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Abstract

The dimension of the bivariate spline space ST (A) may depend on geometric
properties of triangulation A, in particular if n is not much bigger than r. In
the paper, the blossom approach to the dimension count is outlined. It leads to
the symbolic algorithm that gives the answer if a triangulation is singular or not.
The approach is demonstrated on the case of Morgan-Scott partition and twice
differentiable splines.
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1. Introduction

Let © C IR? be a closed simply connected polygonal region, and

t
A = {Qi};?:la Q= z'L:Jl QZ

its regular triangulation, i.e. the triangles
Qia Q]u i ?é j7
can have in common only a vertex or a whole edge. Let V denote the set of inner
vertices, E the set of inner edges, and E the set of all edges of A. Put
my = |V|, mg:=|E|.

The planar graph G := (V, E) clearly describes A. However, it’s sometimes useful to
consider also the dual planar graph G := (V,£), where vertices ¢ € V correspond to
triangles €;, and e = (4, j) € &€ iff Q;,(2; share a common edge. Note |V| =t, || = mg,
and there is one-to-one correspondance between E and £. So we shall not make any
difference between e = (i,j) € &, and the common edge of Q;, ; if not neccessary.
In particular, ||e|| will denote the length of the common edge of the corresponding
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triangles, direction of e will be the direction of this common edge etc. There is another
simple relation between G and G, a one to one correspondence between the vertices
v € V, and elementary cycles in G,
Yy = ((i1,92), (i2,43), - - -, (ids td+1))s Gav1 = i1, (ij7ij+1) €g,

the boundaries of facets. Here, d denotes the degree of v. The cycle Y, describes the
connection between the triangles that meet at inner vertex v. G is a planar cubic graph
with my elementary cycles. By Euler’s equation,

mE—mV:t—l. (1.1)
Let m,(IR?) denote the space of polynomial functions of total degree < n, and let

ST(A) = {f1fley € ma(R)} N C(9)

denote the spline space over a regular triangulation A. Quite clearly

dim 7, (R2) = (";2> (1.2)

but the dimension of S (A) may be hard to determine since it might depend on the
geometric properties of the triangulation. One can find a lower bound ([9], [10]) as

dims(a) = )= (") (")) (1.3)

()

n—r
oi=Y (r+j+1—jnm)y, i=12,...,my.

7=1
Here n; denotes the number of edges with different slopes at inner vertex v; € V. A
similar expression for the upper bound can be established also. Particular partitions
show that the lower bound is often very close to actual dimension of the spline space.
As an example, in [3] they can differ only by 1. Also, if n is large enough, i.e. n > 3r+2,
and (1.3) actually gives the required dimension ([4]).

In this paper we will tackle the spline space dimension problem by relations, derived
from the blossoming formulation of the continuity conditions. In order to proceed let us
recall the multiindex notation. Let 7, denote the set of nonnegative integers, and let
small Greek letters denote the multiindex vectors i.e. vectors with nonnegative integer
components. For any multiindices

a:(al,QQ,"',am)EZT, /B:(/B17/827...7/BM)EZT7

and a vector = (£1,%2, -, Tpy) € R™, let
o) :=a1 +ag+ -+ ay, oi=ala!ay!, =2 ad? ez
n!
n .— ) al(n—[a)!’ 0<a, |a| <n,
Q@ 0, otherwise.

Here o < 8 denotes the relation < componentwise i.e. «; < (;, all 7, and further let
a < B be a < with at least one «; < ;. The generalised binomial coefficient is given
by

= { j=1
0, otherwise.

(a), i (5). o<p<a
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2. Smoothness Conditions in Blossoming Form

Based on the blossoming formulation of the continuity conditions [5] the following
conclusion was derived in [3]. Let L : s — L(s) := sv+u be a straight line that divides
IR? into two halfplanes, the supports of polynomials p, g € 7, (IR?), and

p(z) = Z g (Z) z®, Z ba < ) (2.1)

la|<n loe|<n
Here, u = (u1,u2) denotes a point on L, and v = (v1,v2) denotes its unit length
direction.
Theorem 2.1. Let f be a piecewise polynomial function composed of p and q. Then
f € C"(IR?) if and only if

n—r
> (ans—bars) (")) o) =0 (2.2)
|Bl<n—r
for any s € R, |af <.

The relation (2.2) was studied further in [3] for a particular » = 1, and dependent
relations removed. Here we solve the general case. There can be only

r42
(n—7)(r+1)+ < 5 >
independent conditions. If one expands the lefthand side of (2.2) as a polynomial of s,
the relations (2.2) are equivalent to the fact that all the coefficients of
s 0>0, o] <r
vanish. This gives the total count of conditions in (2.2) as
r+2 r+2 r—+1
("3 ) e-ran=m-ne+n+ (7 r@-n ("),

so the set of the conditions (2.2) must be linearly dependent. We proceed to show that
the conditions for s¢,¢ > 1, |a] < 7 can be expressed as a linear combination of the
remaining conditions. We have the following theorem.

Theorem 2.2. The conditions (2.2) for s°, £ > 1, |a| < r can be expressed by the
conditions for st, £ = 0, |a| <7, and s, £ > 0, | =1

Proof. The multinomial expansion (with z, := aq — by) yields

S g T

|B|<n—r

) e 3 (e

(7)o s
(5

:nfsﬁzqﬂ 3 < 5 ) )Mv Lot d- (2.3)

=0 |y[=t B2v|Bl<n—r

|B1<n—r 0<v<p
= Y sy Y <ngr>
Iv|<n—r B>,|6|<n—r

Since, for fixed |y| = ¢,

("5 G- G5
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the coefficient by the power s¢, divided by ("7), is given as

> ()7 3 D) e

=t N1/ B B1<n—r

21 LD S G i S

=t N7 0,18/ <n—r—t

Let us denote €; := (d; ;). Then it is straightforward to see

(5)-=(05) 29

?
for |y| > 0. Thus for any w,, one concludes

Z (f,) vy g =

[v|=¢

S>30 Dl (i EL

i = N

‘-1 .
< > A

pl=t-1 > 7

=D v ), <£ ; 1> VT Wy tei4p- (2.6)

i l=te1

Here we have assumed ¢ > 0. Let us apply (2.6) to (2.4). Then

I M (e

Y/ g>0,81<n—r—t

:Zvi 2 <£;1>7ﬂ 2 (n—;—€> u’ Tatfiyie =

B>0,|8|<n—r—t

:Zvi > <€—1>v7 3 <n—r—ﬁ(€—1)>uﬁ Tot fintet

B>0,|8|<n—r—(£-1)
/-1 n—r—/4
+ Zvi Z ( ) v7( Z ( 3 > u’ Lotf+y+e; —
' Y B>0,/8]<n—r—¢
n—r—{£-1
- Z < 5( )> u’ xa-l—,@'-l—’y-l—ei)'
B>0,/8|<n—r—(£-1)

The first sum is obviously a linear combination of the continuity conditions for ¢ — £—
1, @ = «a+¢;. The second, again by (2.6), reduces to

I S G A L

= N7 g0, 81<n—r—t
n—r—{-1)

- Z ( 3 > u Tatfiy) =

B>0,|8|<n—r—(£-1)
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1 n—r—=~ n—r—(£-1)
=S () s (M) (T D e @1
h=e N7 pzolpl<n ()

Here we have taken into account

<n—;—€> =0, |Bl=n—1r—(£-1).

("))

n—r—1¥¢ n—r—~4+1
:< B >(1_n—r—€+1—lﬂl):

_ Z (n —r— E)
i ﬁ — € .
Thus (2.7) can be written as

B ORI oy ERSS

i y=e N1 B>0,|8|<n—r—(t-1)

Sy <£>v7 ) (TL—;—€> W Torgirie.

i = N B0 <n—r—t

Further,

clearly as a linear combination of the continuity conditions for given £, « — « + ¢;.
Thus the continuity conditions for given £, o can be expressed as linear combinations
of the conditions for £ — £,/ — 1, a = a + ;.

Note that now there are only

(T‘;2> Fn—r)r+1)

conditions left, so they must be linearly independent.

3. The Dimension of S)(A)

Let A be a regular triangulation, and G, G as defined in the introduction. The
continuity conditions given in the previous section have to be written for each

6g:(i,j) e&, =1,2,..., mg.

Thus for given e, = (4,5) € & let uy denote a point on the edge ©; N €2, and vy the
unit length direction of this edge. Further, let ¢j, |8 < n, denote the coefficients that

correspond to the triangle €2;, af}, = cf}, — c},, and

Co: frCof = %f(e)(o).

Without loosing generality we can assume that €2y is a boundary triangle. The conti-
nuity conditions now read

- ; n—r
> Gy (")l =0 (31)
1B|<n—r
€ = (7’7]) 657 = 1727"'7mE7 |Oé| <r
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and
n—r

Co > (ahyp—alp) < P ) (o vr+ur)’ =0, (3.2)

|B|<n—r
er=(i,7) €&, L=12,...,mpg, |a|=r,
k=1,2,...n—r.
This gives the dimension of the spline space S],(A) as the difference between
2
t dimm,(R?) = t <n—2i— > ,

and the number of independent conditions, imposed by the relations (3.1) and (3.2).
For a particular choice of uy these conditions can be elaborated further, i.e., the part of
conditions that doesn’t depend on the geometry will be removed. Let uy be the inner
vertices. We shall show that the conditions (3.1), restricted to the edges of a spanning
tree Tg of the dual graph G are linearly independent, and imply the other part of (3.1).
Theorem 3.1. Let uy be chosen as the inner vertices of the triangulation A, i.e.

ug € V. Then
dim §7 (A) = ¢ <";2> _ (“;2) (mg —my) — N,

where N denotes the number of independent conditions imposed by
n—r

Co Y. (ahys—dlp) < P ) (o ve+ug)’ =0, (3.3)

0<|B|<n—r
er=(i,7) €E,4=1,2,...,mg, |a|=r,
k=1,2,...,n—r.
Proof. Consider a given ey = (i, 7). If the edge ©; N, has only one inner vertex

ug, (3.1) is written for that vertex. If both endpoints belong to V', uy is one of them.
But conditions for the other, 4y = 5 vy +uy € V,

; 1 n—r -
> Gl (") =0 lal < (3.4
|B|<n—r

are by theorem 2.2 linearly dependent, and hold automatically if (3.1), (3.2) are sat-
isfied. This implies that it makes no difference which particular interior endpoint is
inserted in (3.1). Note also that

Y - (M) = (35)

Yo [Bl<n-r
n—r ij ij

> (") Sl - i =0

1Bi<n—r Y,

v eV, Yy = ((ij,i5+1))
since

Z(aoi-l-ﬂ —agyg) =0.
Y,

Let now v € V be any interior point. Let us sum the relations in (3.1) along the cycle
Y,. By (3.4) one can assume that all the edges along the cycle Y, use the same constant
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ug = v. But (3.5) shows then that (r;“z) equations are annulated. Since there are my
interior knots, one is finally left with
r+2 r+2

("3 %) one -y = ("3 ) -1 (3.)
equations corresponding to the edges of a spanning tree 7g. In order to finish the proof
we have to show that (3.1) uniquely determines

al,i=2,3,....t—1, |a| <,
since al, = 0. The equations can be looked for each particular « separately, and it’s
enough to look at the (£ — 1) x ¢ matrix, given rowwise as
5(,11 - 6@,]'7 €t = (27.7) € 7-9

with first column omitted. Since 7g is a tree, is easy to see that the relevant determinant

is & 1. This completes the proof of the theorem.
Let us write (3.3) in a matrix form. Put

af = (a{i,o)v a{i—l,l)? e ,a{o,i))T € IRHl, (3.7)
and order the coefficients a{ as
a:= (a’$+17a§+1?"'7a£+1va$+2va§+27"'7a£+27 """ vaivazv"'vaZ)T' (3'8)
The continuity conditions (3.3) now read
Mua =0
where
My = (M) i1 7= (Mrkm) g =1im—1 (3.9)

is upper triangular block matrix, and the blocks My, of order (r + 1)mpg x (m +
7+ 1)(t — 1) correspond to the part of conditions for Cy with |a| = r, |3] = m, and
consequently to the coefficients ai+m, j=2,3,---,t. Note Mg, = O, k > m. My,
itself is also a block matrix with mg block rows, and ¢ — 1 block columns. ¢-th block
row corresponds to conditions for e, = (i,7) € £, and has at most two nonzero blocks
Qe == ka,gi, ng = ka,ﬁja ka,&' + ka,gj = 0. Blocks ka,gz are circular matrices
of order (r+ 1) x (m+r+ 1). The definition (3.7) implies that that the columns of the
matrix (Qgm ¢, should be ordered by decreasing first coordinate of 3. From

Cr(e v+u)’ =Cp Z <ﬁ> (o v)7uf~7 = Z <’8> vuP 7,
0<y<p =k V7
and (3.3) it is straightforward to compute the elements of the matrices. The identity
("5 C)= ()G 0
g g k g B
gives the first row of a nonzero block Q¢ as

(") 2 ) ()= 2 () (520 )i

Iy|=k Iy|=k
/6:: (/317m_161)7 /BIZme_L"'JOu (310)

fi= fapbm = (n;r) ("T;i;k> . (3.11)

with
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The rest of the row, i.e. r elements are zero. Note that the factors ("gr) can be
removed by a diagonal transformations on M,,. Since this does not affect the rank of
M,, we shall assume that M, is given by (3.10), with f := f/ (ngr) This justifies the
notation M, j, in (3.9), as well as shows that M, is obtained from M,,_; by introducing
additional row and column, but leaving the rest of the matrix unchanged.

As an example to (3.10), take n = 5,7 = 2,k = 1,m = 2,v; = (vi4,v2¢),Ur =
(u1,,u2,). Then the block Q12 implied by (3.10) is equal to

V1 pULe V1 U2 + U2 pUL g V2 U2 ¢ 0 0
+2 0 V10U 0 U1,eU2,0 + V2 U1 g V2,0U2 ¢ 0
0 0 V10U 0 VYU, 0+ Vo pUL e V2 U2 P
We have finally established the working form of the theorem 3.1
2 2
dim S (A) :t("; )- (T; >(mE—mv) _ rank M, (3.12)

It seems difficult to determine the exact rank of M,,, but some partial answers can
be obtained in general. Some simplification of the offdiagonal part of the matrix is
provided by the following observation.

Lemma 3.1. Choose fized i € V, z := (z1,22) and k < m < n —r. If all nonzero
blocks Qgm,ei of Mym in block column i are changed to kaxi, with the generating row

(3.10) replaced by
k m—k _

£ (0) () o2,
=k 7
d:=(61,m—4d1), 0y =m,m—1,---,0, (3.13)

the rank of M, does not change. .
Proof. 1t is enough to proove that %(ka,gi — Qkm,ei) can be expressed as linear
combination of blocks Qjei, j = k,k+1,-++,m — 1 with the coeflicients depending
only on z. To observe that recall (3.10). The s-th row of %ka’zi, s=1,2,---,r+1,

reads
k m—k M) —
(0707"'707(2 ( ><5_,Y>’UZ(UZ_Z)( 74 7)]‘070707"'70)7

s—1 Ivl=k 7 r+l—s
and for the nonzero part one has
(S (5 (2 itt—atmsn) =y
=k N7 m—=737) —7 =0

(g - 2)° (( S (5) ()it z><m1j’f>7>ﬁ51,0> ¥

ly|=k Y m_]-_j7])_’)/

2 () (o T ot oo,

ly|=k Y m—l—j,])—’)/

For m =k + 1 (3.14) gives

(;k (:) <(k +1 —lj,j) - 7) v (ug — Z)(k+1—j,j)—v> =

('U'l - Z)E2 (07 (
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(e = 2)° <(<(k i) 0) ’
. . bt k+1_
(mzk <7> <(k +1-4,4) —7> v 7) -
- <(<(k —kj,j)> W 0) .
2 (0, (((k —kj,j)> Uékj,j))g?[]) ,

i.e. all the rows of block m = k + 1 of Qk k+1,6; can be written as the same linear
combination of rows in blocks Qxk ¢i, @k k+1,,; What confirms the lemma for this case.
The general case follows from (3.14) by induction.

Clearly the choise of z = u, annulls the corresponding offdiagonal blocks. In order
to proceed we will make some assumptions. First of all, we shall restrict ourselves to
the general case triangulation: no edges in E that share a common vertex have the
same direction. Also, since in the most useful cases r is small compared to n, and in
some cases n < 2r admits no real splines, we will restrict our discussion to the case
n > 2r.

Theorem 3.2. Let A be a general reqular triangulation, and n > ng > 2r. Then

rank M, > rank M, + (r + 1)mg(n — ng). (3.15)

Proof. Consider M,,,
M,_4 X
= (M )
Then rank M,, > rank M,,_1 + rank M,,_ ,_x. So, one has to prove
rank My, g, = (r+ 1)mpg,
i.e. the rank of M,,_ ,_i is equal to the number of rows. The number of columns in
Mk n—k 18

(1)t —1)>2r+1)(t—1) > %(r+ Dim > (r+ 1)ms

since 3t > 2mp + 3, and we only have to establish that rows are linearly independent.
Assume they are not. Then there exists a vector x # 0,2 € RT+D™E guch that
2" My_j n_, = 0. Since the rows corresponding to the boundary triangles with only
one interior edge are obviously independent, the corresponding components of x should
be zero, and we may assume that all the boundary triangles have only one exterior
edge. Let €2; be any such boundary triangle of A. Then e;, = (j1,1), e, = (i,j2) € €
for some ji,j2, and the block matrices Qy,;, Qi are the only nonzero blocks in the
block column 7. Let 2),, denote /;-th block row of z. Then

o () -0
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(&)

2r+ 1) x(n+1), n+1>2r+1+1=2(r+1)

It is easy to see that the matrix

of order

is of full rank. Indeed, the rank of (3.16) is not changed by adding n — 2r — 1 zero
columns. Further, by adding n —2r —1 rows by cyclically continuing )y, ;, and n—2r—1
rows by cyclically continuing Qy,; the rank of (3.16) is increased by at most 2(n—2r—1).
The obtained matrix is a 2(n — ) X 2(n — r) matrix. Its determinant is equal to the
resultant of polynomials

n—r

Pe (1) = (V10,0 +v20)"", Doy () 1= (Vi +v20,)" ",

with vy, := (v1;,v2,;) being the direction that corresponds to ey,. Since the directions
vy, , vy, are different, py ,py, can’t have a common zero. This implies the resultant to
be nonzero (in fact is equal to (v, v, — v2751v1,42)(n_’")2), and consequently (3.16) to
be of full rank. Thus Ty, = 0, Ty, = 0. But this implies that one can consider only
A\ {€Q;}, and apply the previous argument to the reduced triangulation until only one
triangle is left. Thus the theorem is confirmed.

The following theorem reveals the way how to tackle particular triangulations.

Theorem 3.3. Let A be a general reqular triangulation, and n > ng > 2r. The

function

= (A) = dim ST(A) — ¢ ((

“n,no

") (7)) e umen o)

s nonincreasing function of n, and

o (A) < I0 L (A) < dim ST (A). (3.17)

—n,no

Proof. 1t is enough to consider n > ng. The first claim is implied by (3.12), and
the theorem 3.2. Recall (1.3). Since n > ng > 2r, and the degree of an inner vertex is
at least 3, one has for j > r

(r+j+1—gn) <(r+j+1-3j))<(r+1-2r)=1—-r <0,

and o; stay unchanged for any n > ng. It is now straightforward to apply (3.12) and
(3.15) to obtain (3.17).

Note that for some n > 3r+2 the function =7, ,, (A) always reaches its lower bound.
If the right inequality reduces to equality, then so does the left. Thus, for a particular
triangulation, one has to determine rank M,,, n = 2r,2r 4+ 1, .., as along as for some

n = ng equality in (3.17) holds, i.e. triangulation becomes nonsingular.

4. An S?(A) Example: Morgan—Scott Partition

Consider the triangulation given on Fig. 1. It was introduced in [6] in order to
emphasize the fact that the geometry of triangulation might influence dim Sj,(A).
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Fig.1. Morgan—Scott triangulation Fig.2. The dual graph for Morgan—-Scott triangulation

The case dim S} (A) was studied further in [11], [3]. Let us demonstrate how to
compute the dimension of S2(A). In the view of previous discussion and Fig.2 one has

t=7 mp=9 my=3, n=45,---.

Perhaps the simpliest way to look at M,, in this case is to omitt the linearly dependent
columns that correspond to 7 € V. We shall choose the value ng = 2r = 4 as nyg
referenced in the theorems 3.2, 3.3. Thus one has to look at My, M5,

My My Mg
My = (MH M12> , M5 = My Mo3
Mo Mas

that will be studied at the same time. The order of My is
2(r+ )mp x ((r+2)(t —1)+ (r+3)(t — 1)) = 54 x 54,

and of M5 similary 81 x 90. The structure of nonzero blocks in My, k =1,2,3 is given
as

Qkk,11 Qkk,16
Qrk21 Qrk,22
Qkk,32
Qrka2  Qrka3
My, = Qrks3  Qrk,s54
Qkk 64
Qrk,ia Qrk,75
Qrkgs  Qkk,86

Qkk,96

with blocks being the matrices of order 3 x (3 + k). Further, let us choose the origin as
T4 = (0,0), the points uy as

! ! !
up =up = uz = ug =Ty, ug = us = ug =17, uy = ug =Ty,
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and vectors z;, ¢ € V that simplify the offdiagonal blocks for both m = 2,3 as
21 = 22 = 26 = U1, 23 = 24 = U4, Z5 = U7.

Then by the lemma 3.1 the structure of the nonzero offdiagonal blocks My,,, k < m, is
as follows

ka,42
My = )
ka,74 5
ka,86
and the vectors inserted in (3.13) are
Qkmaz: us—z = T{ =Ty = |les| vs,
Qrmya: ur—ze = T3 =T{ = |les|| ve, (4.1)
Qrmgs: us—26 = Ty —T; = —|leg|| vg.

Ms5 is now determined by directions vy, and lengths of the sides of the inner triangle
only. Any rotation of the coordinate system does not change the dimension of the spline
space. So we can assuiie

vs = (1,0). (4.2)
The rows of M33 are by the argument of theorem 3.2 linearly independent. A difference
between the number of columns in M3, and the number of rows in Ms3 is 36 — 27 = 9.
However, the assumption (4.2) simplifies the discussion, and only one out of 9 has to
be considered. Take the column 65 of M5. For £k = 1,2 one only has to compute the
5-th columns of blocks Q13742, Q23,42,

0 0
A 2 2
Qiza2 : |les]| vy’ vs® =10,
UZI’U?Q—FQ’U?USIJFQ 0

0 0
Q2342 |les]| ( viug? ) = [Jes][vi® (0)
,UZGQ,USI + 2UZI+€2U§2 1

since vg' = ;1. Again by the argument used in the proof of theorem 3.2
rank (2 ) =6, (61) = (1,1),(4,3), (7.5), (4.3)
Q33,0411

But the 5-th column of Q3332 is (0,0,0). This shows that the rows of M3 are linearly
independent without the column 65 too. So

rank Ms > 27 + rank M,



The Blossom Approach to the Dimension of the Bivariate Spline Space 195

with
My = (M, 2 )saxss s # 1= (51',39)1%1- (4.4)

The constant in the last column was omitted since
1)22261 XU4:1)3><1)4750.

It is clear what kind of symbolic transformations should be applied to M{: they should
preserve det My. If any row or column (of My) that has only one nonzero element, say
w;j # 0, the row 7 and column j can be ommitted, both rank counts increased by 1,
and w;; kept as a factor to the final value of det My. First of all, note that

Q11,11 Q11,16
Qii21 Q11,22
det ’ ’ =d,

Q11,32
Q11,96

d := (v1 X vg)(v1 X v3)(v1 X vg)(ve X v3)(v2 X v9)(vg X v9) # 0,

so the rows {1,---,9,25 ---,27}, and columns {1,---,8,21,---,24} may be omitted,
with —d kept as a factor for det My. The rank count is increased by 12. It would be nice
if one could proceed simply by applying some package for symbolic computation but
the computations seem to complex. However, a particular structure of My, and Qpm 4
suggest a straightforward sequence of eliminations that can be worked out by hand. A
Mathematica program that follows this procedure was written only to doublecheck all
the steps. As an example, consider the last block column, i.e. columns {38,---,42}.
There are 4 nonzero blocks, Q12,86,Q22716, (022,86, 22,96, and they all have the same

symbolic structure
X x x 0 0
( 0 x x x 0 ) .
0 0 x x X

Nonzero elements are simbolically denoted by x. So one can eliminate all nonzero
elements in column 38 by the pivot row 40, then all nonzero elements in column 39 by
the pivot row 41, and all nonzero elements in column 40 by the pivot row 42. This
reduces the blocks Q12,86, Qm,l@, (022,86 to the form

0 0 0 x x
0 0 0 x x .
0 0 0 x x

Thus one can omitt the columns 38,39,40, and rows 40,41,42, increase rank count by
3, but keep the determinant of pivot 3 x 3 block, i.e. (v361)3 as a factor for det My.
Also, common factors in the columns that are left, are cancled out (and kept) in order
to keep complexity as low as possible. These steps can be followed block column by
block column from right to left. For m = 2 there will be two columns left for each block
column, and for m = 1 only one. Since 3 * 1+ 6 x 2 = 15, one is left with the 15 x 16
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matrix symbolicly denoted as

O O DD OO DO OO OO o X X X
O OO OO OO O X X X X X X
OO DD OO OO OO X X X ooo
S OO OO O X X X OO oo oo
S OO OO O X X X OO oo oo
OO O X X X X X X oo o X X X
OO O X X X X X X oo o X X X
O OO X X X OO oo oo o oo
O OO X X X OO oo oo o oo
X X X X X X oo o X X X oo oo
X X X X X X oo o X X X oo oo
X X X OO OO O OO o oo oo
X X X OO oo oo ococoooCc oo
X X X ©o o X X X X X X oo o
X X X © OO X X X X X X oo o
S OO R OO o OO O0o

15x16

Now a sequence of determinant preserving column eliminations and simplifications with
pivotal elements

X14,13; X13,12, X11,9, X10,8, X8,5, X7,4, X4,3, X1,1, X2,2, X36, X511, X6,15

0
MY = (Mi 1) = (4.5)

gives the 3 x 4 matrix

0
(1)1 X 1)3)2(1)2 X 1)3)2 0 —(1)1 X 1)9)2(1)2 X 1)9)2 0
= (('Ug X vg)%(v3 X v5)%  —(vg X vg)?(v5 X vg)? 0 1) ,
0 (1)6 X 1)7)2(1)6 X U8)2 —(1)7 X 1)9)2(1)8 X 1)9)2 0

with determinant of the 3 x 3 minor that is left of M, as

det My = (v1 X ’1)3)2(’1)2 X v3)2(v4 X 116)2(1)5 X 116)2(1)7 X ’1)9)2(’1)8 X ’1)9)2 —

—(v1 X v9)?(vy X vg)*(v3 X v4)%(v3 X v5)*(vs X v7)?(vs X vg)2.

(4.6)

Also,
rankM; = 51 + rank M}, rankM; > 78 + rank M.

Quite clearly, rank M} = 3, rank M5 > 81, and by (3.12)
®2(A) =30 < dim SZ(A) = 111 — rankM;5 < 111 — 81 = 30.

Thus the equality must hold, and the theorem 3.3 gives the dimension of S2(A), n > 5.
But rankMj = 2 or 3 depending on the fact if det M} vanishes or not. By collecting
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together factors that were saved during elimination one finds out that

det My = 8||es]| [|es|| [les]] (v1 X v2)°
(v3 x v4)(v3 X vs5) )
(vs x v6)(ve X v7) )

(v7 % vs) (v7 X vg)(vg X vy

—~

v1 X v3)(v1 X vg)(v2 X v3)(v2 X Vg) -

v3 X vg)(vg X v5)®(vg X vg) -

Vg X vg) -

det Mj. (4.7)

v3 X Vg

~ Y~

(
(1)5 X Vg
)

Since we have restricted to the general triangulations, det M, vanishes iff

V1 X V3 V2 X V3 Vg4 XVg U5 X Vg U7 X Vg v8g X Vg

FA? =1, f(A):=

. (48)
V1 X Vg V2 X Vg U3 X V4 V3 XV Vg X V7 Vg X U

This concludes the proof of the the following results.
Theorem 4.1. Let A be a general Morgan-Scott triangulation. Then

n(7n — 33)
2

dim S2(A) = +25+6

with 6 =1 only iff

and 6 = 0 otherwise.

Fig.3. Singular choices of Ty for the Morgan—Scott triangulation
The Fig.3 shows for which Ty would f(A)? — 1 vanish if all the other points of V
are left unchanged. The possibility f(A) = +1 is given by a line through points T}, Ry,
and the other through the points Tj, Rj. No Tj on the second line would produce the
Morgan-Scott partition since intersection of this line and the shaded area is empty.
However, in general one has to verify both posibilities. This fact was already observed
n [2]. Note that f(A) = +1 iff the all lines T;7} are concurrent lines ([11], [3]).



198

[1]
[2]
[3]

[10]

[11]

Z.B. CHEN, Y.Y. FENG AND J. KOZAK

References

Chou, Y.S, Su, L.Y. and Wang, R.H., The dimensions of bivariate splines over triangula-
tions, Intl. Ser. Nummer. Math., Birkhauser, Basel, 75 (1985), 71-83.

Diener, D., Instability in the dimension of spaces of bivariate piecewise polynomials of
degree 2r and smoothness order r, STAM J. Numer. Anal., 27 (1990), 543-551.

Feng, Y.Y, Kozak, J., Zhang, M., On the Dimension of the C' Spline Space for the
Morgan—Scott Triangulation from the Blossoming Approach, in Advanced Topics in Mul-
tivariate Approximation, F. Fontanella, K. Jetter and P.-J. Laurent (eds.), World Scientific
Publishing Co., Singapure, 1997, 71-86.

Hong, D., On the Dimension of Bivariate Spline Spaces, Master Dissertation, Zhejiang
Uni., Hangzhu, 1987.

Lai, M. J., A characterisation theorem of multivariate splines in the blossoming form,
Comp. Aided Geom. Design, 8 (1991), 513-521.
Morgan, J. and Scott, R., The Dimension of Piecewise Polynomials, Manuscript, 1977.

Ramshaw, L., Bézier and B-splines as multiaffine maps, in Theoretical Foundations of
Computer Graphics and CAD, R. A. Earshaw (ed.), NATO ASI series F, Vol 40, Springer,
Berlin, 1988, 757-776.

Ramshaw, L., Blossoms are polar forms, Comp. Aided Geom. Design, 6 (1989), 323-358.

Schumaker, L. L., On the dimension of the space of piecewise polynomials in two variables,
in Multivariate Approximation Theory, W. Schempp and K. Zeller (eds.), Birkhauser,
Basel, 1979, 251-264.

Schumaker, L. L., Bounds on the dimension of spaces of multivariate piecewise polynomials,
Rocky Mountain, J. of Math., 14 (1984), 251-265.

Shi, X. Q., The singularity of Morgan-Scott triangulation, Comp. Aided Geom. Design, 8
(1991), 201-206.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


