we will view anarbitrary orthogonal operator de�ned on any subspae W of V as the operator on V inthe same way. Thus from (1.6), (1.7) and (1.8) we haveE2 = �kQkEk�1 + (1� �kQk)E1; (1.9a)Ek = [(1� !)I + !�kQk + !P 0�(k)℄Ek�1: (1.9b)



128 J.G. HUANG2. Preparation of The ProofIn order to give the rigorous proof of the onvergene property, we need the followingLemmas.Lemma2.1. Suppose the onstants a, �, ! satisfy that 0 � a � � < 1, 0 < ! < 21+� ,then k(1� !)I + !aQ+ !P 0kk � 1; (2.1)where Q is an arbitrary orthogonal operator on Vk, 1 � k �m.Proof. For any v = v1 + v2 2 V , v1 2 Vk, v2 2 V ?k ,[(1� !)I + !aQ+ !P 0k℄v = (1� ! + !aQ)v1 + v2;and k[(1 � !)I + !aQ+ !P 0k℄vk2 = k(1� ! + !aQ)v1k2 + kv2k2:Butk(1� ! + !aQ)v1k2 =(1� !)2kv1k2 + 2a!(1 � !)(Qv1; v1) + a2!2kQv1k2�8<: (1� ! + !a)2kv1k2; 0 < ! � 1(1� ! � !a)2kv1k2; 1 � ! < 21 + � � kv1k2:Lemma2.1 then follows.In what follows we will always assume the onditions for !; � in Lemma2.1 aresatis�ed.Lemma2.2. There exists a onstant � 2 (0; 1), suh that, for arbitrary elementM1 of fVkgmk=1 (here fVkgmk=1 is a �nite set with subspaes Vk; k = 1; 2; � � � ;m as itselements), and M2 whih is the sumspae of any subset of fVkgmk=1 (i.e., M2 = lXi=1 Vtifor a subset fVtigli=1 � fVkgmk=1), for any �k, 0 � �k � �, any orthogonal operator Qkon subspae Mk, k = 1; 2, we have 2Yk=1[(1 � !)I + !�kQk + !P 0Mk ℄v � �kvk; v 2M1 +M2; (2.2a)and k[(1 � !)I + !�1Q1 + !P 0M1 ℄P 0M2vk � �kvk; v 2M1 +M2: (2.2b)Proof. We only prove (2.2a), proof of (2.2b) is similar. Beause of the �nite hoiesof Mk, and the ontinuity of 2Yk=1[(1�!)I+!�kQk+!P 0Mk ℄ = supv2M1+M2;v 6=0  2Yk=1[(1�!)I+!�kQk+!P 0Mk ℄v=kvkwith respet to �k 2 [0; �℄, and Qk, k = 1; 2, if (2.2a) is not true, then there exist someMk, �k, Qk, k = 1; 2, and vn, kvnk = 1, vn 2M1 +M2, suh that 2Yk=1[(1� !)I + !�kQk + !P 0Mk ℄vn! 1: (2.3)



The Shwarz Chaoti Relaxation Method with Inexat Solvers on the Subdomains 129Therefore, from Lemma2.1 and (2.3) we havek[(1 � !)I + !�2Q2 + !P 0M2 ℄vnk ! 1:Let vn = vn1 + vn2 , vn1 2M2, vn2 2M?2 , thenk[(1� !)I + !�2Q2 + !P 0M2 ℄vnk2 = k(1 � ! + !�2Q2)vn1 k2 + kvn2 k2:So kvn1 k2 + kvn2 k2 � k(1 � ! + !�2Q2)vn1 k2 � kvn2 k2 ! 0:But kvn1 k2 � k(1 � ! + !�2Q2)vn1 k2�minf1� (1� ! + !�2)2; 1� (1� ! � !�2)2gkvn1 k2�minf!(1� �)(2� !); !(2 � ! � !�)gkvn1 k2;whih leads to vn1 ! 0, i.e. PM2vn ! 0. Thus from (2.3) we also havek[(1� !)I + !�1Q1 + P 0M1)℄vnk ! 1:With the same argument we have PM1vn !0.On the other hand, from Lions lemma[7℄ there exists a positive onstant � suh thatkvk2 � �(kPM1vk2 + kPM2vk2); v 2M1 +M2:These lead to vn ! 0 whih is a ontradition sine kvnk = 1. Thus Lemma 2.2 isproved.Lemma 2.3. Let ft1, t2g be an arbitrary subset of f1; 2; � � � ;mg, then for arbitraryK natural numbers �i 2 ft1, t2g, i = 1 ; 2; � � �, K, and ft1; t2g � f�1; �2; � � � ; �Kg, �i,0 � �i � �, orthogonal operators Q�i on V�i , we have KYk=1[(1� !)I + !�kQk + !P 0�k ℄v � �kvk; v 2 Vt1 + Vt2 ; (2.4)where � 2 (0; 1) is de�ned as in Lemma 2:2.Lemma 2.3 follows easily from Lemma 2.1 and Lemma 2.2. Now we an obtain thefollowing main result.Theorem 2.4. There exists a onstant � 2 (0; 1) suh that, for any integerl(2 � l � m), for arbitrary subset ft1; t2; � � � ; tlg � f1; 2; � � � ;mg, arbitrary �k 2ft1; t2; � � � ; tlg, k = 1; 2; � � � ;K with ft1; t2; � � � ; tlg � f�1; �2; � � � ; �Kg, we have KYk=1[(1� !)I + !�kQk + !P 0�k ℄v � �lkvk; v 2 lXk=1Vtk ; (2.5)where 0 � �k � �, Qk is arbitrary orthogonal operator on V�k , and �2 = �, �l+1 =� + (1� �)�l.



130 J.G. HUANGProof. By indution. As l =2, the result is followed from Lemma 2.3 diretly.Assume the result is true for l (2 � l < m); we want to prove the orretness for l+ 1.For arbitrary ft1; t2; � � � ; tl+1g � f 1; 2; � � � ;mg, arbitrary �k 2 ft1; t2; � � � ; tl+1g,k = 1; 2; � � � ;K with ft1; t2; � � � ; tl+1g � f�1; �2; � � � ; �Kg, v 2 l+1Xk=1Vtk , onsider theestimate of KYk=1[(1�!)I +!�kQk+!P 0�k ℄v. Without loss of generality, we may assumethat �1 = t1, t1 =2 f�2; �2; � � � ; �Kg. Otherwise, by the searh proess in order, thereexists some i (1 � i � K), suh that ft1; t2; � � � ; tl+1g � f�i; �i+1; � � � ; �Kg, and �i =2f�i+1; �i+2; � � � ; �Kg. We might as well suppose �i = t1, then from Lemma 2.1 KYk=1[(1 � !)I + !�kQk + !P 0�k ℄vk �  KYk=i[(1� !)I + !�kQk + !P 0�k ℄vkwhih is onverted to the estimate of the assumption ase.Let W = l+1Xk=2Vtk ; E3 = KYk=2[(1� !)I + !�kQk + !P 0�k ℄v:Then from indution assumption, we havekE3 � PW?vk =  KYk=2[(1� !)I + !�kQk + !P 0�k ℄(v � PW?v) � �lkv � PW?vk: (2.6)Let � = kE3 � PW?vkkv � PW?vk (� = 0 as v � PW?v = 0). Thus0 � � � �l: (2.7)We next introdue the following auxiliary funtion8<: v� = PW?v + 1� (E3 � PW?v); (� > 0);v� = v; (� = 0): (2.8)It is easy to see that8<: kv�k2 = 1�2 kE3 � PW?vk2 + kPW?vk2 = kvk2;E3 = �v� + (1� �)PW?v�; (2.9)sine E3 � PM?v = KYk=2[(1� !)I + !�kQk + !P 0�k ℄(v � PW?v)and for any v 2W,[(1 � !)I + !�kQk + !P 0�k ℄v 2W; k = 2; 3; � � � ;K:



The Shwarz Chaoti Relaxation Method with Inexat Solvers on the Subdomains 131Therefore, KYk=1[(1� !)I + !�kQk + !P 0�k ℄v = k[(1 � !)I + !�1Q1 + !P 0�1 ℄E3k=k[(1 � !)I + !�1Q1 + !P 0�1 ℄[�v� + (1� �)PW?v�℄k��kvk + (1� �)�kvk � [� + (1� �)�l℄kvkwhih proves Theorem 2.4. The last inequalities follow from (2.7), (2.9), Lemma 2.1and Lemma 2.2, here we also use the fat that v� 2 V�1 +M . This is beause thatE3 � PW?v 2W (see before) and PW?v 2 V�1 +W sine v 2 V�1 +W .Let l = m, we have the following lemma.Lemma 2.5. For arbitrary natural numbers �i 2 f1; 2; � � � ;mg, i = 1; 2; � � � ;K,and f1; 2; � � �, mg � f�1; �2; � � � ; �Kg; KYk=1[(1 � !)I + !�kQk + !P 0�k ℄ � �m < 1; (2.10)where 0 � �k � �, Qk is an arbitrary orthogonal operator on V�k , k = 1; 2; � � � ;K,respetively. 3. Proof of The ConvergeneTheorem 3.1. Under the onditions given before, i.e., V is split into m subspaesfVkgmk=1 satisfying V = mXk=1Vkand the relaxation parameter ! and the auray parameter � satisfy0 � � < 1; 0 < ! < 21 + �;the SCRI algorithm is onvergent.Proof. There is no harm in assuming that the iterative sequene fukg an bedeomposed into u1 ! u2 ! � � � ! up1up1+1 ! up1+2 ! � � � ! up2� � � � � � � � � � � � � � � � � � � � � � � � � � �upi+1 ! upi+2 ! � � � ! upi+1� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �i = 1; 2; � � � � � �, and f1; 2; � � � ;mg � f�(pi+1), �(pi+2); � � �, �(pi+1)g. Then from (1.8)and Lemma 2.5, for arbitrary k, pl�1 � k � pl,kEkk � (�m)l�1kE0k:



132 J.G. HUANGPay attention to the fat that l!1 as k !1, the theorem is proved.Remark. It should be pointed out that the tehniques and results given in [1℄, [8℄an not lead to our onvergene result diretly.Finally, the author is grateful for my advisor Prof. Jiang Erxiong, and Dr. ZhangSheng who have given me great help in this researh.Referenes[1℄ J.H. Bramble, et al, Convergene estimate for produt methods with appliation to domaindeomposition, Math. Comp., 57 (1991), 1{21.[2℄ G.H. Golub, P.H. VanLoan, Matrix Computation, John Hopkins Univ. Press, USA, 1989.[3℄ J.G. Huang(1992a), A rigorous proof for the onvergene of the S-CR algorithm, Mathe-matia Numeria Sinia, 3 (1993), 352{356. (In Chinese)[4℄ J.G. Huang(1992b), Domain deomposition methods for nononforming �nite element andparallel iterative domain split methods, Ph.D. Thesis, Fudan University.[5℄ L.S. Kanq, Asynhronous Parallel Algorithms for Mathmatial-Physis Problems, SienePress, Beijing, 1984.[6℄ L.S. Kang, Parallel algorithms and domain deomposition,Wuhan University Press, Wuhan,1987. (In Chinese)[7℄ P.L. Lions, On the shwarz alternating method, (I), (2), In: R.Glowinski ed., InternationalSymposium on Domain Deomposition Methods for Partial Di�erential equations, SIAM,Philadelphia, 1988, 1989.[8℄ J. Xu, Iterative methods by spae deomposition and subspae orretion, PennsylvaniaState University, Tehnial Report. Have Appeared in SIAM Review, 34 (1992), 581{613.[9℄ S. Zhang, H.C. Huang, Parallel iterative domain split method: ase of many subregions,Siene in China, 34A, 1233{1241. (In Chinese).


