Journal of Computational Mathematics, Vol.19, No.3, 2001, 309-322.

A ROBUST TRUST REGION ALGORITHM FOR SOLVING
GENERAL NONLINEAR PROGRAMMING*!

Xin-wei Liu
(State Key Laboratory of Scientific and Engineering Computing, Institute of Computational
Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Sciences,
Chinese Academy of Sciences, Beijing 100080, China)
(Faculty of Science and Arts, Hebei University of Technology, Tiangin 800130, China)

Ya-xiang Yuan
(State Key Laboratory of Scientific and Engineering Computing, Institute of Computational
Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Sciences,
Chinese Academy of Sciences, Beijing 100080, China)

Abstract

The trust region approach has been extended to solving nonlinear constrained opti-
mization. Most of these extensions consider only equality constraints and require strong
global regularity assumptions. In this paper, a trust region algorithm for solving general
nonlinear programming is presented, which solves an unconstrained piecewise quadratic
trust region subproblem and a quadratic programming trust region subproblem at each
iteration. A new technique for updating the penalty parameter is introduced. Under very
mild conditions, the global convergence results are proved. Some local convergence results
are also proved. Preliminary numerical results are also reported.

Key words: Trust region algorithm, Nonlinear programming.

1. Introduction

Trust region methods are iterative. As a strategy of globalization, the trust region ap-
proach was introduced into solving unconstrained optimization and proved to be efficient and
robust. An excellent survey was given by Moré(1983). The associated research with trust
region methods for unconstrained optimization can be found in Fletcher(1980), Powell(1975),
Sorensen(1981), Shultz, Schnabel and Byrd(1985), Yuan(1985). The solution of the trust re-
gion subproblem is still an active studying area, see Stern and Wolkowicz(1994), Peng and
Yuan(1997) et al.

Since the 80’s the trust region approach has been extended to solving nonlinear constrained
optimization. Most of these extensions consider only equality constraints, and the global con-
vergence theories are based on strong global regularity assumptions, for example, see Byrd,
Schnabel and Shultz(1987), Vardi(1985), Omojokun(1989), Powell and Yuan(1991), Dennis,
El-Alem and Maciel(1997), Dennis and Vicente(1997). At each iteration of an algorithm given
by Omojokun(1989), the trial step consists of a normal direction step and a null space step.
Similarly, Dennis, El-Alem and Maciel(1997) considered the method which replaced the normal
component by a quasi-normal direction and developed its global convergence theory. Dennis
and Vicente(1997) proved that under suitable conditions their method will converge to the
second-order optimal point. For general constrained optimization, Fletcher(1981) proposed a
trust region method which is based on the L; nonsmooth exact penalty function. Burke and

* Received March 3, 1999.
1) Research partially supported by Chinese NSF grants 19525101, 19731001, and by State key project 96-
221-04-02-02. It is also partially supported by Hebei provincial doctoral fund.

310 X.W. LIU AND Y.X. YUAN

Han(1989), Liu and Yuan(1998) have extented Fletcher’s approach to other penalty functions.
Burke(1992) presented a general framework for trust region algorithms for constrained prob-
lems. Without requiring any regularity assumption, Burke proved that his method converges
to the points which satisfies certain first-order optimality conditions. Similar to Fletcher(1981)
and Burke(1992), Yuan(1995) proposed a new trust region algorithm for solving the optimiza-
tion with equality and inequality constraints. Under mild conditions, Yuan(1995) proved the
global convergence of his algorithm and established local convergence results.
In this paper, we consider the general nonlinear programming problem

min f(z) (1.1)
s.it. ¢i(z) =0, i € E, (1.2)
ci(z) >0, iel, (1.3)

where f(x), ¢i(z)(i € EUI) are real valued continuously differentiable functions on R", E =
{1,2,---,m.}and I = {m.+1,---,m} are two index sets with the integers m. and m satisfying
m >me > 0. If me =m >0, (1.1)-(1.3) is the optimization with only equality constraints.

Successive quadratic programming (SQP) methods are very efficient for solving problem
(1.1)—(1.3), see Han(1977), Powell(1978), Burke and Han(1989), Burke(1989). At each iteration,
the original SQP method, developed by Wilson, Han and Powell, generates a new approximate
to the solution by the procedure

=+ sd, (1.4)

where x is the current point, d is a search direction which minimizes a quadratic model subject
to linearized constraints and s is the steplength along the direction and is decided by some line
search procedure. Under certain conditions, SQP methods converge superlinearly. The requisite
consistency of the linearized constraints of the QP subproblem, however, is its serious limitation.
In order to handle the inconsistency of the linearized constraints, Liu and Yuan(1998) presented
a modified SQP algorithm which solves an unconstrained piecewise quadratic subproblem and
a quadratic programming subproblem at each iteration. The algorithm is a natural extension
of the original SQP method since it solves the same subproblems as the original SQP method
at the feasible points of the original problem, and it coincides with the original method when
the iterates are sufficiently close to the solution. Moreover, in order to ensure the fast rate
convergence, it seems reasonable to use the second-order information to generate the normal
direction, instead of using the first-order term only (for example, see Burke(1989) and Burke
and Han(1989)). For optimization with only equality constraints, the normal direction and the
null space direction are independent, so the search direction can be computed parallelly (see
Liu(1998)).

In this paper, we present a new trust region algorithm for problem (1.1)-(1.3). The new
algorithm is based on the SQP method of Liu and Yuan(1998). The trial step is computed by
solving an unconstrained piecewise quadratic trust region subproblem and a quadratic program-
ming trust region subproblem at each iteration. A motivation for using trust region techniques
is that trust region approach is robust and it can applied to ill-conditioned problems. Our
algorithm is similar to Burke(1992) and Yuan(1995), but there remain fundmental differences.
For equality constrained case, our method is also similar to the null space and range space ap-
proach analyzed by Dennis, El-Alem and Maciel(1997) and Dennis and Vicente(1997). A new
technique for updating the penalty parameter is introduced. Under very mild conditions, the
global convergence results are proved. Local superlinear convergence results are also proved.
Preliminary numerical results are also reported.

This paper is organized as follows. In section 2 we present our algorithm. Some global
convergence results of our algorithm are proved in section 3. The local analyses are given in
section 4. In section 5, we report some preliminary numerical results.

A Robust Trust Region Algorithm for Solving General Nonlinear Programming 311

Throughout this paper, we use the following notations: g, = Vf(xy), cx = c(zg), Ver, =
Ve(zy), et al.

2. The Algorithm

Define
P(x,p) = f(z) + plle(@)- |, (2.1)

where || - || is any norm on R", u > 0 is a penalty parameter. It is well known that (2.1) is an
exact penalty function for problem (1.1)-(1.3). If || - || is selected to be the L; norm, then (2.1)
is the merit function used in Han(1977), Powell(1978).

Suppose that z;, is the current iterate. Similar to Liu and Yuan(1998), let

In={iel: c(zy) <0}, (2.2)
Jy =1y UE, (2.3)
Jo=liel: i¢J). 1)

In practice, the condition c¢;(xz;) < 0 is relaxed by ¢;(zr) < €, where € is a very small pos-
itive tolerance number. Let Ay be the current trust region radius and By be the actual or
approximate Hessian of Lagrangian

L(z,\) = f(2) + A e(2) (2.5)

at xp, where A € R'™ is a multiplier vector. Firstly we solve an unconstrained trust region
subproblem

. 1
min oy (d) = §dTBkd + pel| (e, + VT, d)—|| (2.6)

s.t. [|d]l2 < 6A, (2.7)

where 0 < 0 < 1 is a constant, and the norm used in (2.6) is the same as that in (2.1). For the
rest of this paper, if it is not specified, the norm || - || is also the same as that in (2.1). The L,
norm in (2.7) can also be replaced by any other norm. If the norm || - || in (2.6) is the Ly or Lo
norm, subproblem (2.6)-(2.7) is to minimize a piecewise quadratic function within a ball.

Suppose that dj; is a solution of (2.6)-(2.7), we choose 7, < 1 close to 1 as much as possible
such that

ci(zy) + Vc,-(:vk)T(dekl) >0, 1€ jk, (2.8)

where Jj, is defined as (2.4). Then we solve the following quadratic programming trust region
subproblem

1
min ¢ (d) = g d + idTBkd (2.9)
s.t. Vei(zp)'d=0, i€ E (2.10)
Vei(zp)Td >0, i€ (2.11)
éi(wg) + Vei(zp)td >0, i€ Jy, (2.12)
ld + Trdg1ll2 < Ag, (2.13)

where g, = Vf(zk), éi(zr) = ci(zr) + Vei(ze)? (trdey). Let dia be a solution of (2.9)-(2.13),
the trial step of our algorithm is defined by

Sk = Tedk1 + dy2- (2.14)

To define the predicted reduction, we use the following function

1
br1(sK) = g sk + 53531«81@ + pesll (e + Vg se) |, (2.15)

312 X.W. LIU AND Y.X. YUAN

where 41 is the updated value of the penalty parameter at the kth iteration. The predicted
reduction is defined by Predy = ¢r+1(0) — dpy1(sk). The actual reduction of the penalty
function (2.1) from xy, to xy + sy is

Aredy, = P(xg, pr+1) — Pxg + sk, thg+1)- (2.16)
Let N
redy,
= 2.1
Tk Predka (7)

which plays an important role in accepting or rejecting the trial step and in updating the next
trust region radius.
Now our algorithm is stated as follows.

Algorithm 2.1.

Step 0. Given xy € R, By € ™",

A € Ry, po € Ry and positive constants 0, €. Evaluate f(xzo), c(zo), go, Ve(xo).
Let k =0;

Step 1. Identify the subscript subsets I, and Jy, by (2.2) and (2.3). Calculate the trial step
sk by solving subproblems (2.6)-(2.7) and (2.9)-(2.13). If ||skl|l2 < €, stop;

Step 2. Update the value of the penalty parameter. If

61(0) = u(st) = 51w (0) = Ye(din)) (2.18)
let pr+1 = px- Otherwise, update py by pp+1 such that pgpv1 > 2py and
9+1(0) = drer (s6) = T4k (0) = (i) (2.19)

Step 3. Computing vy by (2.17). If r, > 0, let xp+1 = xg + sk- Otherwise, xp11 = Tg-
The trust region radius Ay, is updated as follows:

maX{Ak, 2||Sk||2}, TE Z 0.9
Ak+1 = Ak, 0.1<r,<0.9, (220)
min{%Ak, %||sk||z}, r < 0.1;

Step 4. FEvaluate f(zyt1), c(Tg+1), VI(xk+1), Ve(xgs1). Update By. Let k =k + 1 and
go to Step 1.

3. Global Convergence of the Algorithm

In this section, we study the global convergence of the algorithm.

Lemma 3.1. Let v, = [(cs,) || — mingq,<sa, [I(cs, + Vi d) || If diy is a solution of
(2.6)-(2.7), then
1 . Mk Yk
0) —Yr(dr1) > = 1, ———— 1. 3.1
¥(0) = ¥u(di1) 2 5 pwyp min{l, B0’ Al (3.1)

Proof. Suppose that ||dy. ||z < 6A, and

(e + Vg, din)-ll = (e, + Ve, d)- |- (3-2)

min
ldll2<8A

A Robust Trust Region Algorithm for Solving General Nonlinear Programming 313

If dp; = 0, then v = 0. Thus, (3.1) holds. Assume that dia # 0, then for any 0 < 7 < 1, we
have ||7dg1]||2 < 0A and

1 A N
Vi (dr) < §T2d~1€13kdk1 + pl|(ca + 7V dia) ||
1, 52 T ;
< 5T I1Bkllzlldiall2 + Trx(ll(eq, + Ve, din) -1l = ll(es)-1D
+pell(es,) -1I- (3-3)
Thus, 1 (0) — Vg (dk1) > _%T2||Bk||262Al2€ + TugvE, VO < T < 1.
If 7 = % < 1, then

- 1. .. o«
Vi (0) — ¥r(dr1) > Tepn e — §(Tk)2||Bk||262Ai

1 s (3.4)
~ 2[IByll262 A% '

Otherwise, ugyr > ||Bil|20°Af. Thus we have

1
Y (0) — Yr(dkr) > SHEVk- (3.5)
The result of the lemma follows from (3.4) and (3.5).
In order to prove the global convergence results of the algorithm, we need to make the
following assumptions:

Assumption 3.2. (1) f(z) and c(z) are twice continuously differentiable on R™; (2) {By}
is uniformly bounded, i.e. there ewxists a positive constant M such that ||Bglla < M for all
positive integer k; (3) {Ar} and {x} are uniformly bounded.

It should be noted that we do not make positive definiteness assumption on Bj. The trust
region algorithm can circumvent the difficulties of SQP associated with indefinite Lagrangian
Hessian or its approximation. If By is the exact Hessian of Lagrangian function and if the
multipliers are bounded, Assumption 3.2(2) is implied by Assumption 3.2(1) and (3). On the
other hand, the assumption on uniformly boundedness of {Aj} is not strict since in practice
it is quite common to use Aypy; = min{A*, max{Ay, 2||sk|l2}} whenever r;, > 0.9, where
A* > (is a constant.

In the analyses of this section, we do not preassume any regularity of constraints. Thus,
Algorithm 2.1 may converge to some points other than Kuhn-Tucker points. Our analyses are
similar to Burke(1992) and Yuan(1995), and they developed the convergence theories for their
methods without the assumption of regularity.

By our definition, it is easy to see that either pj will remain unchanged for all large k or
limg_, o pr, = 00. Firstly we have the following result:

Lemma 3.3. Under Assumption 3.2, if limy_, o, pr = 0o, then there exists a finite number
c* such that ¢* = limy_,o0 ||(ck)—|| -

The proof of the above result is nearly the same as that of Lemma 4.2 of Yuan (1995), and
therefore it is omitted. Based on the above result, we have the following lemma:

Lemma 3.4. If limy_,o p = o0 and ¢* # 0, then there is a convergent subsequence of
{z1}, its limit x* is infeasible for (1.2)-(1.3) and is a stationary point of ||c(z)_||, that is,
0 € 9q(z”) for q(z) = |lc(z)—||.

314 X.W. LIU AND Y.X. YUAN

Proof. Because ¢* # 0, any accumulation point of {z} is an infeasible point of the original
problem (1.1)-(1.3). Let S be the set of all accumulation points of {z;}. Then there must have
a z* € S, which satisfies

min [|(c(z") + Ve(@)"d)-|| = lle(@) I, (3.6)

from this equation the result of the lemma is followed. Otherwise, for any =z € S we have

min [|(e(z) + Ve(z)"d) | < [le(z)]| (3.7)

By the convexity of the norm, minjq,<1 ||(c¢(z) + Ve(z)Td) || < |le(z)—||. Thus, it follows from
the continuity of the norm that there is a w > 0 such that for sufficiently large k,

min |[(cx + Vel d)_|| < |[(ep) || — w. 3.8

Hd”2§1||(k rd) -l < [[(ce)-lI (3.8)

Suppose that ||dx||> < 1 such that ||(cx + Ve di)— || = minyqy,<y |(ck + Vefd)—||, since [|(c, +
Vb di) |l < (e + Vel dg)—]], we have

ll(ea, + Vegdi) || < ll(es) -l = w- (3.9)

Let t; = min{1, A}, then ||txdi||z < 0Ax. Thus, for sufficiently large k,
e > llea |l = ll(es, + Vi, (tudi) - || > tw, (3.10)
where 7, is defined in Lemma 3.1. Since

¢x(0) — dr(sk) — %k(?ﬁk(o) — r(dg1))

T 1 1
> Ek(i/uc(o) — e (di1)) — git sk — 55531«81« + idengkdkla (3.11)

and by selection of 7y, there is a 79 > 0 such that 7, > 79 for sufficiently large k, it follows from
Assumption 3.2, Lemma 3.1 and pp — oo that for sufficiently large k,

0(0) = 9 (s) > T (6e(0) = i(din)). (3.12)

(3.12) contradicts Step 2 of Algorithm 2.1. This contradiction implies that the lemma is true.

Lemma 3.5. Suppose that limg_oo . = 00 and ¢* = 0. If ||dk1|| = O(||ck—]), then any
accumulation point of {zy} is a Fritz-John point of the original problem (1.1)-(1.3)(which is
not necessarily a Kuhn-Tucker point of (1.1)-(1.8)).

Proof. It ||dg1]] = O(||ck—]|), it follows from limy_, oo pr = oo that there exists an infinitely
set K such that zj is infeasible for all £ € K. Because ¢* = 0, any accumulation point of
{z1, : k € K} is feasible for problem (1.1)-(1.3).

If
i n L)
i Dtaeren [l(ex + Verd) || (3.13)
S 1)
then for any accumulation point z* of {z}, we have 0 € 9q(z*) for g(z*) = ||c(z)_||. Since z*

is a feasible point, z* is also a Fritz-John point of (1.1)-(1.3).
Suppose the result of the lemma does not hold. Then for sufficiently large k € K, we have
mingegn ||(cx + Vi d)_||
()T
Let nr = min{dAy, |lcr—]|}, it follows from the above inequality and the convexity of ||(cx +
Veld)_|| that

<1 (3.14)

Wi gj, <, [|(cx + Veid)— |

1 (ex) -l

<1 (3.15)

A Robust Trust Region Algorithm for Solving General Nonlinear Programming 315

If d;, € ®" such that

min ||(cx + Vegd)-|| = [[(cx + Vg di)-|l, (3.16)
lldl2<m

then for sufficiently large k € K, by (3.11),
Pk (sk) — ox(0) — %k(dfk(dm) =, (0)) < T—;(lbk(gk) = ¥%(0)) + O(||dga I])- (3.17)

Suppose that {z} : k € K}(K C K) is any convergent subsequence of {z; : k € K}. Then
there must exist a 7o > 0 such that for sufficiently large k € K, 7, > 7o. Thus, by (3.15), for
sufficiently large k € K,

bk (sk) — or(0) — F (Y (dr1) — ¥x(0))

furllex— |l
T3 —
< l|(cx + Vegdi)— || — [I(er)—|l +o(1) <0, (3.18)
2 ll(cx) -1l

which contradicts up — 0.

Lemma 3.4 and Lemma 3.5 show that if limy_,o g = oo, Algorithm 2.1 may converge to
some points other than Kuhn-Tucker points of (1.1)-(1.3). The next theorem illustrates that
Algorithm 2.1 can converge to a Kuhn-Tucker point of the original problem if limy_, o pr = p
(1 > 0 is a constant).

We suppose that ||dg1]| = 0 when limy o ||ck—|] = 0, that is, the norm of the quasi-normal
component of the trial step closes to zero as iterate closes to the feasible region. It can be seen
that our assumption is weaker than a similar assumption of Dennis, El-Alem and Maciel(1997)
and Dennis and Vicente(1997), where they require that the norm of the quasi-normal component
of the trial step is not more than a fraction of the norm of the constraint violations.

Theorem 3.6. Suppose that limg_,oo pr = p (& > 0 is a constant), {x : k € K} is a
convergent subsequence of {xy} and x* is its limite. If ||c(z*)_]| = 0, and the Mangasarian-
Fromowitz constraint qualification conditions hold at x*, then x* is a Kuhn-Tucker point of the
original problem (1.1)-(1.3).

Proof. Suppose that the theorem is not true. Then we claim that

li A =0. 1
ol Ak =0 (3.19)

Otherwise, there exists a constant u > 0 such that for sufficient large k € K, we have

Ak Z u, Tk Z 0.1. (320)

For sufficient large k£ € K, there is a 79 > 0 such that 7, > 79, and pp = p. Thus, for large
ke K,

Aredk Z 0.1PT‘6dk Z 0.05T0[’(/)k (0) - ’l/)k (dkl)] (321)
Let d* is the solution of the problem
1 .

min @ (d) = g(o")"d + 3 M|l (3.22)

st. Vei(z*)'d=0, ic E (3.23)

Vei(z)d >0, ierI* (3.24)

ci(z*) + Vei(z)'d >0, iel* (3.25)

U
ldll2 < 5, (3.26)

316 X.W. LIU AND Y.X. YUAN

where I* = {i € I : ¢;(z*) = 0}. The supposition that z* is not a Kuhn-Tucker point of the
original problem implies that d* # 0 and @*(d*) < 0. Thus, by the fact that z, — z*, dp; — 0
and the perturbed lemma of quadratic programming (see Daniel(1973)), we have

@r(0) — pr(dra) > —%TI (3.27)

for large k € K, where n = ¢*(d*), dj> minimizes gf'd + £ M||d||3 on the feasible region of the
subproblem (2.9)-(2.13). Thus, by

1
0 (0) — ¢ (sk) = pur(|I(ck) Il = l(ck + Vi se)—Il) — g4 sk — §S{Bk8k
> 0r(0) — vr(dr2) + Tk [0k (0) — i (dr1)]
~7idjy (95 + Brdis) + %Tk(l — 71)djy Brdia (3.28)

> p1r(0) — Pr(dr2) + k[(0) — i (dr1)] + O(lldk1 ll2),
we have for sufficiently large k € K, Pred;, > —in. rr > 0.1 implies that
Py, pr+1) — Pk + Sk, tg+1) > —0.025n (3.29)

for sufficiently large k € K. Since limy_o0 ker P(zk, pr+1) = f(z*), (3.29) can not hold for
infinitely many k. This contradiction implies that (3.19) holds when the theorem is not true.

Now we suppose that (3.19) holds. Thus, by (2.20), 7, < 0.1 for sufficiently large k € K
and

lim s;=0. (3.30)
k—oo,ke K

If z* is not a Kuhn-Tucker point of (1.1)-(1.3), d* is the solution of the subproblem

1 .
min ¢*(d) = g(2")"d + 5 M]|d||3 (3.31)
st. Vei(z*)'d=0, ic E (3.32)
Vei(z)d >0, ierI* (3.33)
ci(z*) + Vei(z)'d >0, iel* (3.34)
ldll> <1, (3.35)
then d* # 0, 7 = g* (d*) < 0, and min{1, Ay }d* is a feasible solution of the problem
1 .
min @*(d) = g(z*)'d + 5M||d||§ (3.36)
st. Vei(z*)'d=0, ic E (3.37)
Vei(z)Td >0, ieI” (3.38)
ci(z*) + Vei(z)'d >0, iel* (3.39)
ldll> < Ay. (3.40)

Hence, @*(d;) < fjmin{1,A.}, where dj, solves the problem (3.36)-(3.40). Therefore, the
quadratic programming perturbation lemma and (3.28) imply that

Predy, > —0.257min{1, Ay }. (3.41)
If there exists an infinite subset K C K such that Ay, < 1 for all k¥ € K, then
lim rp=1, (3.42)
k—oo,ke K

since
|Aredy, — Predi| < o(Ag), (3.43)

A Robust Trust Region Algorithm for Solving General Nonlinear Programming 317

which contradicts r, < 0.1; Otherwise, Ay > 1 for all sufficiently large k € K and
Predy, > —0.2517. (3.44)

By (3.30) and |Ared, — Predi| < o(||sk|l2), we have rp, — 1(k € K,k — o0), which is a

contradiction with r; < 0.1. Thus, (3.19) is not true. The contradiction proves the theorem.

4. Local Discussion
For analyses of local convergence of the algorithm, we need the following assumption:

Assumption 4.1. (1) z — z*, where z* is a vector such that ||c(z*)_]] = 0; (2)
Vei(z*)(i € EUI*) are linearly independent; (3) pr = p for sufficiently large k; (4) {Bx}
is bounded uniformly.

Under Assumption 4.1, I D I, for sufficiently large k since I is a finite set. Thus, for
sufficiently large k, we have J, = EUI*. dj; is a solution of the subproblem (2.6)-(2.7), which
implies that

Bydy + px Ve, (or) Ak + Being = 0, (4.1)
Akt € Ollyllly=(ep +veT dun)- (4.2)
Br1 > 0,11 € 9|d||a=dy, » (4.3)
Br1(ldkrllz = 6Ak) = 0. (4.4)
Lemma 4.2. Under Assumption 4.1, let K = {k : 1, > 0}, then
kkrolélknefK Bralld|l2 = 0. (4.5)

Proof. The fact that dis is a solution of the subproblem (2.9)-(2.13) implies that dy» satisfies
the constraints (2.10)-(2.13). Thus we have

gk + Brdra — VerAe2 + Bramnkz = 0, (4.6)
(Ak2)i > 0,0 € I; (A2)i Vei(zg) T dia = 0,0 € I, (4.7)
(Me2)i(ci(zr) + Vei(ze) P sp) = 0,0 € I, (4.8)
Brz = 0,12 € 9|d|||a=sy (4.9)
Brz(llskll2 — Ag) = 0. (4.10)
Therefore,
diyBrdr1 + Bradigmin = —p(Veh, diz) gt > 0. (4.11)
It follows from (4.6) that
9h dix + diy Brdis = Y (Ak2)iVei(an) "dia + Branfydra = 0. (4.12)
i€ly,
Hence,
L.r T T
Edszkdlﬂ + Bradanre > Z()\M)ivci(mk) di2- (4.13)
icl,

Since limy, o, peig Sk = limy o pe g (@rt1 — zx) = 0, by (4.8), we have (A\g2); = 0 for i € I
and sufficiently large k € K. R B

Now suppose lemma is not true. Then there must exist a set K € K such that
limk—wo,kef(dpp = d?‘ for some d* # 0. Without loss of generality, we assume that
hmkﬁoo’kef(T =T5, hmkﬁoo’kef(B = B* and

lim fg = liminf By = 67,
k—oo,ke K k—oo,ke K

318 X.W. LIU AND Y.X. YUAN

lim fgo = liminf B = G5.

k—oo,ke K k—oo,ke K
Then 7" > 0 and
lim 5 dkz = lim ~(Sk — dekl) = —7*d". (414)
k—o0,kEK k—o0,k€EK
Thus, by (4.11),
—*d*TB*d* — B7||d*||» > 0, (4.15)

that is, d*TB*d* < 0. By (4.13), d@*'B*d* > 0. Thus, d*TB*d* = 0. Using (4.15) we have
B5|ld*||2 = 0, which completes the proof.

The analyses below show that similar results to Yuan(1995) also hold for our algorithm.
Apart from Assumption 4.1, we also need to assume that di; — 0(k — o0). Thus, for all
sufficiently large k, 7, = 1.

Lemma 4.3. Under above assumptions, there exists a large integer ko such that for k > ko,
if (cs, + Vel dpy) - #0, then

ldk1|l2 = 0, (4.16)
¥(0) — Yr(dpr) > A, (4.17)
¢r(0) — Pr(sk) > igAk; (4.18)
e — 1, (4.19)
Th+1 = Tk + Sk, (4.20)

where § > 0 is a constant.

Proof. Suppose that (dg1, Ak, Ok1) satisfies the first-order Kuhn-Tucker conditions of (2.6)-
(2.7). Then we have (4.1), and |lngll2 =1, (Ag1): < 0(i € Iy). If (cg, + Ve dra)— # 0, we have
[[Ak1llo = 1, where || - ||o is the dual norm of the norm || - ||.

Let K = {k: (cs, + Vel dyi)— # 0}, similar to Lemma 4.2 of Liu(1998), we can prove
that

Br1 = ||Brdr1 + peVer Avillz > 6o > 0 (4.21)

for k > ko and k € K , where p > 0 is a constant and ko is a large positive integer. Hence,
l|di1]|2 = 0Ay for k € K and k > ky. Therefore,

lim A= E lim ||dg1]]2 = 0. (4.22)
k—o0,keK 0 koo, ke
By using (4.1),
diy Brdyy + i (Veh din)" Nex + Bral|dia ||l = 0, (4.23)
and since
(Vb din) " Ak = (ca, + Vb din) A — ¢ Ak (4.24)
> [[(cq, + Veodia) |l = [l(ea) -, (4.25)
we have 1)
Y1(0) = Yr(dr1) > Bralldill2 + §d1{13kd1¢1 > 0Ag. (4.26)
Thus,
¢(0) — dr(sk) > i[lﬁk(o) — Y (dia)] > igﬁk- (4.27)

7) that r, — 1 for sufficiently large k € K. By

[\V]

It follows from rp, = 1 + %ﬂ:) and (4.

Algorithm 2.1, xg1 = x5, + Sg.-

A Robust Trust Region Algorithm for Solving General Nonlinear Programming 319

Lemma 4.4. If the conditions of Lemma 4.3 hold, then for sufficiently large k € K,
ci(zr) + Vei(zp) 'dy =0, i € B, (4.28)
ci(wr) + Vei(zp)Tdyy >0, i € I (4.29)

Proof. Let K* ={k: (cs, +Vc} dp1)— =0}, then K* must be an infinite set; Otherwise,

for all large k, k € K and Lemma 4.3 holds, so limy_, o A = 0 by (4.18), which contradicts
(4.19).

We assume the lemma is not true. Then K is also an infinite set. Suppose that {ki: i=
1,2,-- -}y CK* ki+ 1€ K. If z4,41 = zy,, then by (4.17), for sufficiently large i,

Vr; (0) — Vr; (dgi1) > i, 41(0) — Yr 41 (diiy1)1)
> 041 > 0.250]s5, |2, (4.30)

SO
Ok, (0) — dr; (sk;) > 0.06250]| sk, ||2- (4.31)

Moreover, our assumptions and (4.30) imply that lim;_, o ||sk |2 = 0. Thus, r¢, — 1, which
contradicts Algorithm 2.1. Therefore, xx, 1 = @y, + sg, for all large ¢, which implies

(ca+1)— = (ea, + Ve, dia + O(|ldg [13)) -
= O(|ldg:1113)- (4.32)

Hence, for sufficiently large i,

Vi +1(0) = Y11 (dkiy1) = pll(ea,+1) -1 = pll(es,, +1 + vc§ki+1d(ki+1)l)—“

1
_idz;ci-i-l)lBkiJrld(kH-l)l
< pll(eae, 1) Nl + OUldgk, 1101 115) = O(AF, 41)- (4.33)

It follows from Lemma 4.4 that O(A7) > 6Ap, 11, that is, O(Ag,41) > 6, which contradicts
(4.22). The contradiction implies that K is just a finite subset.

By Lemma 4.4, under Assumption 4.1, if dy; — 0(k — o0), then for sufficiently large k,
any solution of the nonsmooth trust region subproblem (2.6)-(2.7) is also a solution of the trust
region subproblem

min %dTBkd (4.34)
st. ci(wp) + Vei(zp)Td=0,i € E (4.35)
ci(wy) + Vei(zp)Td > 0,0 € I, (4.36)
lldll2 < 0A. (4.37)

The merit function P(z, u) is nondifferentiable. In order to obtain local superlinear convergence
of the algorithm, we generate a second-order correction step by solving the following problem

. 1
min EdTBkd + /lkH(CJk (mk + Sk) + Vey, (mk)Td)_H (4.38)
st |dlls < 52 (4.39)

Suppose that z* is a Kuhn-Tucker point of (1.1)-(1.3). If ||dg1]l2 < 6Ag and ||sk|la < Ag
for sufficiently large k, by the discussion of Liu and Yuan(1998), Yuan(1993) and Yuan and
Sun(1997), under suitable local conditions, the Algorithm 2.1 with the second-order correction
technique will converge to its solution superlinearly.

5. Numerical Results

A FORTRAN subroutine is programmed to test Algorithm 2.1. All test problems are taken
from Hock and Schittkowski(1981) and the standard initial points are used.

320 X.W. LIU AND Y.X. YUAN

Table 1.

Problem | n | m | Ay | NI-NF-NG RT RC
HS6 2 |1 1.0 9-11-10 1.20E-10 | 7.59E-09
HS14 21250 4-6-5 8.89E-08 | 2.09E-07
HS22 2|2 50 8-13-9 4.38E-08 | 3.65E-05
HS28 31 1] 50 8-10-9 9.70E-08 | 2.22E-16
HS34 3| 8] 5.0 7-9-8 4.07E-08 | 1.06E-05

HS38 4 | 8 | 1.0 72-88-73 | 1.66E-05 0.0

HS43 4 1 3| 50 14-19-15 | 1.26E-06 0.0
HS49 512110 25-26-26 | 3.54E-06 | 4.44E-15
HS50 513 1| 1.0 13-14-14 | 2.77E-07 | 4.87E-15
HS52 51 3| 5.0 12-14-13 | 1.98E-06 | 3.17E-15
HS63 3 |5]10.0 7-10-8 7.53E-07 | 7.87E-11

HS76 4 | 71 1.0 6-7-7 7.29E-08 0.0
HS77 512110 11-13-12 | 8.84E-08 | 2.30E-12
HS80 5 | 13| 5.0 9-13-10 3.74E-09 | 2.65E-12

HS83 5 |16 | 1.0 9-12-10 1.12E-06 0.0
HS86 5 | 15| 10.0 5-8-6 1.14E-05 | 2.65E-06
HS93 6 | 8 | 5.0 22-29-23 | 6.61E-06 | 4.78E-08

HS100 71 4] 5.0 16-26-17 | 8.99E-06 0.0
HS108 9 | 14| 10.0 | 12-17-13 | 1.46E-07 | 3.65E-06
HS113 | 10| 8 | 5.0 13-18-14 | 7.13E-06 | 1.39E-05

The numerical results derived by running our trust region algorithm are summarized in Table
1, where Ag is the initial trust region radius, n is the number of variables, m is the number
of constraints, NI, NF and NG represent the numbers of iterations, function and gradient
calculations respectively, RT and RC are the {5 norm of the gradients of the Lagrangian and
the constraints respectively.

The choice of the initial radius of the trust region can affect the efficiency of the algorithm
(see Sartenaer(1997)). We tested our algorithm with 1, 5 and 10 three choices of Ag respectively
and the best results for the choice are presented in the table. The other initial parameters are
po = 1.0, 6 = 0.8 and € = 10~%. The initial Hessian approximation By is taken as the identity
matrix, and it is updated in each iteration similar to Powell’s procedure (see Powell(1982)) and
the details can be found in Liu and Yuan(1998).

For simplicity of calculation, the norm in penalty function and the constraints on trust
region are selected to be Lo, norm, and the piecewise trust region subproblems (2.6)-(2.7) are
rewritten into quadratic programming subproblems. It would be better to have an efficient
algorithm to solve the piecewise subproblems directly.

Hock and Schittkowski(1981) provided numerical results for six numerical methods for solv-
ing nonlinear programming and showed that VF02AD, which is based on Han-Powell SQP
method, is superior to other methods. The preliminary numerical results in Table 1 show that
our algorithm is comparable to VF02AD. Further computations are needed to study the new
algorithm for large scale problems, such as comparing with the famous LANCELOT program
on the CUTE problems.

A Robust Trust Region Algorithm for Solving General Nonlinear Programming 321

[1]
[2]
(3]
[4]
[5]
[6]
[7]
[8]

References

R. Byrd, R.B. Schnabel, G.A. Shultz, A trust region algorithm for nonlinearly constrained opti-
mization, SIAM J. Numer. Anal., 24 (1987), 1152-1170.

J.V. Burke, A sequential quadratic programming method for potentially infeasible mathematical
programs, J. Math. Anal. Appl. 139 (1989), 319-351.

J.V. Burke, A robust trust region method for constrained nonlinear programming problems,
SIAM J. Optim., 2 (1992), 325-347.

J.V. Burke, S.P. Han, A robust sequential quadratic programming method, Math. Prog., 43
(1989), 277-303.

J.W. Daniel, Stability of the solutions of definite quadratic programs, Math. Prog., 5 (1973),
41-53.

J.E. Dennis, M. El-Alem, M.C. Maciel, A global convergence theory for general trust-region-based
algorithms for equality constrained optimization, SIAM J. Optim., 7 (1997), 177-207.

J.E. Dennis, L.N. Vicente, On the convergence theory of trust-region-based algorithms for
equality-constrained optimization, SIAM J. Optim., 7 (1997), 927-950.

R. Fletcher, Practical Methods of Optimization, Vol. 1, Unconstrained Optimization, John Wiley
and Sons, Chichester, 1980.

R. Fletcher, Practical Methods of Optimization, Vol. 2, Constrained Optimization, John Wiley
and Sons, Chichester, 1981.

S.P. Han, A globally convergent method for nonlinear programming, JOTA, 22 (1977), 297-309.

W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture Notes in
Eco. and Math. Systems 187, 1981.

X. Liu, A Globally Convergent, Locally Superlinearly Convergent Algorithm for Equality Con-
strained Optimization, in: Numerical Linear Algebra and Optimization, Y. Yuan eds., Science
Press, Beijing, New York, 1999, 131-144.

X. Liu, Y. Yuan, A robust algorithm for optimization with general equality and inequality con-
straints, SIAM J. Sci. Comput., 22 (2000), 517-534.

J.J. Moré, Recent Developments in Algorithms and Software for Trust Region Methods, in:
Mathematical Programming, The State of the Art, A. Bachem, M. Grétschel and B. Korte, eds.,
Springer-Verlag, NY, 1983, 258-287.

E.O. Omojokun, Trust region algorithms for optimization with nonlinear equality and inequality
constraints, Ph.D. Thesis, Univ. Colorado, 1989.

J. Peng, Y. Yuan, Optimality conditions for the minimization of a quadratic with two quadratic
constraints, STAM J. Optim., 7 (1997), 574-594.

M.J.D. Powell, Convergence Properties of a Class of Minimization Algorithms, in O.L. Mangasar-
ian, R.R. Meyer, S.M. Robinson, eds., Nonlinear Programming 2, Academic Press, New York,
1975, 1-27.

M.J.D. Powell, A Fast Algorithm for Nonlinearly Constrained Optimization Calculations, in proc.

1977 Dundee Biennial Conference on Numerical Analysis, G.A.Watson, ed., Springer-Verlag,
Berlin, 1978, 144-157.

M.J.D. Powell, The Convergence of Variable Metric Methods for Nonlinear Constrained Op-
timization Calculations, in Nonlinear Programming 3, O.L. Mangasarian, R.R.Meyer and
S.M.Robinson, eds., Academic Press, NewYork, 1978, 27-63.

M.J.D. Powell, Y. Yuan, A trust region algorithm for equality constrained optimization, Math.
Prog., 49 (1991), 189-211.

A. Sartenaer, Automatic determination of an initial trust region in nonlinear programming, SIAM
J. Sci. Comput., 18 (1997), 1788-1803.

G.A. Shultz, R.B. Schnabel, R.H. Byrd, A family of trust-region-based algorithms for uncon-
strained minimization with strong global convergence, SIAM J. Numer. Anal., 22 (1985), 47-67.

322 X.W. LIU AND Y.X. YUAN

[23] D.C. Sorensen, Trust Region Methods for Unconstrained Optimization, in: M.J.D. Powell, ed.,
Nonlinear Optimization 1981, Academic Press, London, 1982, 29-38.

[24] R. Stern, H. Wolkowicz, Trust regions and nonsymmetric eigenvalue perturbations, SIAM J.
Matriz Anal. and Appl., 15 (1994), 755-778.

[25] A. Vardi, A trust region algorithm for equality constrained minimization: convergence properties
and implementation, STAM J. Numer. Anal., 22 (1985), 575-591.

[26] Y. Yuan, Conditions for convergence of trust region algorithms for nonsmooth optimization,
Math. Prog., 31 (1985), 220-228.

[27] Y. Yuan, Numerical Methods for Nonlinear Programming (in Chinese), Modern Mathematics
Series, Shanghai Scientific & Technical Publishers, 1993.

[28] Y. Yuan, On the convergence of a new trust region algorithm, Numer. Math., 70 (1995), 515-539.
[29] Y. Yuan, W. Sun, Optimization Theory and Methods (in Chinese), Scientific Press, Beijing, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

