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Abstract
A general local C™(m > 0) tetrahedral interpolation scheme by polynomials of degree
4m + 1 plus low order rational functions from the given data is proposed. The scheme
can have either 4 + 1 order algebraic precision if C*™ data at vertices and C™ data

on faces are given or k + E[k/3] + 1 order algebraic precision if C* (k < 2m) data are
given at vertices. The resulted interpolant and its partial derivatives of up to order m are
polynomials on the boundaries of the tetrahedra.
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1. Introduction

We consider the problem of constructing C™ (m > 0) piecewise rational local interpolation to
the data on a domain in IR? that is assumed to have been tessellated into tetrahedra (we denote
the tessellation by 7). The scheme requires the following data: The partial derivatives of order

s at each vertex for s = 0,1,---,2m, partial derivatives of order s at s equally (no necessary)
distributed points (excluding the end points) on each edge, and % [(m+2s)(m+2s—1)—3s(s—1)]
regularly distributed points on each face for s = 0,---, m (see section 4 for detail).

Interpolation over tetrahedra is a fundamental problem in the areas of data fitting, CAGD
and finite element analysis. Many schemes have been developed for constructing C' inter-
polants. These schemes can be classified into three categories. The schemes in the first category
require the interpolants to be polynomials over the given tetrahedra. In (Rescorla, [2]) a C!
piecewise polynomial of degree 9 interpolation scheme is presented which needs C* data at the
vertices. In general, a C™ piecewise polynomial interpolation scheme requires a polynomial of
degree 8m + 1 and C*™ data (see [6]). It should be noted that this approach needs much higher
order of data and higher degree of the polynomial than the order of smoothness that the scheme
can achieve. To avoid such disadvantages, subdivision schemes, that may be classified into the
second category, are developed. In these schemes, each tetrahedron is split into sub-tetrahedra
using Clough-Tocher split (see Alfeld, [2], Worsey and Farin, [8] and Farin, [5]) or Powell-Sabin
split (see Worsey and Piper [9]). In (Alfeld, [2]), Clough-Tocher split is used to split each tetra-
hedron into twelve sub-tetrahedra, and C? data and quintic are used to achieve C' continuity.
An n-dimensional Clough-Tocher scheme is proposed by Worsey and Farin, [8]. In (Worsey and
Piper,[9]), each tetrahedron is split into twenty-four sub-tetrahedra, and C* data and quadratic
are used to achieve C' continuity. The main disadvantage of this approach is that it leads to
more sub-tetrahedra hence more pieces of functions. For examples, the Clough-Tocher split
may cause many thin sub-tetrahedra which may affect the stability of the interpolant. The
third category of the schemes use rational form interpolants. The rational interpolants avoid
the split of the tetrahedra. In (Alfeld, [1]), a transfinite C! scheme is proposed, and through the
discretization of the transfinite scheme a finite C! rational interpolant is derived. In (Barnhill
and Little, [4]), a C* BBG interpolant, which is then discretized to a 28-degrees-of-freedom
C! scheme. However, such a discretization is rather complicated. The most general simplicial
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rational interpolation scheme is the perpendicular interpolation described in [3]. The C™ inter-
polation scheme requires C" data at vertices, uses rational function with denominator degree
6m + 12 (for even m) or 6m + 6 (for odd m), and has order m or m + 1 algebraic precision.
To achieve the goal of using lower order polynomials, global spline interpolation methods have
been proposed by Wang and Shi (see [10]) for constructing C! interpolants in any dimension.

In this paper, we shall use the rational form to construct locally C™ interpolant for any
integer m > 0. For achieving global C™ continuity, we require C?™ data at the vertices and C™
data on the faces and use a polynomial of degree 4m + 1 plus a rational term with denominator
degree at most 3m. The polynomial part will interpolate up to n := E[m/2] order data, while
the rational part, which and its partial derivatives of up to order m are polynomials on the
boundary of the tetrahedra, will interpolate higher order data. We should mention that all the
parameters appeared in the interpolant in our scheme are linear. Hence the interpolants are
not only useful in the CAGD area, but also suitable for the finite element analysis. The fact of
the interpolant and its partial derivatives are polynomials do have some advantages. It makes
the construction of the interpolant as easy as polynomial. This feature is important in some
applications in which only boundary values (including derivatives) are involved. Comparing
with the perpendicular interpolation of [3], the advantages of our schemes are: the interpolants
use lower order rational functions, achieve higher order algebraic precisions and have polynomial
boundary feature. We should point out that although the algebraic precision is not crucial in
the area of scattered data interpolation, but it is important in the application of the finite
element analysis, since it relates to the convergence order. The disadvantage of our scheme is
that more data (face data and C?™ vertex data) are involved. However, we propose an approach
to obtain these data when only lower order data at vertex are given.

The paper is organized as follows: Section 2 gives the notations and the forms of the
rational interpolation functions. Sections 3 shows that the used rational functions are well
defined and have the required smoothness and have minimal degree properties. Section 4
establishes the formulas for computing the coefficients of the interpolants. In section 5, we
discuss the dimension of the interpolation function space, and in section 6 we consider the
algebraic precision that the interpolant can achieve.

2. Interpolation Forms
The interpolants in this paper are locally defined on tetrahedra as trivariate polynomials
plus trivariate rational functions. The polynomials used in this paper are in Bernstein-Bezier
(BB) forms over tetrahedra. Let p; = (z;,v:,2:)7 € IR® for i = 1,---,4. Then the tetra-
hedron, denoted by [pip2psps], with vertices p; is defined by [p1papsps] = {p € R?® : p =
Z?:l a;pi, 0 < a; <1, Z?:l a; = 1} where (ai,---,a4)? is known as barycentric coordi-
nate of p. On a tetrahedron, a trivariate polynomial of degree n is expressed by f(a) =
. 4
flon, - aa) = Yo aBRan, s a) with X = (A, 2,08, 0)7 € Z4, Al = X5

! . . .
and BY (a1, 1) = m@m;m@mf, where Z% is the collection of the four di-

mensional vectors with nonnegative integer components. As a subscript, A stands for A; Ao Az Ay
or )\1,)\2,)\3,)\4.

Now we consider the directional derivatives of f(«). If we use the symbolic shift oper-
ator Ej, i.e., Ejby = bxy; for j = 1,---,4, where e; = (6j1)f_, is the jth unit vector

n
in IR*, then f(a) can be expressed as f(a) = (2?21 oz,-Ei) bo. Let & = (&,-++,&4)T be
a directional vector in barycentric coordinate, that is, £ is the difference of the barycentric
coordinates of two points ¢; and ¢z in IR?(hence Z?:l & = 0), then directional derivative

n—1
D¢f(a) = n (Z?:l aiEi) (Z?:l fiEi) bo. It is not difficult to check that Dy, _4, F(p) =
D¢ f(a), where F(p) is the Cartesian coordinate form of f(a). More generally, let & =

( §j), e ij))T, j=1,2,....s(s < n) be any s directional vectors, then the s-th order di-

rectional derivative is

4 n—s 4
D21§2~~~Es'f(a) = (71%'8)' (Z aiEi> H (Z fl(J)Ez> bo. (2.1)

j=1 \i=1

This equality is used frequently to compute the coefficients of a BB form polynomial around
vertices, edges and faces of the given tetrahedron from its partial derivatives.
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Now we give the form of the interpolation functions. For a given nonnegative integer m,
which represents the smooth order of the interpolants constructed, let n = E[m/2], where E[-]
denotes taking integer part. To achieve C'"™ continuity, we shall use the following interpolation

function:
I, (o) = Pp(@) + R () (2.2)
where P, = P\V + P2 is a polynomial of degree 4m + 1 and Ry, (o) = >20°, .4 RY (o) is a
rational function. The concrete forms and their roles of Pr(ni) and R,(ﬁ) are illustrated as follows:
S By (o) (2.3)
AEA,,

where A, = Z?:l Aff{f + D 1<icj<a Ag’j + Z;‘l:l A%z) with

AV —(xezZt: N =dm+1, A >2m+1}
A() ={AeZt: N =4m+1, N+X >3m+1, A <2m, ) < 2m}

mz]

_{/\624- N =dm+1, \; <n, A\j <2m for j #i;\j + A\, < 3m for j,k #1i}

here Z and + are used to denote the union of sets. P\ )(a) will interpolate partial derivatives
of up to order 2m of the data at vertices and partial derivatives order s at s points on each

edge for s = 1,---,m, and normal directional derivatives of order s at M, := 1[(m + 2s)(m +
2s — 1) — 3s(s — 1)] points on each face for s =0,---,n.
PR = 3 B (2.4)

[A|=4m+1, A¢A,,
is free which is specified to make the algebraic precision of the interpolant as high as possible.

1
Ry (@) = Z APy 1)@ )T e (2.5)
Z@ 1 H] 1,j#i j i=1 J=1,j#i
with (0 (5) pm2(s—1)
(3 S m §—
P oo (a\ ) = Z by Bas (@\ @)
A\ Xi| =m 205 1),
Aj Sm -1,
where o'\ @; means «; being deleted from a = (av, - -+, aq)T. For example, a\a1 = (a2, a3, a4)?.

The meaning of A\ \; is the same. R () will make I,, interpolate normal directional deriva-
tives of order s at My points on each face for s = n + 1,---,m. It should be noted that, for

achieving C" continuity, only P,Snbl ) and R, are absolutely necessary.

In choosing the rational function R in (2.5), we have made its denominator degree as low
(s)

as possible. An alternative is to choose all R;,” have the same denominator for s =n+1,---,m.
That is A
1
RY) () = Z Spgzrz(s 1) H a2m+1 s (2.6)
Z@ 1 H] 1,j#i & i=1 J=1,j#i

The role of this R,(ﬁ) is exactly the same as the previous one. Hence we do not distinguish them
in notation. But they are obviously not equivalent. In practice, the former often behave a little
better than the latter in the sense of approximation error. This is the reason we prefer to use
low order rational functions.

3. Properties of the Interpolation Functions

We assume that the values of the rational functions and their partial derivatives are defined
by their limits at the edges of the tetrahedra of 7 at where the denominators of the rational
functions vanish. It is not difficult to show that these limit exists and hence the interpolation
functions are well defined. In fact, we have the following

Theorem 3.1. The function I, defined in (2.2) is m times differentiable on edges, 2m
times differentiable at vertices of the tetrahedron considered.
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Following the proof steps of the Theorem 3.4 of paper [11], we can prove this theorem
similarly. We omit the proof here.

It is well known that computing high order partial derivatives for a rational function is a
rather complicated task, while it is easy for polynomials. The following theorem tells us that,
the partial derivatives of the rational parts of I,,, can be computed as easy as polynomials.

Theorem 3.2. For a given integeri (1 < i <4), and nonnegative integers l; with Z?Zl l; <

m
al1+l2+l3+l4Rm (a) B 6l1+12+l3+l4 Q%) (Oé) (3 1)
dalrdal dalp daly o dalrda dals daly o

m 4
where Q) (o) = Z afPr(nzlz(sil)(a \ a;) H a;”“*S.
s=n+1 Jj=1,j#1

Proof. Theorem 3.1 tells us that the function R,, is m times differentiable. Then the partial
derivatives of R,, can be calculated for asaszas + aiazas + arasay + ajasaz > 0 and then
be extended to the edges at which asasay + arazay + ayasay + arasas = 0. Without loss
of generality, we assume i = 4. It is easy to see that, the first three terms in the sum of (2.5)
contain a factor aT“. Hence their partial derivatives of order s, for s =0,---,m, are zero on
the face ay = 0. Therefore, we need only to consider the last term in the sum (2.5). This term
can be written as:

(s a2a3)m+1a2Pﬁi2(s_1) (a\ as)

4 4
Dict oy o W
— 3 3
(arazag)™ ' =sad® 350 [Tjo1 i OGP a(s—1) (o\ as)
4 4
iz =1 i @5

For asaszay + ajasay + aiasay + ajasas > 0, the second term of the right-handed side of the
above equality is any times differentiable. Since it contains a factor a3® with 2s > m + 1, its

partial derivatives of up to order m are zero over ay = 0, ayasas > 0. Then by the continuity

= (alazag)erl*SaZP,Si)rz(sil) (Oé \ 044)
(3.2)

of these partials, they are also zero at as = 0,ajasas = 0. Therefore, (3.1) holds. If R,(ﬁ) is
defined by (2.6), the proof is similar.

Since the 2D (two dimensional) triangular C™ interpolation scheme proposed by Xu et al.
(see [11]) requires a polynomial of degree 2m + 1 plus a rational term and C™ data, one may
expect that the similar 3D interpolant may use a trivariate polynomial of degree 2m + 1 and
require C'"™ data. However, this is not true. To illustrate this, suppose the 3D triangulation T
contains a 2D triangulation 72. Then the restriction of the 3D C™ interpolant over 7 to 73 is a
C™ 2D polynomial interpolant. It follows from Farin’s result (see [5]) that, such an interpolant
has degree at least 4m + 1 and requires C?>™ data. Therefore, we have

Proposition 3.3. The polynomial degree 4m + 1 of the interpolant I, is minimal.

Now we show that the degree of the rational parts of I,,, is also minimal. Consider a more
general form of R,(ﬁ)
1 4 ' 4
R () = = % Zaipr(r:LZ(sfl)(a \ @) H it
st Hj:l,j;éi Qy =1 j=1,j#i

which includes (2.5) and (2.6) as two special cases. Suppose we use this form R%) in the proof

of Theorem 3.2, then the claim “the first three terms in the sum of (2.5) contain a factor of***
” requires that m + k+1—s > m + 1. That is, kK > s for s = n+ 1---,m. Therefore, if we
allow k varying with s, then the smallest k satisfying & > s is k = s. This is the case defined
by (2.5). If we let k be fixed, then the smallest k is k = m. This is the case defined by (2.6).
Therefore, we have

Proposition 3.4. The denominator degree 3(n + 1) of the rational function (2.5) and the
denominator degree 3m of the rational function (2.6) are minimal.

We should point out that the validity of the two minimal degree properties of the inter-
polants above is under the assumptions that the interpolant is polynomial on the boundary of
tetrahedron and the rational functions have the given form.
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4. Computation of the Interpolants

Suppose we are given the following type of data (other types of data are discussed in section
6):
(a). At each vertex, partial derivatives of order s of some function for s = 0,1,---,2m.

(b). On each edge partial derivatives of order s at s equally (no necessary) dlstrlbuted
points for s =0,1,---,m.

(c). On each face normal dlrectlonal derivatives of order s at M, regularly (necessary)
distributed points for s = 0,1, -

On a face of the tetrahedron [p1p2p3p4], say [p1peps], the M, regularly distributed points
are the points whose barycentric coordinates are (4,4, k,0)7/(m + 2s — 2) with i +j + k =
m+2s—2, 1,5,k <m+s—1. This regularity requirement will make the interpolation problem
always have a unique solution. We refer the data (a)—(c) in this paper as C*™ data over 7.

Now we determine the coefficients bg\s) from these data so that the composite function is C™.

a. The coefficients of the P,Sll)

Consider first the computation of the coefficients bg\o) for A € Ag}ﬁ Let d; = p; — p1,
i = 2,3,4 be three directions whose barycentric coordinates are & = e; —e;. Then by (2.1), the
directional derivative of order s := u + v + w of P,, at p; in the direction ds, d3 and ds with
orders u, v and w, respectively, is

(4m + 1)! _ 0
Digeyey Pn(@lesr = WE” (s — B (Es — B1)" (Es — 1)t -
(dm+1)! & ST i Ry lylw! (0) :
= b
(4m+1—8';]20k201']'k'u—1 (v — )l(w — k) Amt-izi—kigk

(0)

Using this formula repeatedly, we could determine the coefficients by, 1 ¢ 0w

for s < 2m

from C?™ data at p;. The coefficients b>\ for A € A'Y) and i = 2,3,4 are similarly determined

me
from the C?™ data at po, p3 and py, respectively. It is not difficult to show the following lemma:

Lemma 4.1. If the coefficients bg\o) of Pp,, for X\ € Aff;l)-, 1 =1,---,4, are determined by
(4.1) from the vertex data, then P,, interpolates the directional derivative of order s in any

directions for any s(0 < s < 2m) at the vertices.

The coefficients bg\o) for A € quizj for 1 <i < j <4 are determined by formula (2.1) from

the order s data on the edges for s = 1,2,---,m. For example, on the edge a1 + a2 = 1,
we take two directions, that are perpendicular to p» — p1, to be ds = (p3 — p2) + a(p2 — p1),

dy = (ps — p2) + b(p2 — p1) whose barycentric coordinates are & = (—a,a — 1,1,0)” and

& = (=b,b—1,0,1)T, respectively, where a = (p2 ”’;Z) Ifﬁz p) p = 2 ”’;‘;) 1§f|2|2 1) - Then, for

the given integers v and v with s = u + v, by (2.1) we have

(4m+1—s)!

T  Deuer P b(°>
(4m + 1)1 st

4
Zf fo“ )
i=1

4m+1—s 0)
= Z B;; 7y, an) Z Z B (&) Bv(54)b§+>\1+m,J+>\2+K27>\37'€4 (4.2)
i+j=4m+1—s [A=u |k|=v

(alEl+a2E2)4m+1 s

a1t+az=1

Equality (4.2) is used to determine b° for A3 = u, k4 = v iteratively, that

1+A1+N1,J+)\2+N27>\3 K4
is bg%v with s = u +v. For any s(0 < s < m), since bgﬂ)w have been determined by the vertex
data at p; and ps for i > 2m + 1 or j > 2m+1 (that is, ¢ > 2m + 1 or i < 2m — s), the

remaining coefficients to be determined are b”uv for 2m —s+1 < i < 2m. That is, there are s
coefficients to be determined.
From the given s data on the edge, these coefficients are uniquely defined by solving a linear

system of equations of order s. Hence, the coefficients by for A € A,(:;)u are obtained. It should
be noted that the coefficient matrix of the system is independent of u and v. One should take
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this advantage in solving these systems. The coefficients by for A in the other Afﬁsz are similarly

determined from the data on the other edges. The derivation above gives the following lemma:
Lemma 4.2. If the coefficients bg\o) of Py, for \ € Agﬁsz, 1 < <7 <4, are determined

by (4.2) from the edge data, then P, interpolates the directional derivative of order s in any

directions that is perpendicular to the edge at s data points of the edge and, or for s =0,---,m.

Now we determine the coefficients by for A € Aﬁ,{f for ¢ = 1,---,4 from the face data.
Assume ¢ = 4. Consider the directional derivatives of order s of P,Snbl ) at the direction
dy = (ps — p3) +a(ps — p1) + b(ps — p2) (4.3)

whose barycentric coordinate is £, = (—a, —b, —1+a+b, 1), where a and b are so defined that
d4 is perpendicular to the face [p1paps]. It follows from (2.1) that

(Adm+1—s)! ] —s 4 4) 11\ 57.(0
(477” N DEZPm o = (a1 E1 + axEs + a3E3)4 +1 ((2):1-1 fl( )Ei) b(() )
_ s 0
= Z B?]?"I:—H S(a \ a4) Z B)‘ (54)bi+)\1,j+)\27k+)\37)\4 (44)
i+j+k=4m+1—s [A|=5,\a<s

Am+1— 0
+ > BEHIT(a\ aab),
i+j+k=4m+1—s
We use (4.4) to determine bg.),)cs iteratively for s = 0,1,---,n. For any s, since bg?,)cs have
been determined by the vertex data at p;, p» and p3 for ¢ > 2m + 1 or 5 > 2m + 1 or

k > 2m + 1, and the edge data on the edges [pip2], [p1ps] and [paps] for i +j > 3m + 1 or

j+k>3m+1ori+k > 3m+ 1, the remaining coefficients to be determined are bg?,)cs for

0,4,k <2m,i+j,j+k,i+k < 3m. That is, there are My coefficients to be determined. From
the given M, data on the face, these coefficients are uniquely determined by solving a linear
system of equations of order M,. Hence, the coefficients bg\o) for A € Ag,ﬁ are defined. The

coefficients bg\o) for A in the other Ag,’;) are similarly determined from the data on the other
faces.
Lemma 4.3. If the coefficients bg\o) of Py, for X\ € AY) = 1,---,4, are determined by

mi
(4.4) from the face data, then P,, interpolates the normal directional derivative order s at My
data points on the faces for s =0, - n.

b. The coefficients of the P,Sf)

The coefficients of P\, that is bg\o) for |\l =4m + 1 and A ¢ A, are so chosen that P,
has recovery property. That is, if the given data are computed from a polynomial of degree
4m + 1, then P,, coincides with that polynomial. As before, we use (4.4) fors=n+1,---;m
to determine these coefficients. Now the linear system of equations derived is over-determined.
We solve it in the least square sense.

It should be noted that the coefficients of P,(n2 ) are multiply determined from the different
face data. We take their average as the final result. However, if the data come from a polynomial
of degree 4m + 1, the least square approximation gives exact solution and the average gives the
exact coefficients of the given polynomial.

c. The coefficients of the R,,

Computing the normal directional derivative Dgy I, = (Z?Zl 554) %)T[m of order r(n+1 <
r < m) in the direction dy defined by (4.3) on the face as = 0, we have by (3.1)

Derlin |g,—o — DEZPm|a4:0 = Dngm|a4:0
r—1 . S!arfs[(a1a2a3)m+1fsp1§i)r%87l)(a \ a4)]
= Z Z Bijks (84) Sedt Do Dok (4.5)
s=n+1itjtk=r—s 1005003
+ T!(Oé10é2063)m+1_rpr(nﬂ_2(r_1)(04 \ aq)
where DﬁZPm|a4:o is known and can be computed by (4.4). Now we use (4.5) to determine
Pr(:i2(r—1) iteratively for r = n +1,---,m by interpolating the directional derivatives Der I,

on the face ay = 0 at M, points. Again, this leads to a linear system of M, equations.
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Lemma 4.4. If the coefficients b of R, are determined by (4.5) from the face data, then
I,,, interpolates the normal dtrectwnal derivative of order r at M, data points on the faces for
r=n+1,---,m

Now we are in the position to show that the composite function that consists of the inter-
polants defined in this section is C"™. We note first that the composite function is well defined
even on the faces of T, since it is C°. To see this, one should note that the coefficients, that
are determined by (4.1), (4.2) and (4.4), of P on a face (one A; is zero) depend on only the
directional derivatives on that face.

Theorem 4.5. For a given space tetrahedral tessellation T and C*™ data on T, let F,, be
a piecewise rational function over T such that Fy, has the form (2.2) and its coefficients are
defined by step a—c above on each tetrahedron. Then F,, is C™ continuous on T

Proof. On each tetrahedron of T, F, is locally C™ (see Theorem 4.4). Hence, we need to
prove F,, is C™ at vertices, edges and faces of 7. Since the partial derivatives of up to order
2m of R,, are zero at the vertices, by Lemma 4.1 we know that [,, interpolates the partial
derivatives of up to order 2m at the vertices. Hence Fj, is C?™ at vertices. In order to show
F,, is C™ continuous on edges, it is sufficient to prove that the k directional derivatives of F,,
at an edge is uniquely defined, from the data on that edge, in two directions d; and ds that are
perpendicular to the edge for £ = 0,---,m. For a given edge, let Ir(,i) be the interpolants over
the tetrahedra that share the common edge. Then, by Theorem 3.2, Dguqy I,(ﬁ) are polynomials
of degree 4m + 1 — s on the edges, where u+wv = s. They interpolate, by Lemma, 4.1, directional
derivatives of order s, - - -, 2m at the two end points of the edge, and interpolate, by Lemma 4.2,
directional derivatives of order s at s points on the edge. These directional derivatives (totaled
4m + 2 — s) uniquely determine Ddxfd; L(,i) on the edge. That is, de; I,(ﬁ) coincide with each
other on the edge.

If I,, and I}, are two interpolants defined on two tetrahedra that share a common face, then

we can similarly prove, by Lemma 4.3 and Lemma 4.4, that DI, coincide with Dg I}, on
that face for £ = 0,---,m, where d is a direction that is perpendicular to that face.

5. Dimension of the Interpolating Space

The interpolation functions in this paper are linear combinations of polynomials and rational
functions. Hence, the collection of the interpolation functions forms a linear function space.
Theorem 5.1. On the tetrahedron [p1p2pspa], the functions in the following two sets are lin-

corly inependent {BY1(@): € B} 1 Ty il T ™ QB ()
az)/leHJ 1205 AN A =m+2(s—1), \j; <m+s—1}

Proof. Let I, be a linear combination of the functions in the sets above. Then I,,, can be
written as the form (2.2) with P\?) = 0. That is, I, = Pt + Rm. Now suppose I, = 0 on
(s)

the tetrahedron, we need to prove that the combination coefficients by in I, must be zero. It
follows from the definition of I,,, that the partial derivatives of up to order m and 2m of P,Sll )
on edges and at vertices are zero, respectively. Hence the coefficients bg\o) of P,Snbl ) are zero for
A€ Am”- and A € A(U) Consider the function I,,, on the face, say aq4 = 0. Since I,,, =0, we

have Pém)(al,ag,ag,()) = 0. Hence b}), = 0. Similarly, b{}),

P(l) has a factor ajasaszas. Remove this factor from each term of the I,,,, then by the same

argument, we have bg?l)ﬂ = bg?} P = bg?;.k = bg%k = 0. Repeat this procedure n times, we have

bg\o) =0for A € Aff;) Therefore, bg\o) =0 for A € A,,,. Continue this step m times, we have all
the coefficients in R,, are zero.

Corollary 5.2. The interpolation function space consists of the functions I,,, = Pr(nl) + R,
has dimension 14m(m + 1)% + 4(m + 1).

Proof. It is easy to see that the cardinality of Al g £(2m + 3)(2m + 2)(2m + 1) for

= biojk = b(()?»;k = 0. Therefore,

me
i =1,---,4. The total of the four is l(16m3 + 48m? + 44m + 12). The cardinality of Agnzj
1-2+2-3+---m(m+1) = m(m+1)(m + 2). Hence the total of the six is 2m? + 6m? + 4m.
The cardinality of A( ) plus the degrees of freedom of p (a\a;)fors=n+1,---,mis

m+2(s—1)
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s> ol(m 4 2s)(m + 2s — 1) — 3s(s — 1)]. It can be calculated that this number is §(10m?® +

9m? — m). The sum of the four is 2(10m? + 9m? —m). Put these degrees of freedom together,
we get the corollary.

6. Algebraic Precision

The algebraic precision of an interpolant is the largest integer k for which the interpolation
function recovers the polynomial Py of degree k if the given data is extracted from Pj.

Theorem 6.1. If the C*™ data over T are computed from a polynomial of degree 4m + 1,
then the interpolation function I, defined in (2.2) recovers the polynomial.

Proof. Let P be a given polynomial of degree 4m + 1, then by the definition of P,,, P,, = P

if the data is extracted from P. From (4.5) we know that Pr(nz)”(s_l)(a \a;) =0 for s =
n+1,---,m. Hence, R,, = 0. Therefore, I,, = P.

For most applications, the data are given only at the vertices. In this case, we need to
compute the data on the edges and faces required. Suppose we are given C* data at the
vertices of 7 with k < 2m. Now we give a simple way to generate the required C?™ data over
T in the following two steps:

(a). For each tetrahedron determine a trivariate polynomial Py, (a) = Z\M:Nk bABin (a)

of degree Ny, := k+ E[k/3]+1 from the C* data at four vertices by formula (4.1). If a coefficient
is multiple determined, we take their average as the required value.

(b). For each vertex, edge and face, compute the required partial derivatives of Pj(\;z and

then take their average as the required partial derivatives, here PI(\;: are defined as above on
the tetrahedra that share the common vertex, edge and face, respectively.

Theorem 6.2. If the C*(k < 2m) data at the vertices are computed from a polynomial
of degree Ny, and the C®™ data over T are determined as above, then the interpolant I,, has
algebraic precision Ny.

Proof. 1f the data at the vertices are computed from a given polynomial P of degree Ny, then
the determined polynomial Py, in step (a) coincides with P. Hence the C?™ data computed
from Py, are the same as the C?™ data of P. Hence all the data come from the same polynomial
P. Then by Theorem 6.1, we have I,,, = P.

One special case of the theorem is that we are given C?™ data at the vertices of T, then the
algebraic precision is 2m + E[2m/3] + 1. Another case is we are given C™ data at the vertices
of T, then the algebraic precision is m + E[m/3] + 1.
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