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SOLUTION OF BURGERS’ EQUATION USING THE MARKER
METHOD

JEROME L. V. LEWANDOWSKI

Abstract. A new method for the solution of Burgers’ equation is described.

The marker method relies on the definition of a convective field associated

with the underlying partial differential equation; the information about the

approximate solution is associated with the response of an ensemble of markers

to this convective field. Some key aspects of the method, such as the selection

of the shape function and the initial loading, are discussed in some details. The

marker method is applicable to a general class of nonlinear dispersive partial

differential equations.
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tion

1. Introduction

Marker methods have been used for a long time in various disciplines (e.g plasma
physics, astrophysics, etc.) to give numerical solution of purely convective prob-
lems [1, 2]. In these methods an ensemble of markers (or ‘superparticles’) is used to
approximate the solution; the region of interest covered by the markers defines the
phase space associated with the solution. Each marker is represented through its
weight and position in phase space. The markers are advanced in time according
to the characteristics (‘equations of motion’) of the underlying partial differential
equation (PDE) associated with the problem. Marker methods are particularly
useful for collisionless problems [1, 2, 3, 6]. However, in many applications of inter-
est (e.g turbulent plasmas), diffusive processes can be important. Marker methods
usually include diffusive effects in a perturbative fashion [4, 5]: in the first step, the
markers are evolved in phase space according to the collisionless (i.e. purely convec-
tive) dynamics; in the second step, diffusive effects are included by a randomization
of the markers’ weights and/or positions according to a prescribed probability dis-
tribution. Although this method agrees with physical intuition, it is, from the
numerical point of view, quite noisy and possibly inaccurate. The marker method
presented in this paper allows for the simultaneous treatment of convective and
diffusive effects.

The main idea behind the marker method for the solution of a given PDE is to
rewrite it as a conservation equation with a generalized convective velocity. In
general (even in linear cases), the generalized convective velocity depends on the
solution of the PDE itself. Each marker, which carries the information of the so-
lution of the PDE through its weight and its position, is advanced in time using a
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Lagrangian scheme. The generalized convective velocity mentioned earlier is com-
puted through the information contained in the ensemble of markers and through
the so-called shape function.

As it will become apparent in the next sections, the marker method can actually
be applied to solve a more general class of PDEs that are encountered commonly
in physical and engineering sciences.

The marker method, unlike the finite difference and the finite element methods,
does not rely on the concept of a grid (of course one can, if needed, reconstruct
the solution on a fixed grid through the collective information associated with the
markers). Increased resolution can be achieved in a natural way by locally increas-
ing the number of markers and/or modifying the initial loading of the markers.
Unlike the finite difference method, the marker method can be trivially extended
to multi-dimensional problems.

This paper is organized as follows; in section 2, the marker method is described
in the context of the solution of a one-dimensional linear diffusion equation. The
shape function, which is involved in the evaluation of the approximate solution, is
analyzed in some detail and a numerical example is presented. The marker method
is applied to the nonlinear Burgers’ equation [8] in section 3. Concluding remarks
are given in section 4.

2. Marker Method

The purpose of this paper is to present a new numerical method for the solution
of the nonlinear Burgers’ equation [8]

∂f

∂t
+ f

∂f

∂x
= µ

∂2f

∂x2
,(1)

with initial conditions f(x, 0) = f0(x) and µ > 0 is a constant. As mentioned in
the Introduction, particle methods are usually applied to purely convective prob-
lems [i.e. by neglecting the right-hand side in Eq.(1)]. Therefore, the new aspect
of the marker method is best described in the context of a simple example: the
linear diffusion equation which is a limiting case of Eq.(1). An analysis of the
smoothing approximation obtained through the shape function, which represents a
crucial aspect of the method, is also discussed in this section. A specific numerical
application of the marker method to the case of a one-dimensional linear diffusion
equation is given.

2.1. Basic Idea. For illustrative purposes, we describe the marker method for
one-dimensional problems (as mentioned in the Introduction, the generalization
to multi-dimensional problems is straightforward). We consider an ensemble of
N markers. Each marker k is defined through its position xk and its weight
Wk. The solution of a given one-dimensional PDE is found by allowing the set
{(xk,Wk); k = 1, · · · , N} to evolve in time according to a generalized nonlinear
convective velocity. The generalized convective velocity usually depends on the so-
lution itself and a form of convolution of the approximate solution with a shape
function is required.
Consider the one-dimensional diffusion equation

∂f

∂t
=

∂2f

∂x2
,(2)
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subject to the initial condition f0(x) = f(x, 0). The main idea behind the marker
method is to write Eq.(2) as a (nonlinear) conservation equation

∂f

∂t
+

∂

∂x
(V f) = 0 ,(3)

where

V = − 1
f

∂f

∂x
.(4)

For clarity, f(x, t) is used to denote the exact solution of Eq.(2) whereas F (x, t)
represents its approximation. The function f can be approximated by an ensemble
of markers (or ‘superparticles’) where each marker j has an associated weight, Wj ,
and a time-dependent position, xj(t). As in standard particle methods, such an
approximation can be written in terms of delta functions [1, 2]

F̂ =
N∑

j=1

Wjδ (x− xj) ,(5)

where δ(x) is the usual Kronecker delta function; the hat notation indicates that the
representation is singular. For example, 1/F̂ (x, t) can be singular in region where
f(x, t) is nonzero; furthermore, the ratio of delta functions is not defined. Substi-
tuting the discrete representation (5) in Eq.(3) yields the characteristics associated
with the generalized velocity V

dxj/dt = V (xj(t), t)
xj(0) = x0j

}
j = 1, · · · , N(6)

As noted above, V ∝ ∂F̂/∂x/F̂ is not well defined. As in conventional particle
methods, a smoothed version of F̂ is obtained by taking the convolution of Eq.(5)
with a shape function

F (x, t) =
(
Sε ? F̂

)
(x, t) =

N∑

j=1

WjSε(x− xj) ,(7)

where Sε(x) = S(x/ε)/ε and
∫

Sdx = 1; ε is termed the support parameter. Using
representation (7) in the trajectory equations, Eq.(6), one gets

dxj

dt
= −

N∑
k=1

WkS′ε (xj(t)− xk(t))

N∑
k=1

WkSε (xj(t)− xk(t))
(8)

where a prime denotes a derivative with respect to the argument and the initial
positions are xj(0) = x0j . Note that the weights in Eq.(8) do not vary in time;
in particular, if all the weights are initially equal, then all the information about
the approximation F (x, t) is contained in the marker positions. The equations of
motion (8) can be integrated using standard ordinary differential equation (ODE)
techniques, such as the Runge-Kutta method [9], as used in this paper.

Before considering a numerical illustration of the marker method, several obser-
vations are in order. Clearly the accuracy of the marker method depends crucially
on the shape function and its support parameter, ε (see next section). The number
of markers, the method of integration of the equations of motion, the initial load-
ing of the ensemble {(xk,Wk); k = 1, · · · , N} and the time step of integration are
parameters that also influence the accuracy of the marker method. In some sense,
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the positions of the markers define a moving grid as far as the approximate solution
is concerned. Of course one can reconstruct the approximate solution F on a fixed
grid {Xg; g = 1, · · · , Ng} at time t by invoking the representation (7):

Fg(t) = F (Xg, t) =
N∑

j=1

WjSε(Xg − xj(t)) .

The marker method can be easily generalized to nonlinear dispersive PDEs such
as the Korteweg de Vries (KdV) equation [7] and Burgers’ equation. For example,
the KdV equation [7]

∂f

∂t
+ 3

∂f2

∂x
+

∂3f

∂x3
= 0 ,

can be written as a nonlinear conservation equation [Eq.(3)] with a generalized
velocity

V (x, t) = 3f(x, t) +
∂2f(x, t)/∂x2

f(x, t)
,

as it can be verified by direct substitution. Therefore the marker method is very
versatile in its applications, whereas conventional (e.g. finite difference) methods
usually require substantial modifications to account for additional nonlinear or dis-
persive terms, for example. This is illustrated in section 3 where the marker method
is shown to be easily generalized to the case of the nonlinear Burgers’ equation.

In the multidimensional case, the markers can be uniformly distributed in space
in a straighforward way. A non-uniform spatial loading is however more difficult
since the generalization of the quantity ξ mentioned above does not yield a simple
algorithm for the marker loading. It is however possible to adopt an alternative
approach. For sake of clarity, consider a two-dimensional function f(x, y). For
convenience, we introduce the spatial averages of f as

〈f〉x (y) ≡
+∞∫

−∞
f(x′, y)dx′ ,

and

〈f〉y (x) ≡
+∞∫

−∞
f(x, y′)dy′ .

Instead of a single variable ξ we now define the set (ξx, ξy) such that

ξx =

x∫
−∞

〈f〉y (x)dx

+∞∫
−∞

〈f〉y (x)dx

,

and

ξy =

y∫
−∞

〈f〉x (y)dy

+∞∫
−∞

〈f〉x (y)dy

.
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The procedure for the one-dimensional case can be generalized to a uniform loading
in ξx and ξy; note, however, that the alternative method presented here is not
equivalent to the one-dimensional case since the loading in the x and y directions
are decoupled.

2.2. Analysis of the Smoothing Approximation and Initial Loading. As
mentioned in the previous section, the accuracy of the marker method depends
crucially on the properties of the smoothed PDE’s approximate solution. Therefore
it is important to study the impact of the shape function and its support parameter
ε on test functions. As it will become apparent below, the accuracy of the smoothing
approximation is also related to the initial loading of the markers. The smoothed
approximation of the exact solution f(x) is given by

F (x) =
N∑

j=1

WjSε(x− xj)(9)

where Sε(x) = S(x/ε)/ε and the shape function S(x) with finite support satisfies
the normalization condition

∫ 1

−1

S(x)dx = 1 ,

and S(x) = 0 for |x| > 1. In some cases, there are advantages in using shape
functions with infinite support, in which case the normalization condition is of the
form

∫ +∞
−∞ Sdx = 1. Apart from the actual form of the shape function, there is

some freedom in selecting the value of the support parameter ε. However one can
estimate an appropriate value for ε based on the following considerations. For illus-
trative purposes, consider a simulation with N markers that are initially distributed
uniformly in the interval x ∈ [−L,L]; therefore, at t = 0, the average distance be-
tween markers is h = 2L/N . If the support parameter is such that ε < h, then
Sε(xj−xk) ∝ S((xj−xk)/ε) = 0 for all markers j 6= k; this implies that the position
of each marker will be independent of the positions of the other markers at least
at t = 0. We conclude that the support parameter must be larger than the average
distance between markers, at least in the average sense. In addition, the value of ε,
which is akin to a grid spacing in the finite difference method, must be chosen such
as to accurately resolve the spatial scale length of f(x). In summary, if λ denotes
the (known or estimated) spatial scale length of f(x) and h is the average distance
between markers, the support parameter, ε, must satisfy the following inequality

h ¿ ε ¿ λ .

There is some freedom in selecting a shape function. Typically one requires some
smoothness properties and/or ease of computation (for example, a Gaussian shape
function is smoother than a hat shape function, but it is computationally more
demanding to evaluate). Below is a set of shape functions that are defined on the
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interval [−1, +1]:

S1(x) =
1
2

(gate function)

S2(x) = 1− |x| (hat function)

S3(x) =
3
4

(1− x2) (quadratic polynomial)

S4(x) =
15
16

(1− x2)2 (quartic polynomial)(10)

S5(x) = µ (1− |x|) e−x2
(hat/Gaussian shape function)

S6(x) = β
(
1− x2

)2
e−x2

(quartic polynomial/Gaussian shape function)

where µ = (
√

πerf(1) + 1/e− 1)−1 and β = 2/
(

3
2 erf(1)− 1/e

)
are constants of

normalization, and erf(x) denotes the error function

erf(x) =
2√
π

∫ x

0

e−t2dt .

The second factor that affects the approximation of f(x) is the initial distribu-
tion of the position of the markers and their associated weights (refered to as the
initial loading). There are two basic approaches to the initialization of the en-
semble {(xj ,Wj) ; j = 1, · · · , N}. In the first approach, the markers are uniformly
distributed in space. Using the approximation of

∫
f(x)dx ≈

∑

j

f(xj)h ,

where h is the distance between two consecutive markers, and noting that [see
Eq.(5)]

∫
F̂ dx =

∑

j

Wj ,

it follows that

Wj = f(xj)h
xj+1 − xj = h .

In the second approach, each marker has the same weight, but the spatial distri-
bution of the markers is not uniform. If there are N markers, the marker weight is

then Wj = σ/N where σ ≡
+∞∫
−∞

fdx. In order to determine the spatial distribution

of the markers, it is convenient to introduce the variable

ξ =

∫ x

−∞ f(x)dx
∫ +∞
−∞ f(x)dx

,

which, by construction, is a positive-definite quantity in the unit interval. A uniform
distribution in ξ, that is ξj = (j − 1

2 )/N (∀j), yields

xj = g−1

((∫ +∞

−∞
f(x)dx

)
j − 1

2

N

)

Wj =
σ

N
(11)
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where g−1 denotes the inverse of g(x) ≡ ∫ x

−∞ f(x′)dx′. As a numerical illustration,
consider the function

f(x) = xe−x2
,

in the interval x ∈ [0, x0], x0 > 0. The initialization based on a set of uniformly
distributed xj yields

xj = (j − 1/2)h ,

Wj = xje
−x2

j h ,

where h = x0/N . Alternatively, one can demand that each marker carries an equal
weight; following the procedure described above [Eq.(11)] one obtains

xj =

√
− ln

(
1− j − 1/2

N

(
1− e−x2

0
))

Wj =
1
N

,(12)

Fig. 1 shows the smoothed approximation of f(x) for a uniform spatial loading
(dotted line) and a nonuniform spatial loading (dashed line) using a quadratic
shape function with support parameter ε = 0.1 for a set of N = 32 markers. The
plain line represents the exact function. For the same parameters, the quartic
shape function, which satisfies S′(x = ±1) = 0, yields a better approximation (Fig.
2). Further improvement (Fig. 3) can be achieved using the shape function based
on a quartic polynomial and a Gaussian function [S(x) = S6(x); see Eq.(10)].
Of course, in all the above cases, smoother approximations can be obtained by
increasing the number of markers N . Another parameter affecting the quality of
the approximation is the support parameter, ε. Fig. 4 is the same as Fig. 2 except
that the support parameter has been doubled (ε = 0.2). Clearly a much better
agreement between the approximated functions and the exact function is found. If
the support parameter is further increased the smoothing effect of S(x) becomes
too important and the quality of the approximated function degrades.

2.3. Numerical Example for the Linear Diffusion Equation. In this sec-
tion, we apply the marker method for the diffusion equation, Eq.(2), with initial
conditions

f0(x) = 1 ; |x| ≤ 1
= 0 ; |x| > 1

}
(13)

The solution of the diffusion equation, Eq.(2), with initial conditions (13) is easily
found using Laplace transforms

f(x, t) =
1√
4πt

∫ +∞

−∞
f0(ξ) exp

(−(x− ξ)2/4t
)
dξ

=
1
2

[
erf

(
x + 1
2
√

t

)
− erf

(
x− 1
2
√

t

)]
,

where, as before, erf(x) is the error function with argument x. As mentioned in the
previous section, there is some freedom in the choice of the shape function S(x).
Here we consider a shape function with infinite support (superGaussian)

S7(x) =
3/2− x2

√
π

e−x2
.(14)

The equations of motion (8) have been integrated using a second-order Runge-Kutta
method with a fixed time step. The approximate solution has been reconstructed
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on a moving grid defined by the marker positions x(t) = {xj(t); j = 1, · · · , N}.
Note that one can determine the approximate solution on a fixed, prescribed grid;
however this approach involves the shape function (or some other form of interpo-
lation) that further reduces the accuracy of the numerical scheme. Fig.(5) shows
the exact solutions (plain line: t = 2.0; dotted line: t = 4.0) and the approximate
solutions (triangles: t = 2.0; squares: t = 4.0) of the diffusion equation for a set of
N = 100 markers. The initial condition is the square profile of Eq.(13). The shape
function is a superGaussian [Eq.(14)]; other parameters are ∆t = 0.01, ε = 1/3
and L = 14.0. We note the excellent agreement of the approximate solution with
the exact solutions. As it can be expected, slight errors do appear when F 7→ 0
although their magnitude are small.

Although not shown here, we have noted that the use of a certain shape func-
tions with finite support can sometime lead to a clustering effect in the marker
position, that is the solution appears to display an additional scale length associ-
ated with the support parameter. In general, the use of shape function with infinite
support appear to improve the accuracy of the approximate solution.

3. Marker Method for Burgers’ Equation

In this section, we apply the marker method to the solution of the nonlinear
Burgers equation. Following the methodology presented in the previous section,
the nonlinear Burgers equation can be written as a nonlinear conservation equation

∂f

∂t
+

∂

∂x
(V f) = 0 ,

where

V =
f

2
− µ

f

∂f

∂x
.(15)

It is interesting to note that the nonlinear term in Burgers’ equation appears as a
linear term in the convective velocity [first term in Eq.(15)] whereas the linear term
in Eq.(1), which accounts for the diffusive process, is represented as a nonlinear term
in f [second term in Eq.(15)]. Before presenting numerical results pertaining to the
full nonlinear Burgers’ equation, we consider the ‘wave breaking’ effect associated
with the quasilinear case [µ = 0 in Eq.(1)]

∂f

∂t
+ f

∂f

∂x
= 0 ,(16)

with initial condition f(x, 0) = f0(x). The presence of the diffusive term in the
original Burgers’ equation prevents the solution from becoming multiple valued.
The exact solution of Eq.(16) is

f(x, t) = f0(x− ft) .(17)

The explicit solution of Eq.(17) for f amounts to a root finding problem. In this
paper the bisection method [9] has been used to solve Eq.(17). In the present case,
the initial condition was chosen as f0(x) = sech2x. The solution of the quasilinear
problem (16) provides a simple theoretical description of a shock wave. The time at
which the shock forms may be estimated by identifying it with the earliest time, tc,
at which the profile f(x, t) becomes vertical, that is, the time at which ∂f/∂x = ∞
for some point on the curve. From Eq.(17) we have the general relation

∂f/∂x =
f ′0

1 + tf ′0
,
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where a prime denotes a differentiation with respect to the argument. For the spe-
cific initial profile of f0(x) = sech2x, we have f ′0(x) = −2sech2x tanh x. On using
the largest negative value of this expression (namely xc = −4

√
3/9) to obtain the

earliest time, we find tc = 1.299. Fig.6 shows the the initial profile (thick plain
line) and the exact solutions at t = 0.4, 0.8, 1.2 are shown by thin plain lines. The
symbols represents the approximate solutions based on the markers’ positions. We
note that the marker method is able to capture the transition just before the wave
breaking phenomenon very accurately; the algorithm fails around t ' 1.3 in good
agreement with our estimate for the critical time tc. We would like to point out
that the complexity of the algorithm for this nonlinear quasilinear problem is the
same as that of the linear diffusion equation discussed in the previous section. This
is in contrast with finite difference methods for which the linear diffusion equation
and the nonlinear quaslinear problem (16) would require different algorithms.

Having considered the limit cases of Eq.(1), we now present a numerical exam-
ple for the full nonlinear Burgers’ equation. Given the initial profile of

f0(x) = f(x, 0) =
µ

λ
(A− 4 tanh(x/λ)) ,

where µ, A and λ are constants, the exact solution of Burgers’s equation is (see
Appendix)

f(x, t) = 2µ
2aeµta2−ax + beµtb2−bx + ceµtc2−cx

2eµta2−ax + eµtb2−bx + eµtc2−cx
,(18)

where a = A/2λ, b = a + 2λ and c = a − 2/λ. Fig.7 shows the exact (thin
plain lines) and approximate (symbols) solutions at t = 0, t = 100 and t = 200.
The simulation has been carried out with N = 256 markers (with an initial uniform
spatial distribution), a time step of integration ∆t = 0.1 and the support parameter
is ε =

√
h; the shape function is a superGaussian. Other parameters are: A = 4.0,

λ = 7.0 and µ = 0.1. We note that the marker method is able to capture the
steepening of the front with a very good accuracy.

4. Conclusions

In this paper we have introduced the marker method for the solution of the
nonlinear Burgers’ equation. The main idea behind the marker method is to rewrite
a given PDE as a conservation equation. A set of markers is then advanced in time
(Lagrangian scheme) according to a generalized convective velocity associated with
the conservation equation (which itself is an alternative (but exact) form of the
original PDE). The information about the approximate solution can be obtained
through a convolution of the markers’ weights and positions with a shape function.
In this paper, we have addressed several aspects of the marker method such as the
choice of the shape function and the initial loading of the markers. It has been
demonstrated that the marker method yields accurate solutions of the nonlinear
Burgers’ equation. The main advantages of the marker method are its ease of
implementation, flexibility and accuracy. Further, the marker method is naturally
applicable to PDEs which solutions display one or more shocks since the method
is Lagrangian in nature; finite difference methods are often (but not always) not
accurate in such situations. The solution of integral equations using the marker
method is more difficult and will be addressed in future publications.
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Figure 1. Approximation of the function f(x) = xe−x2
(plain

line) based on a set of N = 32 markers. The dotted (dashed) line
is for the case of uniform (nonuniform) spatial loading. The shape
function is a quadratic polynomial [S(x) = S3(x); see Eq.(10)] with
parameter ε = 0.1.
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Figure 2. Approximation of the function f(x) = xe−x2
(plain

line) based on a set of N = 32 markers. The dotted (dashed) line
is for the case of uniform (nonuniform) spatial loading. The shape
function is a quartic polynomial [S(x) = S4(x); see Eq.(10)] with
parameter ε = 0.1.

Figure 3. Approximation of the function f(x) = xe−x2
(plain

line) based on a set of N = 32 markers. The dotted (dashed)
line is for the case of uniform (nonuniform) spatial loading. The
shape function is a based on a quartic polynomial and a Gaussian
function [S(x) = S6(x); see Eq.(10)] with parameter ε = 0.1.
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Figure 4. Approximation of the function f(x) = xe−x2
(plain

line) based on a set of N = 32 markers. The dotted (dashed) line
is for the case of uniform (nonuniform) spatial loading. The shape
function is a quartic polynomial [S(x) = S4(x); see Eq.(10)] with
parameter ε = 0.2.

Figure 5. Exact (plain line: t = 2.0; dotted line: t = 4.0) and
approximate (triangles: t = 2.0; squares: t = 4.0)) solutions of
the diffusion equation based on a set of N = 100 markers. The
initial condition is a square profile, Eq.(13). The shape function
is a superGaussian [Eq.(14)]. Other parameters are: ∆t = 0.01,
ε = 1/3 and L = 14.0.
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Figure 6. Exact (thin plain lines) and approximate (diamonds:
t = 0.4, triangles: t = 0.8 and squares: t = 1.2) solution of the
quasilinear equation ∂f/∂t + f∂f/∂x = 0 with initial condition
f(x, 0) = sech2x (thick plain line). The number of markers is
N = 128, the time step is ∆t = 0.001 and the support parameter
is ε =

√
h = 1/

√
32.

Figure 7. Exact (thin plain lines) and approximate (squares: t =
0.0, diamonds: t = 100 and triangles: t = 200) solution of the
nonlinear Burgers equation with initial conditions given by Eq.(18).
The parameters are: µ = 0.1, λ = 7.0 and A = 4.0. The number of
markers used is N = 256, the time step of integration is ∆t = 0.1,
the support parameter is ε =

√
h and the shape function is super-

Gaussian.
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Appendix: Analytical Solution of Burgers’ Equation

The nonlinear Burgers’ equation is

∂f

∂t
+ f

∂f

∂x
= µ

∂2f

∂x2
,(19)

where µ > 0 is the diffusion coefficient. It is easy to show that the function

θ(x, t) = exp
(
− 1

2µ

∫
f(x, t)dx

)
,

satisfies the diffusion equation

∂θ

∂t
= µ

∂2θ

∂x2
.(20)

Therefore a simple prescription for solving Burgers’ equation, Eq.(19), is (given an
initial profile f0(x) = f(x, 0))

• determine θ(x, 0) = exp
(− ∫

f0(x)dx/2µ
)
;

• obtain θ(x, t) by solving the diffusion equation (20); and
• determine f(x, t) from f(x, t) = −2µ∂θ/∂x/θ.

Consider the following initial profile

f0(x) = f(x, 0) =
µ

λ
(A− 4 tanh(x/λ)) .

Using the relation of
∫

tanh xdx = ln(cosh x) + C, we obtain

θ(x, 0) = θ̂ exp(−Ax/2λ) cosh2(x/λ) ,(21)

where θ̂ = exp(Ax0/2λ)sech2(x0/λ) and x0 are constants. The solution of the
diffusion equation, Eq.(20), is

θ(x, t) =
∫ +∞

−∞
G(ξ, x, t)θ(ξ, 0)dξ ,

where

G(ξ, x, t) =
1√

4πµt
exp

(
− (x− ξ)2

4µt

)

is the Green’s function. After some algebra one obtains

θ(x, t) =
θ̂

4

(
2eµta2−ax + eµtb2−bx + eµtc2−cx

)
,

where a = A/2λ, b = a + 2/λ and c = a− 2/λ and

f(x, t) = − 2µ

θ(x, t)
∂θ

∂x

= 2µ
2aeµta2−ax + beµtb2−bx + ceµtc2−cx

2eµta2−ax + eµtb2−bx + eµtc2−cx
.(22)

For the special case A = 0 (see Eq.(21)), Eq.(22) simplifies to

f(x, t) = −4µ

λ

sinh(2x/λ)
cosh(2x/λ) + e−4µt/λ2 .
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