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Abstract

In recent papers, some authors studied the solutions of symmetric positive definite(SPD)
Toeplitz systems T, = b by the conjugate gradient method(CG) with different sine trans-
forms based preconditioners. In this paper, we first discuss the properties of eigenvalues
for the main known circulant, skew circulant and sine transform based preconditioners.
A counter example shows that E.Boman’s preconditioner is only positive semi-definite for
the banded Toeplitz matrix. To use preconditioner effectively, then we propose a modified
Boman’s preconditioner and a new Cesaro sum type sine transform based preconditioner.
Finally, the results of numerical experimentation with these two preconditioners are pre-
sented.

Key words: Preconditioner, Toeplitz systems, The fast sine transform, Conjugate gradient

algorithm.

1. Introduction

Strang[1] first studied the use of circulant matrices C for solving systems of linear equations
T, x = b with

to TR S
t1 to ty ;

Ty :=T(to,t1, s tn 1) = t, . (1.1)
tp—o - to t1
tho1 tpn2 -+ 11 to

a symmetric positive definite Toeplitz matrix.Numerous authors such as T.Chan[2],
R.Chan,etc.[3],[4],[5], Tyrtyshnikov[6], Huckle[7] and T.Ku and C.Kuo[8] proposed different
families of circulant/skew-circulant preconditioners.

Appling the preconditioned conjugate gradient algorithm(PCGA) to solve the systems T,, z =
b, we must find a preconditioner P such that Py = d can be solved very fast and the eigen-
values of P~!T,, are clustered around the point one. For the circulant and skew circulant
P Py = d can be solved in O(nlogn) operations by the fast Fourier transform(FFT). To avoid
complex arithmetic, R.Chan,Ng and Wong[10] and E.Boman and Koltrach[11] presented two
kinds of sine transform based preconditioners S(7},) and P, respectively. For Toeplitz matrix
with the bandwidth 28 + 1, sine transform based preconditioners can also keeps banded,only
O(B%*n) + O(Bn) = O(n) operations is required per each iterative step when f3 is a constant
independent of n. Since circulant/skewcirculant PCGA costs O(nlogn) operations by the FFT
algorithm, this implies that the complexity for sine transform based PCGA is reduced by an
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order of the magnitude compared with complexity of circulant/skewcirculant based the PCGA.
Furthermore, numerical results given in [10],[11] show that the convergence performance of
these two sine transform based preconditioners is better in terms of the number of iterations
than that of the optimal circulant preconditioner. However, the known sine transform based
preconditioner sometimes fails, hence the purpose of this paper is to seek a more effective sine
transform based preconditioner.

This paper is organized as follows. In section §2 we first study the relationship between the
eigenvalues of the main known circulant, skew circulant, sine transform based preconditioners
and its Fourier series sums of generating function f(z). For the banded Toeplitz matrix,we
prove Boman’s preconditionerP,, is only positive semi-definite, a counter example shows that
preconditioner P, will fail when f(;75 T) = 0 for some 1 <[ < n. This fact illustrates the
conclusion in [11] that precondltloner Pn is positive definite is wrong. Since S(7),) may be pos-
itive semi-definite(R.Chan,etc.[10] only proved for sufficiently large n,S(7},) is positive definite
with generating function f(x) > m > 0). Hence, in section §3 we first present a modified sine
transform based preconditioner P, of P,,,then we develop a Fourier series partial sum type and
Cesaro sum sine transform based preconditioners Py and Sy (T},) respectively.In section §4 we
study the clustering properties for various sine transform based preconditioners. Finally, we
present some numerical experimentations confirming our theoretical results.

2. The Eigenvalues of Various Preconditioners

Let us begin to introduce a real function f(z) related to infinite Toeplitz matrx Tt,,namely

+o0
Z trexp{ikz},i = V-1, € [0, 27] (2.1)

k=—o00

The partial sums and Cesaro sums are defined by

Z ty exp{ikz}, on(z N 1 Z fn(z),2 €10,27] (2.2)

k=—n

respectively. For symmetric Toeplitz matrix,t, =¢_y.
Let S,, stands for the discrete sine transform matrix

2 QT o
Sp = "t l(sm(n n 1))i,j:1 (2.3)
define the set
Bpxn ={B € R"*" : S, BS,, is a diagonal matrix} (2.4)

If T, = T(to,t1, - ,tn—1) is a Toeplitz matrix defined as Eq.(1.1), we indicate H(T},) as the
following n X n matrix

S P | B |
0
H(Tn) = tn1 tn—1 (2 5)
0
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Lemma 1. (see [10]) Bpxpn = {T0 — H(T}), Ty, = T (to, t1,- -+, tn_1) is a Toeplitz matriz.}

Let e; denote the i-th unit vector in R™, Q; = T, (e;) — H(Ty(ei)),i = 1,2,---,n, then we
have

Lemma 2. (see [11]) Let n € Z* be given, then {Q;}, is a basis for Bpx,. Moreover,if
1 > 2 then the spectrum of Q; is

(i —1)mm

2 n_
eos(

Boman and Koltrach[11] proposed using the following sine transform based preconditioner P,

Po=) ti1Q; (2.6)
i=1

If T,, is a banded Toeplitz matrix with the bandwidth 2b + 1, then P, become a banded
preconditioner Py (see [11]). Let I = [§],ap = Zl._l;”rl toj for k > 0,k even; ay = E;:lki toj4+1
2 - 2

for k > 1, k odd; z; = t;_ 1+n+1
defined in [10] can be expressed as

a;—1,5 = 1,2,--- n, we can see that preconditioner S(T},)

i=1

Now we discuss the properties of these two preconditioners. We first compute the eigenvalues
of P, and S(T),).Construct function

n—1

2
gn(x) = ——) [ao + (kz::l(tk + 2ay) cos kx — t, cosnz)]

It is easy to obtain lim, s gn(2) = 0 uniformly holds for € [—m, 7], provided that f(z) € Ls.

Theorem 1. The eigenvalues of the matrices P,, and S(T,,) can be expressed by

km km
1) M) =on(

k
)+gn( T ))k:1)273>"'>n7 (28)

M(Pa) = faca( =

respectively.
Proof. By Lemma 2 and t; = t_;,j = 1,2,---,n — Lithen fp,_1(x) = to + 22?:_11 tjcosjz

and "
Ak(Pa(n)) = 320 ti—1 (@)
= t0+22 tj—1 cos
t0+22" 1t cosfl%
fn 1(nkfl)

(j=Dkm
n+1

since
kr y kry _ k
on(755) = n+1 E, Y S = tm exp{l;n+{; — nH(ZQ;P:O(tnO + 22 | tm cOS ’;ﬁr’f)l)c
= to+ 37 2 L tm cos T =to + 5 Emzl(n+1— m)tm cos THT

On the other hand, with the help of Lemma 2 we get

A(S(Tw) = 21+ 223 1 Zj+1 COS n’il

1 2 ik
= to+ +1a0+22" ("niﬁt+n+1 ')0057]14:3
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If one defines a_f, = ag, k =1,2,---,n,then

—1 s
M (S(Tn)) = on () = FHpao + 2270 (2
mort ) cos 5% — Crt cos 23

+

gn(n_fl)

hence the results follows.

To obtain the eigenvalues of various mainly preconditioners, in the following we recall the
definition of these preconditioners.

Strang’s circulant preconditioner Cy(see [1]):if n = 2k, Cs := T'(to, t1,- -, tk—1, 2tk te—1," - -,
tl), if n =2k + ].,Cs = T(to,tl, st ,tk,tk, T ,tl).
note:for simplicity, we take C differs from the Strang’s preconditioner costruction only by the
diagonal with | ].

T.Chan’s circulant preconditioner Ct(see [2]). C := T'(to, (n— l)t:rt" Lo s 1+(" 1)tl)

T.Ku and C.Kuo’s circulant preconditioner Ck (see [8]).Ck := T (to, t1 +tn+1, to +tn 2,00,
tn—1 + t1) and skew circulant preconditioner:Sy := T (to, t1 — tn—1, ", tn—1 — t1);

)

T.Huckle’s circulant preconditioner Cr(see [7]) is determined by its eigenvalues An(Cr) =
to+230_(1- %)tj cos 2j;”” and skew circulant preconditioner Sg := T'(t, "—t—tazt ..

n ) )
w),ss = T(to, t1,t2, -+, —t2, —t1).

n
Make the similar discussion to those of Theorem 1, we have

Theorem 2. The eigenvalues of preconditioners Cs,C¢,Ck, Sk, Sr and S; can be expressed
by

2mm ), 2mm

Am(Cs) = fig)(= =), Am(Cy) = on1(— =) (2.9)

2mm (2m + D)7

m(Ck) = fa1(——=); Am(Sk) = on-1(

——) (2.10)

(2m + D)7 2mm

Am(Sr) = fu-1( ), Am (Ss) :ap(T),mzo,l,Q,---,n—l. (2.11)

n

Remark. Eq.(2.11) see also [9],[13] for example.

By Theorem 1 and Theorem 2, the previous preconditioners can be divided into two kinds:

e The partial sums type such as P, Cs, Ck, Sg;

e Cesaro sums type such as S(T,),Cy,Cr, Sk.

Futhermore, make similar numerical experimentation to those in [9],[14] we conclude that,
for the nonbanded matrix, if generating function f(x) is sufficiently smooth, then no essential
difference between the partial sums and the Cesaro sums type preconditioners. While for the
banded matrix, the convergence rate of sine transform based preconditioners P,, and S(T},) (see
[10],[11]) behave ”better” than circulant preconditioner Cy. Moreover, P, and S(T},) can also
keep the banded. This fact may lead to the saving of arithmetic operations per preconditioning
iterations, this implies that sine transform based preconditioners are more effective than other
preconditioners. However,in the following Theorem 3 we will see that matrices P, and S(T},)
may be positive semi-definite and are not suitable for preconditioners at this time.

Theorem 3. If T, is a symmetric positive definite(SPD) Toeplitz matriz with the bandwidth
2b + 1, then for 2b+ 1 < n P, is only positive semi-definite.

Proof. Since T, is a banded matrix, then P, = P, = E:‘S tr—1Qr, for n > b, fr(x) =
fr(z) = f(z) = ZZ:_btk exp{ikz}. Moreover, T, is positive definite, T, = U(00)U(c0)7T,
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where U(00) is an upper triangular Toeplitz matrix(see e.g.,[12,proof of Theorem 1.1] or [11])

co ¢ - ¢ O
0 Co Cp 0
U(oo) =
hence
T,=UUT (2.12)
where
cp C1 c, O 0
0 ¢ e O
U=| : : | e XY (2.13)
0 .. .. 0 cO cl . e cb

Make function h(z) = EZ:O c exp{ikz}, by (2.12) we get

b—k
ty = chchrk)k: 071)27"'7b)
=0

hence

| h(z) P= (0_, er exp{ika}) (X0, crexp{—ilz})
= Y 3 eraexpli(k—D)a} =ty + 230, trcoska

On the other hand, t_j, = t, then f(z) = fy(x) = to +2 Y 0_, t) cos kz =| h(z) |2,by Theorem
1, the eigenvalues of P, is \x(P,) = fn—1(nk—+”1) =] h(n’”—L) |?,this shows P, (n) is a nonnegative
definite matrix. On the other hand, take n = 6,0 = 2,¢c0 = 1,¢; = —2cosZ,ca = 1, by
Eq.(2.12),(2.13), Tg is a positive definite matrix and related infinite Toeplitz matrix T, is also
positive definite. However, A (Ps) =| h(Z) |?=| co + c1 exp{ %'} + c2 exp{2Z} |?= 0, hence P,
is only positive semi-definite.

Remark. Theorem 4.2 in [11] that P, is a positive definite matrix is wrong.

3. The Design of Positive Definite Sine Transform Based
Preconditioners

Since preconditioner for solving positive definite equations must be positive definite. For
a banded Toeplitz matrix, by Theorem 3 we can see that P, will fail if fn,l(nk—_:l) = 0 for
some 1 < k < n. Moreover, for nonnegative generating function f(z), under certain conditions,
R.Chan,etc.[10] proved that for sufficiently large n,S(T},) is a positive definite matrix. However,
for fixed n, this fact cannot guarantee that S(7},) is also positive definite. Hence preconditioners
P, and S(T,) may fail. To ensure preconditioner positive definite, we need to look for new
effective preconditioners.

3.1 Modified sine transform based preconditioner Py

Take a fixed € > 0, N < n such that lim,_,.. N = +o0, preconditioner Py is defined by

SnPNSn :dzag{j‘h}“%;j‘n} (31)
where

3y = fNaGES), if fna(GEE) >0,
€, otherwise;k = 1,2,---,n.
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it is obviously that the preconditioner Py is a positive definite matrix. If N = n, Py can be
considered as the improvement of P,.

3.2 Cesaro sum type sine transform based preconditioner Sy (T},)

For N < n,take

N
a- =1y o (3.2)
k=1
Theorem 4. The eigenvalues \i,(Sn(Ty)) of matriz Sy (Ty,) are:
km
_ =1,2
oN-1(-7) 12,00, m
Proof. By Eq.(2.1)
| N1 | N1
on—1(z) = N Z filz) = N Z tm exp{imz}
=0 (=0 m=—1
where,; = v/—1.Whence from t_,, = t,, yields
i N— l 3 ™
ON— 1(nk+1) = % l Olzm—*lt exp{z;nfl
= N[C (o + 232, t cos 2]

t0+N[ ;Vllz 1tm cos’;:i’f]—to+%z (N m)tm cos?}i’l’

on the other hand, by Eq.(3.2) and Lemma 2, then

M(Sw(To)) = 250 (1—37) i—1MQy)
= t0+223 5(1 —Tl)ty—lcos U=Dkr _ 4 +NE YN =)t cosi’fl,

n+l
hence Theorem holds.
Corollary. Let T, be same as that in Theorem 3, then Sy (T,) is a positive definite Toeplitz
matrix with the bandwidth 2b + 1.
Proof. By the definition of ; and Eq.(3.2),we get Sn(T},) to be a matrix with the bandwidth
2b + 1. To prove Sn(T},) is positive definite, from Theorem 4, we only prove UN_l(nH) >0
for k=1,2,---,n. By the theory of the Fourier series

N(t—z)

1 71 sin=—5—
o) = g [ O
T . N(t—=z)
1 1 —
— [ S dt=1 (3.3)
2r J_, sin =5+

From Theorem 3 we get f(z) =| h(x) |?=to + 2 22:1 cos kz, then the number of the roots for
f(z) = 0,z € [0,2n] is no more than 2b + 1. By Eq.(3.3) to obtain on_;(z) > 0 uniformly
holds for = € [—m, x|, this shows Sy (T},) is a positive definite matrix.

4. The Clustering Property of the Preconditioners

To study the clustering property of the eigenvalues for preconditioners,we introduce two

notations.
Definition 1. Let v, (¢) be the number of /\,(cn) & (1 — €, + €),then the point p is called a

cluster of the sequences {A;cn)}zzl if

=0. (4.1)
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A cluster is called proper if vy, (€) < c(e),where c(€) does not depend on n.
By the theory of numerical algebra,if the point one is a cluster of the preconditioned ma-
trix,then the convergence rate for the PCGA will become superlinear(see [9] for example).
Definition 2. Let f(x) be Lebesgue integrable function with period 2w, then f(x) is called
slightly vanishing if

lim / " e f(@) ) dz =0 (42)

e—0+t

where
_J 1L z€l04,
V() = { 0, otherwise.

Theorem 5. If T), is a symmetric positive definite(SPD) Toeplitz matriz with bandwidth
2b+ 1,b < N < n such that lim,,_,o.o N = +00, then the eigenvalues of PﬁlTn s clustered
around 1. More precisely

Py!'T, =T+R (4.3)

where rankR < 2b+ r — 2,r is the number of zero for fN(n+1) =0 and r < b, that s, all but
2b + r — 2 eigenvalues of (PN) LT, are precisely equal to one.

Proof. Let z = exp{iz}, for N > b, fy_1(z) =| h(2) |*=| S2b_y c1z" |2, hence there exists at
most b roots for fy_i(x) = 0,2 € [0,2n], hence from Eq.(3.1) we get Py = Py + Ry, where
rankR; = r < b. Moreover, by Lemma 1 then

Cty -+ tp 0 0 --- 0
; 0
- tp :
Py -Th,=1 o 0 o | +B1=Hy, rank Hy <2b—2+7.
0 ty
0 o n n

take R = —(Py) 'Hj,then (Py)~'T, = I + R,where rankR < 2b + 7 — 2, hence the results
follows.

Theorem 6. Let f(x) € Ly be the generating function of Eq.(1.1) with f(x) > m > 0, then
the point one is a cluster of the eigenvalues of (Sy(T})) 1 T,.

Proof. By f(x) > m > 0 and Eq.(3.3), we have o,_1(z) > m, hence \;(Sn(T,)) =
an,l(n’“—fl) >m>0,k=1,2,---,n. and

_ 1
1Sa(T) ™ llb< (4.4
let z9 = to,2 = "—:thk,k: =1,2,---,;n—1x9 = 0,23, = %tk,k: =1,2,---,n— Ly, =

k_ftk-i-Q:k = 07 1727 e, N — 37yn—2 =Yn-1= 07 J(Tn) = (yO:yh e ,yn—l),
from Eq.(3.2) and after some manipulations, we have

Tn - Sn(Tn) = T(.’L'[),Clﬁl, ot ',.’L'n_l) + H(J(Tn)) (45)
and
2 2,2 = k.o,0
- ||T — Sn( ||F_E Z ) tk*‘Z(k_l)(E) ti)
—1 k=2
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since Zk o 17 < +oo,for all € > 0,we can always find positive integers N3 such that Z t2

15 and for ﬁxed N3 exists Ny only if n > N; then

2 s k 2 s ¢
2,2 2,2
EZ("—I‘C)(E) t < ﬁzk <3
k=1 k=1
N3
2 €
- (k=1 (=)t < 1
k=2
Thus we have , - . .
| k:]{r( k) (522t + > i D (5)*t7]
< Z gcvzgl(n - k)(%)%% +2 Ek:Nngl ti
+ 2yl (= (52 2 N
< €
namely
|| Ty — Su(Ty) ||7=0(n) (4.6)

by Eq.(4.4) then

I n(Tn) ' ||2||T Sn(Tn) I
iz || T = Su(T) |I3=0(n)

From Lemma 2.1 in [13] we get the conclusion of Theorem 6 holds.

Make the similar analysis to those in [13] we can obtain the following theorems.

Theorem 7. Let f(x) € Ly be generating function of Eq.(1.1) with nonnegative slightly
vanishing, if Pn and S(T,) are all symmetric positive definte, then the point one is a cluster
of the eigenvalues of matrices P&lTn,

S(Ty,) T, Py' T

Theorem 8. Let f(z) € Ly be complex generating function of Eq.(2.1) with slightly van-
ishing, then the point one is a cluster of the singular values of matriz PﬁlTn (or S(Tn) 1Ty,
Py'Ty,) when Py (or S(Ty), Px) is an invertible matriz.

ININ

5. Numerical Results

To test the behavor of the preconditioning stratgies introduced so far, we have used NDP-
FORTRAN language, implemented on an IBM/586 machine. Our main term of comparsion
will be T.Chan’s optimal circulant preconditioner C ¢[2], Boman’s sine transform based precon-
ditioner Py[11], modifed preconditioner Py and Cesaro sum type preconditioner S, (73,). In all
the examples, the right hand side of the system was (1,1,---,1)7, and the zero vector was used
as an the initial guess, the stopping criterion is residul vector was reduced by a factor less than
1077,

If one defines P, = Cy, Py = P, P3 = P, Py = S,(Th).

The PCGA was used to solve T,z = b for each of the following examples.

Example 1. T\") = [¢Ui=iln. = 63,255,511, 1023, 2047, 4095.

li—j[+1 li,j=1>
Example 2. T\ = [;—h]_,,n = 63,255,511, 1023, 2047, 4095.
[55r]%5_1,m = 63,255,511, 1023, 2047, 4095.

Example 3. T}f) ST
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TABLE 1
Number of iterations for convergence
70 ™ T
n P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4
63 6 |6 | 6|6 4|44 433|333
255 | 6 | 6 | 6 | 7|44 44|33 ]|3]3
s11y (7T 7T 44 4143|3313
1023 | 7|\ 7| 7| 7|4 |4 4|43 |3]3]4
2047 | 7 | 7T | 7T | 7T | 4| 4] 4433|314
409 | 7 | T | T | 7| 4| 4|4 4|3]|3]|3|4

Example 4. The generating function of the Toeplitz matrix Té;l) is
fl@) =] h(x) P=T5_; | 1 - ajexp{ijz} |*,i = V/-1,b = 20;n = 63,255,1023,2047, 4095;
a; =0.745(0.1 x j — 1), = 1,2, ---,20.7\" is a finite section of T2 with the bandwidth 41.
Example 5. Let h(z) = 1 — 2coszexp{iz} + exp{2iz},the generating function of T is
fi(z) =| hi(z)h(z) |*,n = 63,255,511, 1023,2047, 4095; other assumptions are same as example
4,7 is a Toeplitz matrix with the bandwidth 44.

TABLE 2
Number of iterations for convergence
Tr(z4) T7S5)

n P1 P2 P3 P4 P1 P2 P3 P4
63 | 55 | 10 | 10 | 10 | 56 | fails | 55 | 12
255 | 48| 9 9 | 10 | 49 | fails | 48 | 11
511 | 37| 8 8 9 | 38 | fails | 37 | 10

1023 | 30 | 9 9 9 | 31 | fails | 38 | 10
2047 | 21| 9 9 | 10 | 21 | fails | 20 | 10
4095 | 17 | 10 | 10 | 11 | 18 | fails | 17 | 11

For the nonbanded problems, by TABLE 1 we see that the convergence rate of sine transform
based preconditioners P,, P, and Sy (T,) are competitive optimal circulant preconditioner C'.
While for the banded problems, if generating function f(xz) > m > 0, then all sine transform
preconditioners such as Py, Py and Sy (Ty,) are superior to optimal circulant preconditioner C'-.
On the other hand, from example 5 we know that if nonnegative generating function f(z) with
f(n"—j:l) = 0 for some 1 < k < n, then P, will fail, but S,,(T},) is still positive definite, this fact
confirms the conclusion in Theorem 3. Futhermore,from TABLE 2 we see if preconditioner
P, fails, then the convergence rate of the preconditioners C'y and modified preconditioner Py
is approximately same and inferior to that of preconditioner S, (7},), the reason may be that
S, (Ty) keeps the banded matrix structure while Py is no longer banded.
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