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ITERATIVE METHODS WITH PRECONDITIONERS FORINDEFINITE SYSTEMS�1)Wei-qing Ren Jin-xi Zhao(Department of Mathematis, Nanjing University, Nanjing 210008, China)AbstratFor the sparse linear equations Kx = b, where K arising from optimization anddisretization of some PDEs is symmetri and inde�nite, it is shown that the LLTfatorization an be used to provide an \exat" preonditioner for SYMMLQ andUZAWA algorithms. \Inexat" preonditioner derived from approximate fator-ization is used in the numerial experiments.Key words: Generalized ondition number, Inde�nite systems, Fatorizationmethod1. IntrodutionSymmetri inde�nite systems of linear equations arise in many areas of sienti�omputation. In this paper, we will disuss the solution of sparse inde�nite system ofthe form �A BTB �C �� up� = � fg � ; (1)where A 2 Rn�n is a symmetri positive de�nite matrix, B 2 Rm�n has full row rankm � n, C 2 Rm�m is symmetri positive semide�nte, f 2 Rn and g 2 Rm. In thisase, the linear equations has the unique solution[8�10℄. For simpliity, we denote theequations as Kx = b.Disretizations of the Stokes equations or other PDEs produe the linear equationsas (1). In optimization, when barrier or interior-point methods are applied to somelinear or nonlinear programs, the Karush-Kuhn-Tuker optimality onditions also leadto a set of equations as (1). The system often need not to be solved exatly, thereforeit is appropriate to onsider iterative methods and preonditioners for the inde�nitematrix K.Our main aim is to present a simple result that shows how to use the LLT fa-torization of K [8℄ to onstrut a preonditioner for iterative methods. The iterativemethods to be disussed are the Paige-Saunders algorithm named as SYMMLQ[7℄ andthe UZAWA method[1℄.The rest of the paper is organized as follows. In setion 2, we derive the exatpreonditioner from the LLT fatorization and take inexat preonditioner from ap-proximate fatorization into aount. In setion 3, two iterative methods, SYMMLQ� Reeived August 13, 19961)Projet supported by the 863-plan of national High Tehnology of China



90 W.Q. REN AND J.X. ZHAOand UZAWA algorithms with preonditioners, are presented. In setion 4, we presentthe numerial results and show the e�etiveness of the preonditioners.2. Preonditioning Inde�nite System Using LLT FatorizationThe inde�nite system Kx = b arising from optimization and PDEs is often ill-onditioned. It is appropriate to take a positive de�nite matrix M = CCT as pre-onditioner for K so that C�1KC�T has lower ondition number or better eigenvaluedistribution.The following theorem presents the LLT fatorization of K. For more detail, see[8℄.Theorem 2.1. Given any symmetri inde�nite matrixK = �A BTB �C � ; (2)where A, B and C are the same as that de�ned in (1). Then we haveK = LLT ; (3)L = � l11l21 l22 � ; LT = � lT11 lT21�lT22 � ; (4)where l11 2 Rn�n and l22 2 Rm�m are lower triangular matries, l21 2 Rm�n.The matries l11; l21 and l22 an be easily alulated from the following matrixequations: A = l11lT11; (5)B = l21lT11; (6)C + l21lT21 = l22lT22: (7)If we take LLT as the preonditioner of K, it is easily veri�ed thatK = L�1KL�T = � I11 �I22 � � J; (8)where I11 2 Rn�n and I22 2 Rm�m are identity matries. This means the \perfet"preonditioner for K is the matrix M = LLT ; (9)sine the preonditioned matrix K has at most two distint eigenvalues and the Paige-Saunders algorithm onverges in at most two iterations[2℄. The matrix LLT is namedas the exat preonditioner for K.In pratie, we will use \inexat" preonditioner, whih is derived from the LLTfatorization of an approximation to K. For the inexat preonditioner, we have thefollowing results. Let �max(K) denote the maximum eigenvalue of K, �min(K) the min-imum eigenvalue. �1(K), �2(K) is the maximum and minimum of j�(K)j respetively.The generalized ondition number of K is de�ned by �(K) = j�1(K)=�2(K)j.



Iterative Methods with Preonditioners for Inde�nite Systems 91Theorem 2.2. Let K;L and L be as those in Theorem 2:1 and let M = LLT .Then for any symmetri positive de�nite matrix C, we have�(C�1K) � �(C�1M): (10)Proof. In the following, A � B means A is similar to B.C�1K = C�1(LJLT ) � (LTC�1L)J = (L1LT1 )J � LT1 JL1; (11)where L1LT1 is the Cholesky fatorization of the poisitive de�nite matrix LTC�1L. LetL1 = � ~l11~l21 ~l22 � ;where ~l11 2 Rn�n, ~l22 2 Rm�m and ~l21 2 Rm�n. ThenLT1 JL1 =� ~l11~l21 ~l22 �T � ~l11~l21 ~l22 �� � ~l11~l21 ~l22 �T � 0 2I22 �� ~l11~l21 ~l22 �=� ~l11~l21 ~l22 �T � ~l11~l21 ~l22 �� 2� ~lT21~l21 ~lT21~l22~lT22~l21 ~lT22~l22 � � LT1 L1 �H1:A simple alulation shows that H1 is a positive semide�nite matrix. It is followed fromWeyl theorem[4℄ that �max(LT1 JL1) � �max(LT1 L1): (12)On the other hand,LT1 JL1 =� � ~l11~l21 ~l22 �T � ~l11~l21 ~l22 �+ 2� ~l11~l21 ~l22 �T � I11 0�� ~l11~l21 ~l22 �=� � ~l11~l21 ~l22 �T � ~l11~l21 ~l22 �+ 2� ~lT11~l11 0� � �LT1 L1 +H2;here H2 is positive semide�nite, then�min(LT1 JL1) � �min(�LT1 L1): (13)From (11), (12) and (13), we have�1(C�1K) = �1(LT1 JL1) � �max(LT1 L1) = �max(C�1M): (14)Similarly, K�1C = (L�TJL�1)C � (L�1CL�T )J = (L2LT2 )J � LT2 JL2; (15)where L2LT2 is the Cholesky fatorization of L�1CL�T . LetL2 = � l̂11l̂21 l̂22 � ;



92 W.Q. REN AND J.X. ZHAOwhere l̂11 2 Rn�n, l̂22 2 Rm�m and l̂21 2 Rm�n. Then we have�max(K�1C) = �max(LT2 JL2) � �max(LT2 L2) = �max(M�1C): (16)and �min(K�1C) = �min(LT2 JL2) � �min(�LT2 L2) = �min(�M�1C): (17)It is followed from (16) and (17) that1�2(C�1K) = �1(K�1C) � �max(M�1C) = 1�min(C�1M) : (18)The result is derived from (14) and (18) immediately:�(C�1K) = �1(C�1K)�2(C�1K) � �max(C�1M)�min(C�1M) = �(C�1M):Theorem 2.3. Let M and C be positive de�nite suh that kI�C�1Mk2 � �, where� < 1. Then �(C�1M) � 1 + �1� � : (19)Proof. see [5℄.The following result an be easily derived from (10) and (19).Corollary 2.4. Let K be the same as that in theorem 2:1. LJLT is the LLTfatrization of K, M = LLT , and the positive de�nite matrix C is an approximationto M satisfying kI � C�1Mk2 � � < 1. Then�(C�1K) � 1 + �1� � : (20)3. Iterative Methods with PreonditionersIn this setion, we present two algorithms with preonditioners for the inde�nitesystem (1).3.1 The Preonditioned Paige-Saunders MethodThis algorithm known as SYMMLQ is a onjugate-gradient-like method whih anbe applied to inde�nite system. To solve Kx = b with preonditioner M = LLT , weapply SYMMLQ to the system L�1KL�T y = L�1b;aumulating approximations to the solution x = L�T y. In fat, it need not approxi-mate, using the transformationx = L�Ty, we an have the following implementation.Algorithm 3.1. (SYMMLQ)�0 = kL�1bk2; q0 = 0; q1 =M�1b=�0;s�1 = s0 = 0; �1 = 0 = �1;z�1 = z0 = 1; w1 = q1; x0 = 0; j = 1:



Iterative Methods with Preonditioners for Inde�nite Systems 93step 1. �j = qTj Kqj;rj = (M�1K � �jI)qj � �j�1qj�1;�j = kLT rjk2;if �j = 0 then stop.qj+1 = rj=�j ;step 2. �j = sj�2=�j�1;Æj = �j�2j�1�j�1 + sj�1�j;j = �j�2sj�1�j�1 � j�1�j ;j = (2j + �2j ) 12 ;step 3. j = j=j ;sj = �j=j ;step 4. zj = �(�jzj�2 + Æjzj�1)=j ;(wj ; wj+1) = (wj ; qj+1)� j sjsj �j � ;xj = xj�1 + zjwj;step 5. if j = m+ n then stop,else j = j + 1; goto step 1.To improve the onvergene of SYMMLQ, the transformed matriesK = L�1KL�Tshould have a better ondition than K, or a more favorable distribution of eigenvalues(lustered �1). In the next setion, we will present the numerial results.3.2 The UZAWA MethodThe algorithm using preonditioner Q is presented in the following, whih startswith an arbitray guess p0.Algorithm 3.2. (UZAWA)for i = 0 untill onvergene,doui+1 = A�1(f �BTpi)pi+1 = pi + �Q�1(Bui+1 � Cpi � g)enddohere, � is a salar parameter that must be determined prior to the iteration.The onvergene fator of the algorithm is �(I � �Q�1(BA�1BT + C)), whih hasthe smallest value (� � 1)=(� + 1) for the hoie � = 2=(�1 + �2), where �; �1 and�2 denote the generalized ondition number, maximum and minimum eigenvalues ofQ�1(BA�1BT+C) respetively[1℄. From (5), (6) and (7), we an derive BA�1BT+C =l22lT22, so if l22lT22 is taken as preonditioner Q and � = 2=(�1 + �2), the UZAWAalgorithm will onverge one step.In pratie, one have got an approximative fatorization of K, we an take Q�1A �(l11lT11)�1 to replae A�1 in the algorithm. Then, we get the following \inexat" versionof the UZAWA algorithm, whih starts with u0 � 0 and an arbitrary initial guess p0:for i = 0 until onvergene,doui+1 = ui +Q�1A (f � (Aui +BTpi))pi+1 = pi + �Q�1(Bui+1 � Cpi � g)enddoIn the next setion, we will use the \inexat" version of UZAWA algorithm.



94 W.Q. REN AND J.X. ZHAO4. Numerial ExamplesHere we investigate the e�etiveness of the preonditioner desribed in setion 2.For test purposes, we have used MATLAB in PC486 to implement the SYMMLQ andUZAWA algorithms.A speial type of matrix K is onsidered, where n = 200 and m = 100. A ispentadiagonal and the nonzero entries are given byai;i+1 = ai+1;i = �1 for i = 1 : n� 1;ai;i+10 = ai+10;i = �1 for i = 1 : n� 10;the diagonals are random between 4 and 50. Entries of A that are not de�ned should bereplaed by zeros. The matries B and C are hosen with all entries random between0 and 1 exept that the diagonals of C are between 0 and 30.We have omputed all the eigenvalues of K, M�10 K and M�13 K. The eigenvaluesof K range from �103:75 to 63:23, and those of M�10 K, M�13 K luster around �1as we have expeted. It is evident that the tranformed systems have more favorableeigenvalue distributions than K. The generalized ondition number is given in thefollowing: �(K) = 1:0375e + 7;�(M�10 K) = 1:1654;�(M�13 K) = 1:0073:Fig.1 and Fig.2 illustrate the behaviors of SYMMLQ and UZAWA on the preon-ditioned systems respetively. It is evident that for the preonditioned systems, lessnumber of SYMMLQ and UZAWA iterations is required to reah a ertain preision.

Fig.1. SYMML Q methodIn the proess of LLT fatorazition of K, two di�erent inomplete holesky fa-torizations introdued in [6℄ are applied to A. The orresponding preonditioners aredenoted as M0 = L0LT0 and M3 = L3LT3 , respetively.
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Fig.2. UZAWA methodThe onvergene fator of UZAWA without preonditioner(Q = I) is lose to 1, sothe algorithm onverges very slowly. The use of preonditionersM0 andM3 aeleratesthe onvergene signi�iantly and the onvergene fators are 0.07, 0.003 respetively.Finally, we point out that in SYMMLQ algorithm, the LANCZOS vetor will beomputed. For ill-onditioned system, large number of iterations will lead to orthog-onality loss and the reothogonalization is neessary. This makes the algorithm moreompliated. For the preonditioned system, the algorithm onverges after several it-erations and the orthogonal loss is trivial, so the reorthogonalization is avoided.The UZAWA method depends on the hoie of parameter �. This makes it morediÆult to implement the algorithm. For preonditioned system, we an take � = 1 asan estimation. 5. ConlusionFor symmetri inde�nite systems of linear equations of the form of (1), we haveshown that the LLT fatorization an be used to provide a preonditioner for the Paige-Saunders algorithm SYMMLQ and UZAWA algorithm. The e�et of the preonditioneris signi�iant in aelerating the onvergene.Referenes[1℄ Howard C.Elman, Multigrid and Krylov subspae methods for the disrete Stokes equations,Matrix Analysis and Parallel Computing, Marh 14 to 16 (1994), 151{164.[2℄ Philip E.Gill, Walter Murray, Dule B. Poneleon, Mihael A.Saunders, Preonditionersfor inde�nite systems arising in optimization, SIAM J. Matrix Anal. Appl., 13 : 1 (1992),292{311.[3℄ G.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press,1983.[4℄ Poger A.Horn, Charles A.Johnson, Matrix Analysis, Cambridge University Press, 1985.
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