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Abstract

Consider solving the Dirichlet problem of Helmholtz equation on unbounded region
R?\TI" with T" a smooth open curve in the plane. We use simple-layer potential to construct
a solution. This leads to the solution of a logarithmic integral equation of the first kind for
the Helmholtz equation. This equation is reformulated using a special change of variable,
leading to a new first kind equation with a smooth solution function. This new equation
is split into three parts. Then a quadrature method that takes special advantage of the
splitting of the integral equation is used to solve the equation numerically. An error analysis
in a Sobolev space setting is given. And numerical results show that fast convergence is
clearly exhibited.
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1. Introduction

The mathematical tratement of the scattering of time-harmonic acoustic or electromagnetic
waves by an infinitely long semi-cylindrical obstacle with a smooth open contour cross-section
[' C R? leads to unbounded boundary value problems for the Helmholtz equation [3]

Aw+k*w = 0, in R2\T,
w = g,onl, (1.1)
%—1;’ —dkw = o(%), r=|z| = oo,

with wave number k& > 0.
In the single-layer approach one seeks the solution in the form

w(z) = / Ko(|z — y)p(y)dsy,y € RA\T, (12)

where ds, is the element of arc length, and the fundamental solution to the Helmholtz equation
is given by
1

Ko(lz —y]) ==
in terms of the Hankel function Hél) of order zero and of the first kind. It is known that

HM = Jo + i, (1.4)
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with Bessel function of order zero Jy and Neumann function of order zero Ny

Jo(z) =% Gr(3)™
n=0 0 0 (71)n+1 (15)
N[)(Z) = %(IH% + C)Jo(Z) + % 2_:1{ Z_:l %} (n)? (%)Zn

where C' = 0.57721 - - - is the Euler’s constant.
The single-layer potential (1.2) solves the unbounded Dirichlet problem provided the density
 is a solution of the integral equation

/F Ko(|z — y)p(y)ds, = g(x),z €T, (1.6)

This integral equation can be shown to be uniquely solvable provided the homogeneous Dirichlet
problem for the case of domain bounded by open arc I' admits only the trivial solution, that
is, if the wave number £ is not a Dirichlet eigenvalue for the negative Laplacian for the domain
bounded by I'. These eigenvalues are discrete and accumulate only at infinitely [3].

Let I" have a parametrization

r(z) = (£(x),n(x), -1 <z <1, (1.7)

with
' ()] = {[€' @) + ' (@)]}F £0,-1<z <1, (1.8)

To simplify the analysis, assume r(z) is C*°. Following [2, 14], we make the additional change
of variable
t = arccos(z), -1 <z < 1. (1.9)

The equation (1.6) can now be written as
——/ u(r)K(t,7)dr = f(7),0 <t <, (1.10)
0
with
) t),
u(t) = p(a(t))|r' (cost)| sint, (1.11)
)=g

K(t,7) = —wKo(|a(t) — a(7)]).

Note that a € C*°. From the expansions (1.5) we see that the kernel K (¢,7) can be written in
the form

K(t,7) = (1 + K,(t,7)| cost — cosT|?) 1n(§| cost — cosT|) + Ka(t,7), (1.12)

where
Ki(t,7) = — JO(TLZSZ - Z(EZ)T||)2_ Lz, (1.13)
Ks(t,7) = K(t,7) — (1 4+ Ky (t,7)| cost — cos T|*) ln(§| cost —cosT|),t # T. (1.14)

With the assumption on r(z), it can be shown that K;(¢,7), K2(t, 7) are infinitely differentiable
on t and 7 and also 2m-periodic and even with respect to each variable. Furthermore, we have
the diagonal terms

K, (t,t) = £ (cos t)],
Ky(t,t) = =% — C — In(&e|r'(cos t))).

24

(1.15)
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An advantage of the formulation (1.10), (1.11) is that the singularities in ¢ in the original
problem now become explicit: for if the solution u of (1.10) is smooth, then ¢ automatically
has the expected % type singularities at the two ends of the contour, because of the factor
sint in (1.11). And a smooth solution u of (1.10) arises naturally if g in (1.1) is smooth. This
follows from the observation that the function a and f above are even, 2w-periodic functions;
and if g € C°(T") then f € C*°(R). If we define u to be an 2m-periodic and even function, then
the resulting equation (1.10) can now be replaced by one half of the integral over a full period.

The equation (1.10) is split as

(Le + Ae + Be)u = f, (1.16)
where i
(Leu)(t) := —%/0 u(T) ln(§| cost — cosT|)dr, (1.17)
(Acu)(t) :== —% /07T u(t)Ky(t,7)| cost — cos |? ln(§| cost — cosT|)dr, (1.18)
(Beu)(t) := —% /7T u(T) Ky (t, )dr. (1.19)
0

Atkinson and Sloan [2] presented a discrete Galerkin method for Laplace equation with T’
an open curve. The logarithmic single-layer integral equation for the Laplace equation has the
basic property that it can be split into two parts. But the situation changes if one wants to
apply similar ideas for the Helmholtz equation. Here due to the more complicated structure of
the fundamental solution to the Helmholtz equation in R? given by the Hankel function of order
zero, after splitting off the integral equation similar with [2] one is still left with the remaining
part containing a logarithmic singularity. Hence, both the setting up of an approximation
method and its error analysis have to take into account this fact.

For the integral equation (1.6) for Helmholtz equation with I' a smooth closed curve, a
numerical method is presented and analyzed in [6]. For other results on the numerical solution
of integral equation of the first kind for Laplace equation with I an open curve or smooth closed
curve, see [1, 4,5, 7, 8, 11]

Our approximation method will be a quadrature method (see [6, 9, 10] based on interpolatory
trigonometric numerical integration rules which take proper care of the logarithmic singularities.
In the case K; = 0 the method is similar to one proposed by [1]. In this paper, we shall set up
our error and convergence analysis in a Sobolev space setting.

2. Prelimilaries

For our discussion of the operators L., we quote freely from [14]. Let H? denote the Sobolev
space of 2w-periodic functions

o0
w=Y_ dmfm (2.1)
1 21 .
Uy = =— u(t)e ™dt,m =0,41,42,---, (2.2)
2 Jo
whose Fourier coefficients ., satisfy
o0
||u||?) = Z max{1, |m|*}|t,|* < co (2.3)

m=—00
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It is well-known that if p > %, then H? C C)p(27), the space of 2m-periodic continuous functions.
We define

H? = {u € HP|u(—71) = u(1)}, (2.4)
Cpe ={f € C,2m)[f(=1) = F(D)}- (2.5)
Then (2.1)-(2.3) become, respectively, for u € HP:
u(t) = to + 2 Z Ty, cos(mi) (2.6)
m=1
U = %/OW u(t) cos(mt)dt,m >0 (2.7)
]2 == [iio]* +2 ) mP ity |* < o0 (2.8)
m=0

Although (2.2) and (2.7) are different formulas, they give the same result when v € H?.
Define the following integral operators

Lu(t) := —% ; 7Tu(T) lnésinz(t_TTﬂdT (2.9)
Aut) = —% 0 ”smz(t_TT) 1n(§ sin? (D) Ky (¢, ) asin? (D yu(rydr, (2,10
Bu(t) = —% 0 " Ka(t, Pulr)dr, (2.11)

for u € HP.
We know that operator L maps H? onto HP™! [1, 14]. L can also be written as the following
Fourier series

Lu(t) = 69 + 2 Z CrmUm cos(mt) (2.12)
m=1
where
. (2.13)
cm = max{l,m}’m =7 ’
It is easily follows that
L:HY — (o) HIT, (2.14)
and
1 Lullp1 = [lullp-w € H (2.15)

A Fourier series representation of L' follows easily from (2.9), (2.12), that is,

L tu(t) =t + 2 f: My, cos(mt). (2.16)

m=1

We can show that the operator A + B is bounded from H? to HP*> for all p > 0. Actually,
it can be shown that A + B is bounded from H? to H?™* and for all p.

Lemma 2.1. The operator A+ B given by (2.10), (2.11) is bounded from H? to HP*? for
all p.
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Proof. For the operator with the infinitely differentiable kernel this is trivial since it maps
H? boundedly into H? for any pair p and q. Hence we need only to be concerned with the
operator A. We can write

o0
(Au)(t) = yoao(t) + 2 Z Ymam (t) cos(mit) (2.17)
m=1
where
Yo = 07
2.18
Y = %(cm-i-l —2¢m + cm_l).m > 0, ( )
I ,
am®) = — [ Ky, Pasin?(CEDyu(rye=mtdr, (2.19)
27 0 2

denote the Fourier coefficients of K (t,-)u. This implies

(Au)(8)] <2 [ymllam(#)], (2.20)

and with the aid of the Schwarz inequality, using the fact that
1

m ==, m > 2, 2.21
7 2(m2 —1)m m= (221)
we can estimate
- |am ()] t+-
(AOF <237 P S5 =l Jasin ()| (222)
From this we obtain .
Aullo < sup 1K (1, )4sin® () | (2.23)
0<t<2m

whence the boundedness of A from H 3 into H° follows.
By partial integration it can be seen that the derivative of Au is given by

(Au) ()] = [§7 F(t = T){5{K1 (¢, 7)4sin’ (557) Ju(r)

2.24

+ 2 {K (t,7)4sin® (BT )u(r)} Hdr (2.24)
where 1 b4 ;
— o 2 - P 2 v

F(t) := 5, S 5 ln(e sin 2), 0<t<2m. (2.25)

Hence (Au)’ is of the same structure as Au and therefore, analogously to (2.24), we have

I(Auyllo < ¢ sup [[Ki(t, Asin®(EE)u'|| 5 +c sup
0<t<om 0<t<2om (2.26)

{Il 5 { K1 (t, )4sin® () Yull s + || 75 { K1 (¢, )4 sin® (5 )u} ]| s}

This imples that A is bounded from H~! into H!. Repeating this argument, by induction,
it follows that A: HP~3 — HP is bounded for all integer values p = 0,1,---, and from this
boundedness for all positive p follows by interpolation. Since same property holds for the adjoint
of A, the boundedness for negative p follows by duality.

The main use of L, A, B in this paper lies in the fact that

L.u = Lu,u € H?, (2.27)
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Acu = Au,u € H?, (2.28)
B.u = Bu,u € H?, (2.29)

Thus results on L, A, B can be used in investigating L., A., B.. The integral equation (1.6) can
be written as the following form

(L+A+B)u=fueH?, (2.30)

3. Quadrature Method

It is known that L is an even pseudo-differential operator of order —1 and an isomorphism
from H? onto HP*! for all p > 0, and that A + B is bounded operator from H? to HP*? for
p > 0 from section 2. From section 1 and (2.30) we also know L + A + B has a trivial nullspace
in H? for p > 0. Since L™'(A + B) : H? — H? is compact, by the Riesz-Fredholm theory the
operator L + A + B : H? — HP*! also is an isomorphism.

We choose n € N and

" = jh,j=0,1,---,n (3.1)

with

Let T}, denote the (n+1)-dimensional space of even trigonometric polynomials with the Lagrange
basis functions given by

1 n—1
(M) () = —f1+92 _ ) ) — .
M) =5 {1+ mz::lcosm(t tM)Y 4 cosn(t — ™M)}, s = 0,n, (3.3)
@) = L2425 Licosm(t — 1) + cosm(t + )]
k = o m=1 k k (3.4)
+[cosn(t — t,gn)) + cosn(t + t;cn))]}, 1<k<n-1,
Then we define following interpolation operator
P,:Cpe =T,
with the explicit expression
n
Pou(t) = > u(ty™)I{" (). (3.5)

k=0

p> % will be the least restriction since it makes sure that the nodal values of u exist and hence
that P,u exists. Later we will give further restriction for p.

We have following Lemma

Lemma 3.1. For the trigonometric interpolation P, we have the error estimate

1
1Pru = ullg < ch?Jull,, 0<g<p5<p, (3.6)
for all w € H? and some constant ¢ (depending on p and q).
The proof is similar to the proof of an analogous result for all 2r-periodic funtions [6]. Hence
this proof is omitted here.
Consider a fully discrete approximation method for the solution of (2.30) as follows.

P,(Lu, + Au,, + Bu,) =P, f (3.7)



The Numerical Solution of First Kind Integral Equation for the Helmholtz Equation on - - - 495

Since Lv, € T, if v, € T),, it follows that
P,Lv, = Lv,,v, € T),. (3.8)
Thus an equivalent formulation of (3.7) is given by: find u,, € T), satisfying
Lu,, + P,(Au,, + Bu,) = P, f (3.9)

The following Lemma states the simple observation that our approximation scheme conver-
gence for the unperturbed equation where A + B = 0. [6]
Lemma 3.2. For each u € H? with f = Lu € C, . there exist a unique solution u,, € T,, of

(Lun)(t) = F),5 = 0,1, ,n (3.10)
and we have the asymptotic error estimate
1
llu = unlly < ch™fully, —1<q<p,—5<p, (3.11)

holds for some constant ¢ (depending on p and q).

We now need to set up finite dimensional approximation for the operator L, A, B. We use the
following interpolation quadrature rules by repalcing g € H? by its trigonometric interpolation
polynomial P,g € T,, and then integrating exactly.

L[ 4 ) (1) 917,
~9x g(T) ln(g sin” ))dr ~ Z R, (3.12)
1 [ Lo t—T 4  ,t—T1 L. n
—— [ g(r)sin®(——) In(=sin*(——))dr = Y F" (H)g(t"), (3.13)
2r J 2 e 2 P
L7 oy Xn:d () (3.14)
am Jo TS an £ O ‘
with the weights
2m _
R (1) = —% : 1™ (7) 1n(§ sinQ(tTT))dT,O <k<n, (3.15)
MWy L [T m Lot =T 4 L T <<
F.7(t) = o lk (1)2sin”( 5 )ln(esm ( 5 ))dr.0 <k <n, (3.16)
ds =—-1,5s=0,n
dy = -2,1<k<n-—1. (3.17)
From (3.4), (2.9), (2.10), (2.12), (2.17) we have the explicit formulas
n—1
R (t) = —{1 +2) " emcosm(t — t) + cpcosn(t — t)},s = 0,n, (3.18)
m=1
R (t) = {242 nil cm[cosm(t — t(n)) + cosm(t + t(n))]
k o 2 Cm k k (3.19)
+enfcosn(t — ™)) + cosn(t + 1<k <n—1,
n—1
FM™(t) = —{'yo +2 Z Ym cosm(t — t™) + v, cosn(t — ™)}, s = 0,7, (3.20)

m=1
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n—1
A0 = {2042 S ymlcosmit ) + cosmt + 1)

m=1

+7p[cosn(t — tgcn))) + cosn(t+ tgcn))]}, 1<k<n-1,

(3.21)

where the ¢y, v, are given by (2.13), (2.18).

By (2.27)-(2.29), we apply the quadrature rules (3.12)-(3.14) to the integral equation (2.30),
i.e., we apply (3.12) to g = u, (3.13) to g = Ki(¢,-)4sin’(5*)u and (3.14) to g = K> (t,-)u.
Then we obtain the linear system

n n n),,(n n)/,(n n n tg-n)th(n)

2 un(tR @) +F @K 4 sin (e (3.2)
A )} = FE),5 =0,
With the numerical quadrature operators
n n . t + t e n
(Anu)(t) = Y F" (8K (1, 1 >)4smz(T'»)u(t§c ), (3.23)
k=0
Ly (M), (4P)
(Bru)(t) = 5~ > di Ko (t, " yu(ty”) (3.24)
as approximation for A and B our scheme (3.9) is of the form

(Ltn + Ayt + Buun)(t57) = f(#),5 = 0,1, m. (3.25)

We have the following error estimate for the approximation A,, + B,, for A + B [6].
Lemma 3.3. The estimate

_ 3
(4 + B)u = (4n + Bu)tn|lg+1 < ch”fullp-1, 1 <g<p,5 <p, (3.26)
is valid for all u € T,, and some constant ¢ (depending on p and q).

Now we will established our main convergence result. The proof is modelled after a corre-
sponding error analysis in [12, 6]. However, it differs from [12] through the incorporation of
discrete approximations A,, + B, for A+ B. It also differs from [6] through the restriction for
p, the weaker restriction for p given by [6] is invalid (see [13]).

Theorem 3.1. For sufficiently small h and for each uw € HP with f € C, . there exists a
unique solution u,, € T,, of (3.25) and we have the following error estimate

[lu = unllg < chP" Y ullp, 1<qg<p,2<p, (3.27)

for some constant ¢ (depending on p and q).
Proof. Assume first that (3.25) has a solution, we have

Lu, = P,L(u+ L™'((A+ B)u — (A, + By,)uy)). (3.28)
Then by Lemma 2.2 and the triangle inequality we can conclude that

|lu+ L7 (A + B)u = (An + Bn)un) — unllg
ch?~U|u+ L~ ((A+ B)u — (A, + Bp)un)|lp
ch?” "{ull, + [|IL7 (A + B)(u — uy)llp
LA+ B) = (An + By))unllp}-

(3.29)

ININA
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Since I + L™*(A + B) : H? — HY is an isomorphism (here I is an identity operator) we have

llu —uplly < C||(I+L_1(A+B))(U_Un)||q
< cllu—up+ L Y ((A+ B)u— (A, + Bp)un)|lg (3.30)
+c||L*1((A + B) — (A + Bn))unllq

by (3.29) (3.30) we get

= unlly < ehP~[ull, + L7 (A + B)(u — un)llp
HILTH (A + B) — (A + Bn))uallp} (3.31)
+c||[ L7 (A + B) — (Ap + Bp))unl|g-

It is known that the operator L=1(A + B) : HP~' — HP is bounded, then we have
IL7HA + B)(u = un)llp < cllu = unllp-1. (3.32)

Using Lemma 3.3 and the mapping properties of L' we deduce that
WP~ 9L~ (A + B) = (A, + Bu))un|lp + [ILH((A + B) = (A + By))uallg

3.33

< eh? unllp1 < P 9(|[ullp + [|u— tinllp-1) (3:33)
Combining (3.31)-(3.33) we obtain

ot = unlly < ehP(lfully + 11 = ) [lp—1) (3.34)

for all p and ¢ with 1 < ¢ < p and 2 < p. From this, choosing ¢ = p — v with 0 < v < 1 we
conclude that
[lu = tnlp—1 < ch™|Jull (3.35)

for sufficiently small h. Inserting this back into (3.34) concludes the proof of the error estimate
(3.27).

From above we have assumed that (3.25) has a solution. But (3.27) with u repalced zero
establishes the uniqueness of the solution of (3.25) for sufficiently small A, and from this the
existence of a solution to the inhomogeneous equation (3.25) follows immediately by the Riesz-
Fredholm alternative theory.

To construct the solution w of (1.1), we use the quadrature method of this paper to solve
(1.6). Denote the approximation solution by ¢,,.

Define
wn(z) = [ Kolle ~ y)eav)ds,, (3.36)
r
Easily,
w(@) —wn(z) = [ Kollz —y)le(y) — en(y)ldsy

= 7K (b 7)) — un(7)]dsr (8:37)

where
u(t) = p(a(t))|r'(cost)|sint, (3.38)
un(t) = pn(a(t))|r' (cost)|sint, (3.39)

We further approximate (3.36) by evaluating the integral numerically, using the trapezoidal
rule with ¢ nodes. Denote the resulting approximation by w,, . Thus by using Sobolev inbed-
ding theorem and (3.27), it can be shown that for each z, and for all sufficiently large n,

w(z) —wng(@)] < lu—unllso o K (t,7)|ds,

< d,()hr~1, (3.40)
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The constant d,(z) approaches co as z approaches I', because the integrand in (3.36) becomes
singular in this case. For  near I, it is better to use w,, , with ¢ much larger than n.

The far-field pattern we is defined by the asymptotic behaviour of the scattered wave

ezz\z\
w(#) = S {woo ( + O(

B )bl = oo, (3.41)

uniformly in all direction & = % [3].

From the asymptotics

2 . 1
H}(z) = ,/Eem—z)u +0(=},7 = o0, (3.42)

for the Hankel function, we see that the far-field pattern of the single-layer potential (1.2) is
given by

wel@) = [ T pty)ds, (3.43)

e
V2rk'
The integral (3.43) may be evaluated by the trapezoidel rule as above, hence it can be shown

that for each z, and for all sufficiently large n,

where ¢ = —

Woo (&) — Woo.m.q(#)] < chPL. (3.44)

4. Numerical Examples

We consider the scattering of a plane wave w? by a sound-soft semi-cylinder with following
smooth open contour cross section with boundary I'. Here we give two examples, to illustrate
the numerical method studied in section 3. The forward directions are dy = (0,1) and d» =

Lo
(a) Let ' be a straight-line segment of length 2, e.g.,
I'={(s0),-1<s<1}.

Table 1 gives some approximate values for the far-field pattern we(dy) and ws(d2)
(b) Let T’ be the upper half of the unit circle

with y > 0. For a parameterization, use
r(z) = (- sin(gm),cos(ga:)), -1<s<1.

In table 2, we give some approximate values for the far-field pattern weo(d;) and weo(dz). Note
that the fast convergence is clearly exhibited.
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Table 1
N | Rewoo(dr) | Imweo(di) | Rewoso(dz) | Imwes (da)
k=1 | 8 | .367770D-1 | .667942 .144435 .839851
16 | .367231D-1 | .668025 .144399 .840132
32 | .367100D-1 | .668044 .144390 .840200
64 | .367068D-1 | .668049 .144388 .840217
128 | .367061D-1 | .668050 .144388 .840221
256 | .367059D-1 | .668050 .144388 .840222
k=3 | 8 212585 .389334 .146669 .541306
16 2212777 .390049 .146945 .540683
32 212817 390211 147025 .540505
64 212826 .390247 .147049 .540452
128 212828 .390256 147057 .540437
256 .212828 .390258 .147059 .540432
k=51 8 174779 .304319 .181852 450536
16 175597 .305401 .181486 448180
32 175791 .305586 .181404 447525
64 175841 .305612 .181384 447335
128 175854 .305614 .181380 447280
256 175857 .305613 181379 447265
Table 2
N | Rewoo(d1) | Imweo(dr) | Rewoo(d2) | Imweo(dz)
k=1| 8 .278608 732781 .291279 .860374
16 .278383 .732553 .291089 .860609
32 .278329 732497 .291043 .860665
64 .278316 .732483 .291032 .860678
128 | .278312 732479 .291029 .860680
256 | .278312 732478 .291028 .860681
k=3 | 8 314541 .668848 .320227 .676005
16 .312063 .663895 .320640 .674064
32 311583 .662600 .320703 .673130
64 311458 .662247 320722 672865
128 | .311425 .662150 .320728 .672790
256 | .311417 .662124 .320730 .672769
k=5| 8 297184 .666579 301187 .669639
16 .309291 .655751 333977 .691056
32 .309379 .651606 334170 .688028
64 309411 .650430 .334216 .687122
128 | .309422 .650097 334227 .686855
256 | .309426 .650004 .334230 .686778
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